12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780 |
- /*
- Name: imath.c
- Purpose: Arbitrary precision integer arithmetic routines.
- Author: M. J. Fromberger
- Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved.
- Permission is hereby granted, free of charge, to any person obtaining a copy
- of this software and associated documentation files (the "Software"), to deal
- in the Software without restriction, including without limitation the rights
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- copies of the Software, and to permit persons to whom the Software is
- furnished to do so, subject to the following conditions:
- The above copyright notice and this permission notice shall be included in
- all copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- SOFTWARE.
- */
- #include "imath.h"
- #include <assert.h>
- #include <ctype.h>
- #include <stdlib.h>
- #include <string.h>
- const mp_result MP_OK = 0; /* no error, all is well */
- const mp_result MP_FALSE = 0; /* boolean false */
- const mp_result MP_TRUE = -1; /* boolean true */
- const mp_result MP_MEMORY = -2; /* out of memory */
- const mp_result MP_RANGE = -3; /* argument out of range */
- const mp_result MP_UNDEF = -4; /* result undefined */
- const mp_result MP_TRUNC = -5; /* output truncated */
- const mp_result MP_BADARG = -6; /* invalid null argument */
- const mp_result MP_MINERR = -6;
- const mp_sign MP_NEG = 1; /* value is strictly negative */
- const mp_sign MP_ZPOS = 0; /* value is non-negative */
- static const char *s_unknown_err = "unknown result code";
- static const char *s_error_msg[] = {"error code 0", "boolean true",
- "out of memory", "argument out of range",
- "result undefined", "output truncated",
- "invalid argument", NULL};
- /* The ith entry of this table gives the value of log_i(2).
- An integer value n requires ceil(log_i(n)) digits to be represented
- in base i. Since it is easy to compute lg(n), by counting bits, we
- can compute log_i(n) = lg(n) * log_i(2).
- The use of this table eliminates a dependency upon linkage against
- the standard math libraries.
- If MP_MAX_RADIX is increased, this table should be expanded too.
- */
- static const double s_log2[] = {
- 0.000000000, 0.000000000, 1.000000000, 0.630929754, /* (D)(D) 2 3 */
- 0.500000000, 0.430676558, 0.386852807, 0.356207187, /* 4 5 6 7 */
- 0.333333333, 0.315464877, 0.301029996, 0.289064826, /* 8 9 10 11 */
- 0.278942946, 0.270238154, 0.262649535, 0.255958025, /* 12 13 14 15 */
- 0.250000000, 0.244650542, 0.239812467, 0.235408913, /* 16 17 18 19 */
- 0.231378213, 0.227670249, 0.224243824, 0.221064729, /* 20 21 22 23 */
- 0.218104292, 0.215338279, 0.212746054, 0.210309918, /* 24 25 26 27 */
- 0.208014598, 0.205846832, 0.203795047, 0.201849087, /* 28 29 30 31 */
- 0.200000000, 0.198239863, 0.196561632, 0.194959022, /* 32 33 34 35 */
- 0.193426404, /* 36 */
- };
- /* Return the number of digits needed to represent a static value */
- #define MP_VALUE_DIGITS(V) \
- ((sizeof(V) + (sizeof(mp_digit) - 1)) / sizeof(mp_digit))
- /* Round precision P to nearest word boundary */
- static inline mp_size s_round_prec(mp_size P) { return 2 * ((P + 1) / 2); }
- /* Set array P of S digits to zero */
- static inline void ZERO(mp_digit *P, mp_size S) {
- mp_size i__ = S * sizeof(mp_digit);
- mp_digit *p__ = P;
- memset(p__, 0, i__);
- }
- /* Copy S digits from array P to array Q */
- static inline void COPY(mp_digit *P, mp_digit *Q, mp_size S) {
- mp_size i__ = S * sizeof(mp_digit);
- mp_digit *p__ = P;
- mp_digit *q__ = Q;
- memcpy(q__, p__, i__);
- }
- /* Reverse N elements of unsigned char in A. */
- static inline void REV(unsigned char *A, int N) {
- unsigned char *u_ = A;
- unsigned char *v_ = u_ + N - 1;
- while (u_ < v_) {
- unsigned char xch = *u_;
- *u_++ = *v_;
- *v_-- = xch;
- }
- }
- /* Strip leading zeroes from z_ in-place. */
- static inline void CLAMP(mp_int z_) {
- mp_size uz_ = MP_USED(z_);
- mp_digit *dz_ = MP_DIGITS(z_) + uz_ - 1;
- while (uz_ > 1 && (*dz_-- == 0)) --uz_;
- z_->used = uz_;
- }
- /* Select min/max. */
- static inline int MIN(int A, int B) { return (B < A ? B : A); }
- static inline mp_size MAX(mp_size A, mp_size B) { return (B > A ? B : A); }
- /* Exchange lvalues A and B of type T, e.g.
