123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940 |
- /*
- Name: imrat.c
- Purpose: Arbitrary precision rational arithmetic routines.
- Author: M. J. Fromberger
- Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved.
- Permission is hereby granted, free of charge, to any person obtaining a copy
- of this software and associated documentation files (the "Software"), to deal
- in the Software without restriction, including without limitation the rights
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- copies of the Software, and to permit persons to whom the Software is
- furnished to do so, subject to the following conditions:
- The above copyright notice and this permission notice shall be included in
- all copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- SOFTWARE.
- */
- #include "imrat.h"
- #include <assert.h>
- #include <ctype.h>
- #include <stdlib.h>
- #include <string.h>
- #define MP_NUMER_SIGN(Q) (MP_NUMER_P(Q)->sign)
- #define MP_DENOM_SIGN(Q) (MP_DENOM_P(Q)->sign)
- #define TEMP(K) (temp + (K))
- #define SETUP(E, C) \
- do { \
- if ((res = (E)) != MP_OK) goto CLEANUP; \
- ++(C); \
- } while (0)
- /* Reduce the given rational, in place, to lowest terms and canonical form.
- Zero is represented as 0/1, one as 1/1. Signs are adjusted so that the sign
- of the numerator is definitive. */
- static mp_result s_rat_reduce(mp_rat r);
- /* Common code for addition and subtraction operations on rationals. */
- static mp_result s_rat_combine(mp_rat a, mp_rat b, mp_rat c,
- mp_result (*comb_f)(mp_int, mp_int, mp_int));
- mp_result mp_rat_init(mp_rat r) {
- mp_result res;
- if ((res = mp_int_init(MP_NUMER_P(r))) != MP_OK) return res;
- if ((res = mp_int_init(MP_DENOM_P(r))) != MP_OK) {
- mp_int_clear(MP_NUMER_P(r));
- return res;
- }
- return mp_int_set_value(MP_DENOM_P(r), 1);
- }
- mp_rat mp_rat_alloc(void) {
- mp_rat out = malloc(sizeof(*out));
- if (out != NULL) {
- if (mp_rat_init(out) != MP_OK) {
- free(out);
- return NULL;
- }
- }
- return out;
- }
- mp_result mp_rat_reduce(mp_rat r) { return s_rat_reduce(r); }
- mp_result mp_rat_init_size(mp_rat r, mp_size n_prec, mp_size d_prec) {
- mp_result res;
- if ((res = mp_int_init_size(MP_NUMER_P(r), n_prec)) != MP_OK) {
- return res;
- }
- if ((res = mp_int_init_size(MP_DENOM_P(r), d_prec)) != MP_OK) {
- mp_int_clear(MP_NUMER_P(r));
- return res;
- }
- return mp_int_set_value(MP_DENOM_P(r), 1);
- }
- mp_result mp_rat_init_copy(mp_rat r, mp_rat old) {
- mp_result res;
- if ((res = mp_int_init_copy(MP_NUMER_P(r), MP_NUMER_P(old))) != MP_OK) {
- return res;
- }
- if ((res = mp_int_init_copy(MP_DENOM_P(r), MP_DENOM_P(old))) != MP_OK)
- mp_int_clear(MP_NUMER_P(r));
- return res;
- }
- mp_result mp_rat_set_value(mp_rat r, mp_small numer, mp_small denom) {
- mp_result res;
- if (denom == 0) return MP_UNDEF;
- if ((res = mp_int_set_value(MP_NUMER_P(r), numer)) != MP_OK) {
- return res;
- }
- if ((res = mp_int_set_value(MP_DENOM_P(r), denom)) != MP_OK) {
- return res;
- }
- return s_rat_reduce(r);
- }
- mp_result mp_rat_set_uvalue(mp_rat r, mp_usmall numer, mp_usmall denom) {
- mp_result res;
- if (denom == 0) return MP_UNDEF;
- if ((res = mp_int_set_uvalue(MP_NUMER_P(r), numer)) != MP_OK) {