- SWAP(int, x, y) where x and y are variables of type int. */
- #define SWAP(T, A, B) \
- do { \
- T t_ = (A); \
- A = (B); \
- B = t_; \
- } while (0)
- /* Declare a block of N temporary mpz_t values.
- These values are initialized to zero.
- You must add CLEANUP_TEMP() at the end of the function.
- Use TEMP(i) to access a pointer to the ith value.
- */
- #define DECLARE_TEMP(N) \
- struct { \
- mpz_t value[(N)]; \
- int len; \
- mp_result err; \
- } temp_ = { \
- .len = (N), \
- .err = MP_OK, \
- }; \
- do { \
- for (int i = 0; i < temp_.len; i++) { \
- mp_int_init(TEMP(i)); \
- } \
- } while (0)
- /* Clear all allocated temp values. */
- #define CLEANUP_TEMP() \
- CLEANUP: \
- do { \
- for (int i = 0; i < temp_.len; i++) { \
- mp_int_clear(TEMP(i)); \
- } \
- if (temp_.err != MP_OK) { \
- return temp_.err; \
- } \
- } while (0)
- /* A pointer to the kth temp value. */
- #define TEMP(K) (temp_.value + (K))
- /* Evaluate E, an expression of type mp_result expected to return MP_OK. If
- the value is not MP_OK, the error is cached and control resumes at the
- cleanup handler, which returns it.
- */
- #define REQUIRE(E) \
- do { \
- temp_.err = (E); \
- if (temp_.err != MP_OK) goto CLEANUP; \
- } while (0)
- /* Compare value to zero. */
- static inline int CMPZ(mp_int Z) {
- if (Z->used == 1 && Z->digits[0] == 0) return 0;
- return (Z->sign == MP_NEG) ? -1 : 1;
- }
- static inline mp_word UPPER_HALF(mp_word W) { return (W >> MP_DIGIT_BIT); }
- static inline mp_digit LOWER_HALF(mp_word W) { return (mp_digit)(W); }
- /* Report whether the highest-order bit of W is 1. */
- static inline bool HIGH_BIT_SET(mp_word W) {
- return (W >> (MP_WORD_BIT - 1)) != 0;
- }
- /* Report whether adding W + V will carry out. */
- static inline bool ADD_WILL_OVERFLOW(mp_word W, mp_word V) {
- return ((MP_WORD_MAX - V) < W);
- }
- /* Default number of digits allocated to a new mp_int */
- static mp_size default_precision = 8;
- void mp_int_default_precision(mp_size size) {
- assert(size > 0);
- default_precision = size;
- }
- /* Minimum number of digits to invoke recursive multiply */
- static mp_size multiply_threshold = 32;
- void mp_int_multiply_threshold(mp_size thresh) {
- assert(thresh >= sizeof(mp_word));
- multiply_threshold = thresh;
- }
- /* Allocate a buffer of (at least) num digits, or return
- NULL if that couldn't be done. */
- static mp_digit *s_alloc(mp_size num);
- /* Release a buffer of digits allocated by s_alloc(). */
- static void s_free(void *ptr);
- /* Insure that z has at least min digits allocated, resizing if
- necessary. Returns true if successful, false if out of memory. */
- static bool s_pad(mp_int z, mp_size min);
- /* Ensure Z has at least N digits allocated. */
- static inline mp_result GROW(mp_int Z, mp_size N) {
- return s_pad(Z, N) ? MP_OK : MP_MEMORY;
- }
- /* Fill in a "fake" mp_int on the stack with a given value */
- static void s_fake(mp_int z, mp_small value, mp_digit vbuf[]);
- static void s_ufake(mp_int z, mp_usmall value, mp_digit vbuf[]);
- /* Compare two runs of digits of given length, returns <0, 0, >0 */
- static int s_cdig(mp_digit *da, mp_digit *db, mp_size len);
- /* Pack the unsigned digits of v into array t */
- static int s_uvpack(mp_usmall v, mp_digit t[]);
- /* Compare magnitudes of a and b, returns <0, 0, >0 */
- static int s_ucmp(mp_int a, mp_int b);
- /* Compare magnitudes of a and v, returns <0, 0, >0 */
- static int s_vcmp(mp_int a, mp_small v);
- static int s_uvcmp(mp_int a, mp_usmall uv);
- /* Unsigned magnitude addition; assumes dc is big enough.
- Carry out is returned (no memory allocated). */
- static mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
- mp_size size_b);
- /* Unsigned magnitude subtraction. Assumes dc is big enough. */
- static void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
- mp_size size_b);
- /* Unsigned recursive multiplication. Assumes dc is big enough. */
- static int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
- mp_size size_b);
- /* Unsigned magnitude multiplication. Assumes dc is big enough. */
- static void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
- mp_size size_b);
- /* Unsigned recursive squaring. Assumes dc is big enough. */
- static int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a);
- /* Unsigned magnitude squaring. Assumes dc is big enough. */
- static void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a);
- /* Single digit addition. Assumes a is big enough. */
- static void s_dadd(mp_int a, mp_digit b);
- /* Single digit multiplication. Assumes a is big enough. */
- static void s_dmul(mp_int a, mp_digit b);
- /* Single digit multiplication on buffers; assumes dc is big enough. */
- static void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a);
- /* Single digit division. Replaces a with the quotient,
- returns the remainder. */
- static mp_digit s_ddiv(mp_int a, mp_digit b);
- /* Quick division by a power of 2, replaces z (no allocation) */
- static void s_qdiv(mp_int z, mp_size p2);
- /* Quick remainder by a power of 2, replaces z (no allocation) */
- static void s_qmod(mp_int z, mp_size p2);
- /* Quick multiplication by a power of 2, replaces z.
- Allocates if necessary; returns false in case this fails. */
- static int s_qmul(mp_int z, mp_size p2);
- /* Quick subtraction from a power of 2, replaces z.