- return res;
- }
- if ((res = mp_int_set_uvalue(MP_DENOM_P(r), denom)) != MP_OK) {
- return res;
- }
- return s_rat_reduce(r);
- }
- void mp_rat_clear(mp_rat r) {
- mp_int_clear(MP_NUMER_P(r));
- mp_int_clear(MP_DENOM_P(r));
- }
- void mp_rat_free(mp_rat r) {
- assert(r != NULL);
- if (r->num.digits != NULL) mp_rat_clear(r);
- free(r);
- }
- mp_result mp_rat_numer(mp_rat r, mp_int z) {
- return mp_int_copy(MP_NUMER_P(r), z);
- }
- mp_int mp_rat_numer_ref(mp_rat r) { return MP_NUMER_P(r); }
- mp_result mp_rat_denom(mp_rat r, mp_int z) {
- return mp_int_copy(MP_DENOM_P(r), z);
- }
- mp_int mp_rat_denom_ref(mp_rat r) { return MP_DENOM_P(r); }
- mp_sign mp_rat_sign(mp_rat r) { return MP_NUMER_SIGN(r); }
- mp_result mp_rat_copy(mp_rat a, mp_rat c) {
- mp_result res;
- if ((res = mp_int_copy(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK) {
- return res;
- }
- res = mp_int_copy(MP_DENOM_P(a), MP_DENOM_P(c));
- return res;
- }
- void mp_rat_zero(mp_rat r) {
- mp_int_zero(MP_NUMER_P(r));
- mp_int_set_value(MP_DENOM_P(r), 1);
- }
- mp_result mp_rat_abs(mp_rat a, mp_rat c) {
- mp_result res;
- if ((res = mp_int_abs(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK) {
- return res;
- }
- res = mp_int_abs(MP_DENOM_P(a), MP_DENOM_P(c));
- return res;
- }
- mp_result mp_rat_neg(mp_rat a, mp_rat c) {
- mp_result res;
- if ((res = mp_int_neg(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK) {
- return res;
- }
- res = mp_int_copy(MP_DENOM_P(a), MP_DENOM_P(c));
- return res;
- }
- mp_result mp_rat_recip(mp_rat a, mp_rat c) {
- mp_result res;
- if (mp_rat_compare_zero(a) == 0) return MP_UNDEF;
- if ((res = mp_rat_copy(a, c)) != MP_OK) return res;
- mp_int_swap(MP_NUMER_P(c), MP_DENOM_P(c));
- /* Restore the signs of the swapped elements */
- {
- mp_sign tmp = MP_NUMER_SIGN(c);
- MP_NUMER_SIGN(c) = MP_DENOM_SIGN(c);
- MP_DENOM_SIGN(c) = tmp;
- }
- return MP_OK;
- }
- mp_result mp_rat_add(mp_rat a, mp_rat b, mp_rat c) {
- return s_rat_combine(a, b, c, mp_int_add);
- }
- mp_result mp_rat_sub(mp_rat a, mp_rat b, mp_rat c) {
- return s_rat_combine(a, b, c, mp_int_sub);
- }
- mp_result mp_rat_mul(mp_rat a, mp_rat b, mp_rat c) {
- mp_result res;
- if ((res = mp_int_mul(MP_NUMER_P(a), MP_NUMER_P(b), MP_NUMER_P(c))) != MP_OK)
- return res;
- if (mp_int_compare_zero(MP_NUMER_P(c)) != 0) {
- res = mp_int_mul(MP_DENOM_P(a), MP_DENOM_P(b), MP_DENOM_P(c));
- if (res != MP_OK) {
- return res;
- }
- }
- return s_rat_reduce(c);
- }
- mp_result mp_rat_div(mp_rat a, mp_rat b, mp_rat c) {
- mp_result res = MP_OK;
- if (mp_rat_compare_zero(b) == 0) return MP_UNDEF;
- if (c == a || c == b) {
- mpz_t tmp;
- if ((res = mp_int_init(&tmp)) != MP_OK) return res;
- if ((res = mp_int_mul(MP_NUMER_P(a), MP_DENOM_P(b), &tmp)) != MP_OK) {
- goto CLEANUP;
- }
- if ((res = mp_int_mul(MP_DENOM_P(a), MP_NUMER_P(b), MP_DENOM_P(c))) !=
- MP_OK) {
- goto CLEANUP;
- }
- res = mp_int_copy(&tmp, MP_NUMER_P(c));
- CLEANUP:
- mp_int_clear(&tmp);
- } else {
- if ((res = mp_int_mul(MP_NUMER_P(a), MP_DENOM_P(b), MP_NUMER_P(c))) !=
- MP_OK) {
- return res;
- }
- if ((res = mp_int_mul(MP_DENOM_P(a), MP_NUMER_P(b), MP_DENOM_P(c))) !=
- MP_OK) {
- return res;
- }
- }
- if (res != MP_OK) {
- return res;
- } else {