- Allocates if necessary; returns false in case this fails. */
- static int s_qsub(mp_int z, mp_size p2);
- /* Return maximum k such that 2^k divides z. */
- static int s_dp2k(mp_int z);
- /* Return k >= 0 such that z = 2^k, or -1 if there is no such k. */
- static int s_isp2(mp_int z);
- /* Set z to 2^k. May allocate; returns false in case this fails. */
- static int s_2expt(mp_int z, mp_small k);
- /* Normalize a and b for division, returns normalization constant */
- static int s_norm(mp_int a, mp_int b);
- /* Compute constant mu for Barrett reduction, given modulus m, result
- replaces z, m is untouched. */
- static mp_result s_brmu(mp_int z, mp_int m);
- /* Reduce a modulo m, using Barrett's algorithm. */
- static int s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2);
- /* Modular exponentiation, using Barrett reduction */
- static mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c);
- /* Unsigned magnitude division. Assumes |a| > |b|. Allocates temporaries;
- overwrites a with quotient, b with remainder. */
- static mp_result s_udiv_knuth(mp_int a, mp_int b);
- /* Compute the number of digits in radix r required to represent the given
- value. Does not account for sign flags, terminators, etc. */
- static int s_outlen(mp_int z, mp_size r);
- /* Guess how many digits of precision will be needed to represent a radix r
- value of the specified number of digits. Returns a value guaranteed to be
- no smaller than the actual number required. */
- static mp_size s_inlen(int len, mp_size r);
- /* Convert a character to a digit value in radix r, or
- -1 if out of range */
- static int s_ch2val(char c, int r);
- /* Convert a digit value to a character */
- static char s_val2ch(int v, int caps);
- /* Take 2's complement of a buffer in place */
- static void s_2comp(unsigned char *buf, int len);
- /* Convert a value to binary, ignoring sign. On input, *limpos is the bound on
- how many bytes should be written to buf; on output, *limpos is set to the
- number of bytes actually written. */
- static mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad);
- /* Multiply X by Y into Z, ignoring signs. Requires that Z have enough storage
- preallocated to hold the result. */
- static inline void UMUL(mp_int X, mp_int Y, mp_int Z) {
- mp_size ua_ = MP_USED(X);
- mp_size ub_ = MP_USED(Y);
- mp_size o_ = ua_ + ub_;
- ZERO(MP_DIGITS(Z), o_);
- (void)s_kmul(MP_DIGITS(X), MP_DIGITS(Y), MP_DIGITS(Z), ua_, ub_);
- Z->used = o_;
- CLAMP(Z);
- }
- /* Square X into Z. Requires that Z have enough storage to hold the result. */
- static inline void USQR(mp_int X, mp_int Z) {
- mp_size ua_ = MP_USED(X);
- mp_size o_ = ua_ + ua_;
- ZERO(MP_DIGITS(Z), o_);
- (void)s_ksqr(MP_DIGITS(X), MP_DIGITS(Z), ua_);
- Z->used = o_;
- CLAMP(Z);
- }
- mp_result mp_int_init(mp_int z) {
- if (z == NULL) return MP_BADARG;
- z->single = 0;
- z->digits = &(z->single);
- z->alloc = 1;
- z->used = 1;
- z->sign = MP_ZPOS;
- return MP_OK;
- }
- mp_int mp_int_alloc(void) {
- mp_int out = malloc(sizeof(mpz_t));
- if (out != NULL) mp_int_init(out);
- return out;
- }
- mp_result mp_int_init_size(mp_int z, mp_size prec) {
- assert(z != NULL);
- if (prec == 0) {
- prec = default_precision;
- } else if (prec == 1) {
- return mp_int_init(z);
- } else {
- prec = s_round_prec(prec);
- }
- z->digits = s_alloc(prec);
- if (MP_DIGITS(z) == NULL) return MP_MEMORY;
- z->digits[0] = 0;
- z->used = 1;
- z->alloc = prec;
- z->sign = MP_ZPOS;
- return MP_OK;
- }
- mp_result mp_int_init_copy(mp_int z, mp_int old) {
- assert(z != NULL && old != NULL);
- mp_size uold = MP_USED(old);
- if (uold == 1) {
- mp_int_init(z);
- } else {
- mp_size target = MAX(uold, default_precision);
- mp_result res = mp_int_init_size(z, target);
- if (res != MP_OK) return res;
- }
- z->used = uold;
- z->sign = old->sign;
- COPY(MP_DIGITS(old), MP_DIGITS(z), uold);
- return MP_OK;
- }
- mp_result mp_int_init_value(mp_int z, mp_small value) {
- mpz_t vtmp;
- mp_digit vbuf[MP_VALUE_DIGITS(value)];
- s_fake(&vtmp, value, vbuf);
- return mp_int_init_copy(z, &vtmp);
- }
- mp_result mp_int_init_uvalue(mp_int z, mp_usmall uvalue) {
- mpz_t vtmp;
- mp_digit vbuf[MP_VALUE_DIGITS(uvalue)];
- s_ufake(&vtmp, uvalue, vbuf);
- return mp_int_init_copy(z, &vtmp);
- }
- mp_result mp_int_set_value(mp_int z, mp_small value) {
- mpz_t vtmp;
- mp_digit vbuf[MP_VALUE_DIGITS(value)];
- s_fake(&vtmp, value, vbuf);
- return mp_int_copy(&vtmp, z);
- }
- mp_result mp_int_set_uvalue(mp_int z, mp_usmall uvalue) {
- mpz_t vtmp;
- mp_digit vbuf[MP_VALUE_DIGITS(uvalue)];
- s_ufake(&vtmp, uvalue, vbuf);
- return mp_int_copy(&vtmp, z);
- }
- void mp_int_clear(mp_int z) {
- if (z == NULL) return;
- if (MP_DIGITS(z) != NULL) {
- if (MP_DIGITS(z) != &(z->single)) s_free(MP_DIGITS(z));
- z->digits = NULL;
- }
- }
- void mp_int_free(mp_int z) {
- assert(z != NULL);
- mp_int_clear(z);
- free(z); /* note: NOT s_free() */
- }
- mp_result mp_int_copy(mp_int a, mp_int c) {
- assert(a != NULL && c != NULL);
- if (a != c) {
- mp_size ua = MP_USED(a);
- mp_digit *da, *dc;
- if (!s_pad(c, ua)) return MP_MEMORY;
- da = MP_DIGITS(a);
- dc = MP_DIGITS(c);
- COPY(da, dc, ua);
- c->used = ua;
- c->sign = a->sign;
- }
- return MP_OK;
- }
- void mp_int_swap(mp_int a, mp_int c) {
- if (a != c) {
- mpz_t tmp = *a;
- *a = *c;
- *c = tmp;
- if (MP_DIGITS(a) == &(c->single)) a->digits = &(a->single);
- if (MP_DIGITS(c) == &(a->single)) c->digits = &(c->single);
- }
- }
- void mp_int_zero(mp_int z) {
- assert(z != NULL);
- z->digits[0] = 0;
- z->used = 1;
- z->sign = MP_ZPOS;
- }
- mp_result mp_int_abs(mp_int a, mp_int c) {
- assert(a != NULL && c != NULL);
- mp_result res;
- if ((res = mp_int_copy(a, c)) != MP_OK) return res;
- c->sign = MP_ZPOS;
- return MP_OK;
- }
- mp_result mp_int_neg(mp_int a, mp_int c) {
- assert(a != NULL && c != NULL);
- mp_result res;
- if ((res = mp_int_copy(a, c)) != MP_OK) return res;
- if (CMPZ(c) != 0) c->sign = 1 - MP_SIGN(a);
- return MP_OK;
- }
- mp_result mp_int_add(mp_int a, mp_int b, mp_int c) {
- assert(a != NULL && b != NULL && c != NULL);
- mp_size ua = MP_USED(a);
- mp_size ub = MP_USED(b);
- mp_size max = MAX(ua, ub);
- if (MP_SIGN(a) == MP_SIGN(b)) {
- /* Same sign -- add magnitudes, preserve sign of addends */
- if (!s_pad(c, max)) return MP_MEMORY;
- mp_digit carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
- mp_size uc = max;
- if (carry) {
- if (!s_pad(c, max + 1)) return MP_MEMORY;
- c->digits[max] = carry;
- ++uc;
- }
- c->used = uc;
- c->sign = a->sign;
- } else {
- /* Different signs -- subtract magnitudes, preserve sign of greater */
- int cmp = s_ucmp(a, b); /* magnitude comparison, sign ignored */
- /* Set x to max(a, b), y to min(a, b) to simplify later code.
- A special case yields zero for equal magnitudes.