- return s_rat_reduce(c);
- }
- }
- mp_result mp_rat_add_int(mp_rat a, mp_int b, mp_rat c) {
- mpz_t tmp;
- mp_result res;
- if ((res = mp_int_init_copy(&tmp, b)) != MP_OK) {
- return res;
- }
- if ((res = mp_int_mul(&tmp, MP_DENOM_P(a), &tmp)) != MP_OK) {
- goto CLEANUP;
- }
- if ((res = mp_rat_copy(a, c)) != MP_OK) {
- goto CLEANUP;
- }
- if ((res = mp_int_add(MP_NUMER_P(c), &tmp, MP_NUMER_P(c))) != MP_OK) {
- goto CLEANUP;
- }
- res = s_rat_reduce(c);
- CLEANUP:
- mp_int_clear(&tmp);
- return res;
- }
- mp_result mp_rat_sub_int(mp_rat a, mp_int b, mp_rat c) {
- mpz_t tmp;
- mp_result res;
- if ((res = mp_int_init_copy(&tmp, b)) != MP_OK) {
- return res;
- }
- if ((res = mp_int_mul(&tmp, MP_DENOM_P(a), &tmp)) != MP_OK) {
- goto CLEANUP;
- }
- if ((res = mp_rat_copy(a, c)) != MP_OK) {
- goto CLEANUP;
- }
- if ((res = mp_int_sub(MP_NUMER_P(c), &tmp, MP_NUMER_P(c))) != MP_OK) {
- goto CLEANUP;
- }
- res = s_rat_reduce(c);
- CLEANUP:
- mp_int_clear(&tmp);
- return res;
- }
- mp_result mp_rat_mul_int(mp_rat a, mp_int b, mp_rat c) {
- mp_result res;
- if ((res = mp_rat_copy(a, c)) != MP_OK) {
- return res;
- }
- if ((res = mp_int_mul(MP_NUMER_P(c), b, MP_NUMER_P(c))) != MP_OK) {
- return res;
- }
- return s_rat_reduce(c);
- }
- mp_result mp_rat_div_int(mp_rat a, mp_int b, mp_rat c) {
- mp_result res;
- if (mp_int_compare_zero(b) == 0) {
- return MP_UNDEF;
- }
- if ((res = mp_rat_copy(a, c)) != MP_OK) {
- return res;
- }
- if ((res = mp_int_mul(MP_DENOM_P(c), b, MP_DENOM_P(c))) != MP_OK) {
- return res;
- }
- return s_rat_reduce(c);
- }
- mp_result mp_rat_expt(mp_rat a, mp_small b, mp_rat c) {
- mp_result res;
- /* Special cases for easy powers. */
- if (b == 0) {
- return mp_rat_set_value(c, 1, 1);
- } else if (b == 1) {
- return mp_rat_copy(a, c);
- }
- /* Since rationals are always stored in lowest terms, it is not necessary to
- reduce again when raising to an integer power. */
- if ((res = mp_int_expt(MP_NUMER_P(a), b, MP_NUMER_P(c))) != MP_OK) {
- return res;
- }
- return mp_int_expt(MP_DENOM_P(a), b, MP_DENOM_P(c));
- }
- int mp_rat_compare(mp_rat a, mp_rat b) {
- /* Quick check for opposite signs. Works because the sign of the numerator
- is always definitive. */
- if (MP_NUMER_SIGN(a) != MP_NUMER_SIGN(b)) {
- if (MP_NUMER_SIGN(a) == MP_ZPOS) {
- return 1;
- } else {
- return -1;
- }
- } else {
- /* Compare absolute magnitudes; if both are positive, the answer stands,
- otherwise it needs to be reflected about zero. */
- int cmp = mp_rat_compare_unsigned(a, b);
- if (MP_NUMER_SIGN(a) == MP_ZPOS) {
- return cmp;
- } else {
- return -cmp;
- }
- }
- }
- int mp_rat_compare_unsigned(mp_rat a, mp_rat b) {
- /* If the denominators are equal, we can quickly compare numerators without
- multiplying. Otherwise, we actually have to do some work. */
- if (mp_int_compare_unsigned(MP_DENOM_P(a), MP_DENOM_P(b)) == 0) {
- return mp_int_compare_unsigned(MP_NUMER_P(a), MP_NUMER_P(b));
- }
- else {
- mpz_t temp[2];
- mp_result res;
- int cmp = INT_MAX, last = 0;
- /* t0 = num(a) * den(b), t1 = num(b) * den(a) */
- SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(a)), last);
- SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(b)), last);