- */
- mp_int x, y;
- if (cmp == 0) {
- mp_int_zero(c);
- return MP_OK;
- } else if (cmp < 0) {
- x = b;
- y = a;
- } else {
- x = a;
- y = b;
- }
- if (!s_pad(c, MP_USED(x))) return MP_MEMORY;
- /* Subtract smaller from larger */
- s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
- c->used = x->used;
- CLAMP(c);
- /* Give result the sign of the larger */
- c->sign = x->sign;
- }
- return MP_OK;
- }
- mp_result mp_int_add_value(mp_int a, mp_small value, mp_int c) {
- mpz_t vtmp;
- mp_digit vbuf[MP_VALUE_DIGITS(value)];
- s_fake(&vtmp, value, vbuf);
- return mp_int_add(a, &vtmp, c);
- }
- mp_result mp_int_sub(mp_int a, mp_int b, mp_int c) {
- assert(a != NULL && b != NULL && c != NULL);
- mp_size ua = MP_USED(a);
- mp_size ub = MP_USED(b);
- mp_size max = MAX(ua, ub);
- if (MP_SIGN(a) != MP_SIGN(b)) {
- /* Different signs -- add magnitudes and keep sign of a */
- if (!s_pad(c, max)) return MP_MEMORY;
- mp_digit carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
- mp_size uc = max;
- if (carry) {
- if (!s_pad(c, max + 1)) return MP_MEMORY;
- c->digits[max] = carry;
- ++uc;
- }
- c->used = uc;
- c->sign = a->sign;
- } else {
- /* Same signs -- subtract magnitudes */
- if (!s_pad(c, max)) return MP_MEMORY;
- mp_int x, y;
- mp_sign osign;
- int cmp = s_ucmp(a, b);
- if (cmp >= 0) {
- x = a;
- y = b;
- osign = MP_ZPOS;
- } else {
- x = b;
- y = a;
- osign = MP_NEG;
- }
- if (MP_SIGN(a) == MP_NEG && cmp != 0) osign = 1 - osign;
- s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
- c->used = x->used;
- CLAMP(c);
- c->sign = osign;
- }
- return MP_OK;
- }
- mp_result mp_int_sub_value(mp_int a, mp_small value, mp_int c) {
- mpz_t vtmp;
- mp_digit vbuf[MP_VALUE_DIGITS(value)];
- s_fake(&vtmp, value, vbuf);
- return mp_int_sub(a, &vtmp, c);
- }
- mp_result mp_int_mul(mp_int a, mp_int b, mp_int c) {
- assert(a != NULL && b != NULL && c != NULL);
- /* If either input is zero, we can shortcut multiplication */
- if (mp_int_compare_zero(a) == 0 || mp_int_compare_zero(b) == 0) {
- mp_int_zero(c);
- return MP_OK;
- }
- /* Output is positive if inputs have same sign, otherwise negative */
- mp_sign osign = (MP_SIGN(a) == MP_SIGN(b)) ? MP_ZPOS : MP_NEG;
- /* If the output is not identical to any of the inputs, we'll write the
- results directly; otherwise, allocate a temporary space. */
- mp_size ua = MP_USED(a);
- mp_size ub = MP_USED(b);
- mp_size osize = MAX(ua, ub);
- osize = 4 * ((osize + 1) / 2);
- mp_digit *out;
- mp_size p = 0;
- if (c == a || c == b) {
- p = MAX(s_round_prec(osize), default_precision);
- if ((out = s_alloc(p)) == NULL) return MP_MEMORY;
- } else {
- if (!s_pad(c, osize)) return MP_MEMORY;
- out = MP_DIGITS(c);
- }
- ZERO(out, osize);
- if (!s_kmul(MP_DIGITS(a), MP_DIGITS(b), out, ua, ub)) return MP_MEMORY;
- /* If we allocated a new buffer, get rid of whatever memory c was already
- using, and fix up its fields to reflect that.