- if ((res = mp_int_mul(TEMP(0), MP_DENOM_P(b), TEMP(0))) != MP_OK ||
- (res = mp_int_mul(TEMP(1), MP_DENOM_P(a), TEMP(1))) != MP_OK) {
- goto CLEANUP;
- }
- cmp = mp_int_compare_unsigned(TEMP(0), TEMP(1));
- CLEANUP:
- while (--last >= 0) {
- mp_int_clear(TEMP(last));
- }
- return cmp;
- }
- }
- int mp_rat_compare_zero(mp_rat r) { return mp_int_compare_zero(MP_NUMER_P(r)); }
- int mp_rat_compare_value(mp_rat r, mp_small n, mp_small d) {
- mpq_t tmp;
- mp_result res;
- int out = INT_MAX;
- if ((res = mp_rat_init(&tmp)) != MP_OK) {
- return out;
- }
- if ((res = mp_rat_set_value(&tmp, n, d)) != MP_OK) {
- goto CLEANUP;
- }
- out = mp_rat_compare(r, &tmp);
- CLEANUP:
- mp_rat_clear(&tmp);
- return out;
- }
- bool mp_rat_is_integer(mp_rat r) {
- return (mp_int_compare_value(MP_DENOM_P(r), 1) == 0);
- }
- mp_result mp_rat_to_ints(mp_rat r, mp_small *num, mp_small *den) {
- mp_result res;
- if ((res = mp_int_to_int(MP_NUMER_P(r), num)) != MP_OK) {
- return res;
- }
- res = mp_int_to_int(MP_DENOM_P(r), den);
- return res;
- }
- mp_result mp_rat_to_string(mp_rat r, mp_size radix, char *str, int limit) {
- /* Write the numerator. The sign of the rational number is written by the
- underlying integer implementation. */
- mp_result res;
- if ((res = mp_int_to_string(MP_NUMER_P(r), radix, str, limit)) != MP_OK) {
- return res;
- }
- /* If the value is zero, don't bother writing any denominator */
- if (mp_int_compare_zero(MP_NUMER_P(r)) == 0) {
- return MP_OK;
- }
- /* Locate the end of the numerator, and make sure we are not going to exceed
- the limit by writing a slash. */
- int len = strlen(str);
- char *start = str + len;
- limit -= len;
- if (limit == 0) return MP_TRUNC;
- *start++ = '/';
- limit -= 1;
- return mp_int_to_string(MP_DENOM_P(r), radix, start, limit);
- }
- mp_result mp_rat_to_decimal(mp_rat r, mp_size radix, mp_size prec,
- mp_round_mode round, char *str, int limit) {
- mpz_t temp[3];
- mp_result res;
- int last = 0;
- SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(r)), last);
- SETUP(mp_int_init(TEMP(last)), last);
- SETUP(mp_int_init(TEMP(last)), last);
- /* Get the unsigned integer part by dividing denominator into the absolute
- value of the numerator. */
- mp_int_abs(TEMP(0), TEMP(0));
- if ((res = mp_int_div(TEMP(0), MP_DENOM_P(r), TEMP(0), TEMP(1))) != MP_OK) {
- goto CLEANUP;
- }
- /* Now: T0 = integer portion, unsigned;
- T1 = remainder, from which fractional part is computed. */
- /* Count up leading zeroes after the radix point. */
- int zprec = (int)prec;
- int lead_0;
- for (lead_0 = 0; lead_0 < zprec && mp_int_compare(TEMP(1), MP_DENOM_P(r)) < 0;
- ++lead_0) {
- if ((res = mp_int_mul_value(TEMP(1), radix, TEMP(1))) != MP_OK) {
- goto CLEANUP;
- }
- }
- /* Multiply remainder by a power of the radix sufficient to get the right
- number of significant figures. */
- if (zprec > lead_0) {
- if ((res = mp_int_expt_value(radix, zprec - lead_0, TEMP(2))) != MP_OK) {
- goto CLEANUP;
- }
- if ((res = mp_int_mul(TEMP(1), TEMP(2), TEMP(1))) != MP_OK) {
- goto CLEANUP;
- }
- }
- if ((res = mp_int_div(TEMP(1), MP_DENOM_P(r), TEMP(1), TEMP(2))) != MP_OK) {
- goto CLEANUP;
- }
- /* Now: T1 = significant digits of fractional part;
- T2 = leftovers, to use for rounding.