- */
- if (out != MP_DIGITS(c)) {
- if ((void *)MP_DIGITS(c) != (void *)c) s_free(MP_DIGITS(c));
- c->digits = out;
- c->alloc = p;
- }
- c->used = osize; /* might not be true, but we'll fix it ... */
- CLAMP(c); /* ... right here */
- c->sign = osign;
- return MP_OK;
- }
- mp_result mp_int_mul_value(mp_int a, mp_small value, mp_int c) {
- mpz_t vtmp;
- mp_digit vbuf[MP_VALUE_DIGITS(value)];
- s_fake(&vtmp, value, vbuf);
- return mp_int_mul(a, &vtmp, c);
- }
- mp_result mp_int_mul_pow2(mp_int a, mp_small p2, mp_int c) {
- assert(a != NULL && c != NULL && p2 >= 0);
- mp_result res = mp_int_copy(a, c);
- if (res != MP_OK) return res;
- if (s_qmul(c, (mp_size)p2)) {
- return MP_OK;
- } else {
- return MP_MEMORY;
- }
- }
- mp_result mp_int_sqr(mp_int a, mp_int c) {
- assert(a != NULL && c != NULL);
- /* Get a temporary buffer big enough to hold the result */
- mp_size osize = (mp_size)4 * ((MP_USED(a) + 1) / 2);
- mp_size p = 0;
- mp_digit *out;
- if (a == c) {
- p = s_round_prec(osize);
- p = MAX(p, default_precision);
- if ((out = s_alloc(p)) == NULL) return MP_MEMORY;
- } else {
- if (!s_pad(c, osize)) return MP_MEMORY;
- out = MP_DIGITS(c);
- }
- ZERO(out, osize);
- s_ksqr(MP_DIGITS(a), out, MP_USED(a));
- /* Get rid of whatever memory c was already using, and fix up its fields to
- reflect the new digit array it's using
- */
- if (out != MP_DIGITS(c)) {
- if ((void *)MP_DIGITS(c) != (void *)c) s_free(MP_DIGITS(c));
- c->digits = out;
- c->alloc = p;
- }
- c->used = osize; /* might not be true, but we'll fix it ... */
- CLAMP(c); /* ... right here */
- c->sign = MP_ZPOS;
- return MP_OK;
- }
- mp_result mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r) {
- assert(a != NULL && b != NULL && q != r);
- int cmp;
- mp_result res = MP_OK;
- mp_int qout, rout;
- mp_sign sa = MP_SIGN(a);
- mp_sign sb = MP_SIGN(b);
- if (CMPZ(b) == 0) {
- return MP_UNDEF;
- } else if ((cmp = s_ucmp(a, b)) < 0) {
- /* If |a| < |b|, no division is required:
- q = 0, r = a
- */
- if (r && (res = mp_int_copy(a, r)) != MP_OK) return res;
- if (q) mp_int_zero(q);
- return MP_OK;
- } else if (cmp == 0) {
- /* If |a| = |b|, no division is required:
- q = 1 or -1, r = 0
- */
- if (r) mp_int_zero(r);
- if (q) {
- mp_int_zero(q);
- q->digits[0] = 1;
- if (sa != sb) q->sign = MP_NEG;
- }
- return MP_OK;
- }
- /* When |a| > |b|, real division is required. We need someplace to store
- quotient and remainder, but q and r are allowed to be NULL or to overlap
- with the inputs.