- At this point, what we do depends on the rounding mode. The default is
- MP_ROUND_DOWN, for which everything is as it should be already.
- */
- switch (round) {
- int cmp;
- case MP_ROUND_UP:
- if (mp_int_compare_zero(TEMP(2)) != 0) {
- if (prec == 0) {
- res = mp_int_add_value(TEMP(0), 1, TEMP(0));
- } else {
- res = mp_int_add_value(TEMP(1), 1, TEMP(1));
- }
- }
- break;
- case MP_ROUND_HALF_UP:
- case MP_ROUND_HALF_DOWN:
- if ((res = mp_int_mul_pow2(TEMP(2), 1, TEMP(2))) != MP_OK) {
- goto CLEANUP;
- }
- cmp = mp_int_compare(TEMP(2), MP_DENOM_P(r));
- if (round == MP_ROUND_HALF_UP) cmp += 1;
- if (cmp > 0) {
- if (prec == 0) {
- res = mp_int_add_value(TEMP(0), 1, TEMP(0));
- } else {
- res = mp_int_add_value(TEMP(1), 1, TEMP(1));
- }
- }
- break;
- case MP_ROUND_DOWN:
- break; /* No action required */
- default:
- return MP_BADARG; /* Invalid rounding specifier */
- }
- if (res != MP_OK) {
- goto CLEANUP;
- }
- /* The sign of the output should be the sign of the numerator, but if all the
- displayed digits will be zero due to the precision, a negative shouldn't
- be shown. */
- char *start = str;
- int left = limit;
- if (MP_NUMER_SIGN(r) == MP_NEG && (mp_int_compare_zero(TEMP(0)) != 0 ||
- mp_int_compare_zero(TEMP(1)) != 0)) {
- *start++ = '-';
- left -= 1;
- }
- if ((res = mp_int_to_string(TEMP(0), radix, start, left)) != MP_OK) {
- goto CLEANUP;
- }
- int len = strlen(start);
- start += len;
- left -= len;
- if (prec == 0) goto CLEANUP;
- *start++ = '.';
- left -= 1;
- if (left < zprec + 1) {
- res = MP_TRUNC;
- goto CLEANUP;
- }
- memset(start, '0', lead_0 - 1);
- left -= lead_0;
- start += lead_0 - 1;
- res = mp_int_to_string(TEMP(1), radix, start, left);
- CLEANUP:
- while (--last >= 0) mp_int_clear(TEMP(last));
- return res;
- }
- mp_result mp_rat_string_len(mp_rat r, mp_size radix) {
- mp_result d_len = 0;
- mp_result n_len = mp_int_string_len(MP_NUMER_P(r), radix);
- if (mp_int_compare_zero(MP_NUMER_P(r)) != 0) {
- d_len = mp_int_string_len(MP_DENOM_P(r), radix);
- }
- /* Though simplistic, this formula is correct. Space for the sign flag is
- included in n_len, and the space for the NUL that is counted in n_len
- counts for the separator here. The space for the NUL counted in d_len
- counts for the final terminator here. */
- return n_len + d_len;
- }
- mp_result mp_rat_decimal_len(mp_rat r, mp_size radix, mp_size prec) {
- int f_len;
- int z_len = mp_int_string_len(MP_NUMER_P(r), radix);
- if (prec == 0) {
- f_len = 1; /* terminator only */
- } else {
- f_len = 1 + prec + 1; /* decimal point, digits, terminator */
- }
- return z_len + f_len;
- }
- mp_result mp_rat_read_string(mp_rat r, mp_size radix, const char *str) {
- return mp_rat_read_cstring(r, radix, str, NULL);
- }
- mp_result mp_rat_read_cstring(mp_rat r, mp_size radix, const char *str,
- char **end) {
- mp_result res;
- char *endp;
- if ((res = mp_int_read_cstring(MP_NUMER_P(r), radix, str, &endp)) != MP_OK &&
- (res != MP_TRUNC)) {
- return res;
- }
- /* Skip whitespace between numerator and (possible) separator */
- while (isspace((unsigned char)*endp)) {
- ++endp;
- }
- /* If there is no separator, we will stop reading at this point. */
- if (*endp != '/') {
- mp_int_set_value(MP_DENOM_P(r), 1);
- if (end != NULL) *end = endp;
- return res;
- }
- ++endp; /* skip separator */
- if ((res = mp_int_read_cstring(MP_DENOM_P(r), radix, endp, end)) != MP_OK) {
- return res;
- }
- /* Make sure the value is well-defined */
- if (mp_int_compare_zero(MP_DENOM_P(r)) == 0) {
- return MP_UNDEF;
- }
- /* Reduce to lowest terms */
- return s_rat_reduce(r);
- }
- /* Read a string and figure out what format it's in. The radix may be supplied
- as zero to use "default" behaviour.
- This function will accept either a/b notation or decimal notation.
- */
- mp_result mp_rat_read_ustring(mp_rat r, mp_size radix, const char *str,
- char **end) {
- char *endp = "";
- mp_result res;
- if (radix == 0) radix = 10; /* default to decimal input */
- res = mp_rat_read_cstring(r, radix, str, &endp);
- if (res == MP_TRUNC && *endp == '.') {
- res = mp_rat_read_cdecimal(r, radix, str, &endp);
- }
- if (end != NULL) *end = endp;
- return res;
- }
- mp_result mp_rat_read_decimal(mp_rat r, mp_size radix, const char *str) {
- return mp_rat_read_cdecimal(r, radix, str, NULL);
- }
- mp_result mp_rat_read_cdecimal(mp_rat r, mp_size radix, const char *str,
- char **end) {
- mp_result res;
- mp_sign osign;
- char *endp;
- while (isspace((unsigned char)*str)) ++str;
- switch (*str) {
- case '-':
- osign = MP_NEG;
- break;
- default:
- osign = MP_ZPOS;
- }
- if ((res = mp_int_read_cstring(MP_NUMER_P(r), radix, str, &endp)) != MP_OK &&
- (res != MP_TRUNC)) {
- return res;
- }
- /* This needs to be here. */
- (void)mp_int_set_value(MP_DENOM_P(r), 1);
- if (*endp != '.') {
- if (end != NULL) *end = endp;
- return res;
- }
- /* If the character following the decimal point is whitespace or a sign flag,
- we will consider this a truncated value. This special case is because
- mp_int_read_string() will consider whitespace or sign flags to be valid
- starting characters for a value, and we do not want them following the
- decimal point.
- Once we have done this check, it is safe to read in the value of the
- fractional piece as a regular old integer.
- */
- ++endp;
- if (*endp == '\0') {
- if (end != NULL) *end = endp;
- return MP_OK;
- } else if (isspace((unsigned char)*endp) || *endp == '-' || *endp == '+') {
- return MP_TRUNC;
- } else {
- mpz_t frac;
- mp_result save_res;
- char *save = endp;
- int num_lz = 0;
- /* Make a temporary to hold the part after the decimal point. */
- if ((res = mp_int_init(&frac)) != MP_OK) {
- return res;
- }
- if ((res = mp_int_read_cstring(&frac, radix, endp, &endp)) != MP_OK &&
- (res != MP_TRUNC)) {
- goto CLEANUP;
- }
- /* Save this response for later. */
- save_res = res;
- if (mp_int_compare_zero(&frac) == 0) goto FINISHED;
- /* Discard trailing zeroes (somewhat inefficiently) */
- while (mp_int_divisible_value(&frac, radix)) {
- if ((res = mp_int_div_value(&frac, radix, &frac, NULL)) != MP_OK) {
- goto CLEANUP;
- }
- }
- /* Count leading zeros after the decimal point */
- while (save[num_lz] == '0') {
- ++num_lz;
- }
- /* Find the least power of the radix that is at least as large as the
- significant value of the fractional part, ignoring leading zeroes. */
- (void)mp_int_set_value(MP_DENOM_P(r), radix);
- while (mp_int_compare(MP_DENOM_P(r), &frac) < 0) {
- if ((res = mp_int_mul_value(MP_DENOM_P(r), radix, MP_DENOM_P(r))) !=
- MP_OK) {
- goto CLEANUP;
- }
- }
- /* Also shift by enough to account for leading zeroes */
- while (num_lz > 0) {
- if ((res = mp_int_mul_value(MP_DENOM_P(r), radix, MP_DENOM_P(r))) !=
- MP_OK) {
- goto CLEANUP;
- }
- --num_lz;
- }
- /* Having found this power, shift the numerator leftward that many, digits,
- and add the nonzero significant digits of the fractional part to get the
- result. */
- if ((res = mp_int_mul(MP_NUMER_P(r), MP_DENOM_P(r), MP_NUMER_P(r))) !=
- MP_OK) {
- goto CLEANUP;
- }
- { /* This addition needs to be unsigned. */
- MP_NUMER_SIGN(r) = MP_ZPOS;
- if ((res = mp_int_add(MP_NUMER_P(r), &frac, MP_NUMER_P(r))) != MP_OK) {
- goto CLEANUP;
- }
- MP_NUMER_SIGN(r) = osign;
- }
- if ((res = s_rat_reduce(r)) != MP_OK) goto CLEANUP;
- /* At this point, what we return depends on whether reading the fractional
- part was truncated or not. That information is saved from when we
- called mp_int_read_string() above. */
- FINISHED:
- res = save_res;
- if (end != NULL) *end = endp;
- CLEANUP:
- mp_int_clear(&frac);
- return res;
- }
- }
- /* Private functions for internal use. Make unchecked assumptions about format
- and validity of inputs. */
- static mp_result s_rat_reduce(mp_rat r) {
- mpz_t gcd;
- mp_result res = MP_OK;
- if (mp_int_compare_zero(MP_NUMER_P(r)) == 0) {
- mp_int_set_value(MP_DENOM_P(r), 1);
- return MP_OK;
- }
- /* If the greatest common divisor of the numerator and denominator is greater
- than 1, divide it out. */
- if ((res = mp_int_init(&gcd)) != MP_OK) return res;
- if ((res = mp_int_gcd(MP_NUMER_P(r), MP_DENOM_P(r), &gcd)) != MP_OK) {
- goto CLEANUP;
- }
- if (mp_int_compare_value(&gcd, 1) != 0) {
- if ((res = mp_int_div(MP_NUMER_P(r), &gcd, MP_NUMER_P(r), NULL)) != MP_OK) {
- goto CLEANUP;
- }
- if ((res = mp_int_div(MP_DENOM_P(r), &gcd, MP_DENOM_P(r), NULL)) != MP_OK) {
- goto CLEANUP;
- }
- }
- /* Fix up the signs of numerator and denominator */
- if (MP_NUMER_SIGN(r) == MP_DENOM_SIGN(r)) {
- MP_NUMER_SIGN(r) = MP_DENOM_SIGN(r) = MP_ZPOS;
- } else {
- MP_NUMER_SIGN(r) = MP_NEG;
- MP_DENOM_SIGN(r) = MP_ZPOS;
- }
- CLEANUP:
- mp_int_clear(&gcd);
- return res;
- }
- static mp_result s_rat_combine(mp_rat a, mp_rat b, mp_rat c,
- mp_result (*comb_f)(mp_int, mp_int, mp_int)) {
- mp_result res;
- /* Shortcut when denominators are already common */
- if (mp_int_compare(MP_DENOM_P(a), MP_DENOM_P(b)) == 0) {
- if ((res = (comb_f)(MP_NUMER_P(a), MP_NUMER_P(b), MP_NUMER_P(c))) !=
- MP_OK) {
- return res;
- }
- if ((res = mp_int_copy(MP_DENOM_P(a), MP_DENOM_P(c))) != MP_OK) {
- return res;
- }
- return s_rat_reduce(c);
- } else {
- mpz_t temp[2];
- int last = 0;
- SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(a)), last);
- SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(b)), last);
- if ((res = mp_int_mul(TEMP(0), MP_DENOM_P(b), TEMP(0))) != MP_OK) {
- goto CLEANUP;
- }
- if ((res = mp_int_mul(TEMP(1), MP_DENOM_P(a), TEMP(1))) != MP_OK) {
- goto CLEANUP;
- }
- if ((res = (comb_f)(TEMP(0), TEMP(1), MP_NUMER_P(c))) != MP_OK) {
- goto CLEANUP;
- }
- res = mp_int_mul(MP_DENOM_P(a), MP_DENOM_P(b), MP_DENOM_P(c));
- CLEANUP:
- while (--last >= 0) {
- mp_int_clear(TEMP(last));
- }
- if (res == MP_OK) {
- return s_rat_reduce(c);
- } else {
- return res;
- }
- }
- }
- /* Here there be dragons */
|