- */
- DECLARE_TEMP(2);
- int lg;
- if ((lg = s_isp2(b)) < 0) {
- if (q && b != q) {
- REQUIRE(mp_int_copy(a, q));
- qout = q;
- } else {
- REQUIRE(mp_int_copy(a, TEMP(0)));
- qout = TEMP(0);
- }
- if (r && a != r) {
- REQUIRE(mp_int_copy(b, r));
- rout = r;
- } else {
- REQUIRE(mp_int_copy(b, TEMP(1)));
- rout = TEMP(1);
- }
- REQUIRE(s_udiv_knuth(qout, rout));
- } else {
- if (q) REQUIRE(mp_int_copy(a, q));
- if (r) REQUIRE(mp_int_copy(a, r));
- if (q) s_qdiv(q, (mp_size)lg);
- qout = q;
- if (r) s_qmod(r, (mp_size)lg);
- rout = r;
- }
- /* Recompute signs for output */
- if (rout) {
- rout->sign = sa;
- if (CMPZ(rout) == 0) rout->sign = MP_ZPOS;
- }
- if (qout) {
- qout->sign = (sa == sb) ? MP_ZPOS : MP_NEG;
- if (CMPZ(qout) == 0) qout->sign = MP_ZPOS;
- }
- if (q) REQUIRE(mp_int_copy(qout, q));
- if (r) REQUIRE(mp_int_copy(rout, r));
- CLEANUP_TEMP();
- return res;
- }
- mp_result mp_int_mod(mp_int a, mp_int m, mp_int c) {
- DECLARE_TEMP(1);
- mp_int out = (m == c) ? TEMP(0) : c;
- REQUIRE(mp_int_div(a, m, NULL, out));
- if (CMPZ(out) < 0) {
- REQUIRE(mp_int_add(out, m, c));
- } else {
- REQUIRE(mp_int_copy(out, c));
- }
- CLEANUP_TEMP();
- return MP_OK;
- }
- mp_result mp_int_div_value(mp_int a, mp_small value, mp_int q, mp_small *r) {
- mpz_t vtmp;
- mp_digit vbuf[MP_VALUE_DIGITS(value)];
- s_fake(&vtmp, value, vbuf);
- DECLARE_TEMP(1);
- REQUIRE(mp_int_div(a, &vtmp, q, TEMP(0)));
- if (r) (void)mp_int_to_int(TEMP(0), r); /* can't fail */
- CLEANUP_TEMP();
- return MP_OK;
- }
- mp_result mp_int_div_pow2(mp_int a, mp_small p2, mp_int q, mp_int r) {
- assert(a != NULL && p2 >= 0 && q != r);
- mp_result res = MP_OK;
- if (q != NULL && (res = mp_int_copy(a, q)) == MP_OK) {
- s_qdiv(q, (mp_size)p2);
- }
- if (res == MP_OK && r != NULL && (res = mp_int_copy(a, r)) == MP_OK) {
- s_qmod(r, (mp_size)p2);
- }
- return res;
- }
- mp_result mp_int_expt(mp_int a, mp_small b, mp_int c) {
- assert(c != NULL);
- if (b < 0) return MP_RANGE;
- DECLARE_TEMP(1);
- REQUIRE(mp_int_copy(a, TEMP(0)));
- (void)mp_int_set_value(c, 1);
- unsigned int v = labs(b);
- while (v != 0) {
- if (v & 1) {
- REQUIRE(mp_int_mul(c, TEMP(0), c));
- }
- v >>= 1;
- if (v == 0) break;
- REQUIRE(mp_int_sqr(TEMP(0), TEMP(0)));
- }
- CLEANUP_TEMP();
- return MP_OK;
- }
- mp_result mp_int_expt_value(mp_small a, mp_small b, mp_int c) {
- assert(c != NULL);
- if (b < 0) return MP_RANGE;
- DECLARE_TEMP(1);
- REQUIRE(mp_int_set_value(TEMP(0), a));
- (void)mp_int_set_value(c, 1);
- unsigned int v = labs(b);
- while (v != 0) {
- if (v & 1) {
- REQUIRE(mp_int_mul(c, TEMP(0), c));
- }
- v >>= 1;
- if (v == 0) break;
- REQUIRE(mp_int_sqr(TEMP(0), TEMP(0)));
- }
- CLEANUP_TEMP();
- return MP_OK;
- }
- mp_result mp_int_expt_full(mp_int a, mp_int b, mp_int c) {
- assert(a != NULL && b != NULL && c != NULL);
- if (MP_SIGN(b) == MP_NEG) return MP_RANGE;
- DECLARE_TEMP(1);
- REQUIRE(mp_int_copy(a, TEMP(0)));
- (void)mp_int_set_value(c, 1);
- for (unsigned ix = 0; ix < MP_USED(b); ++ix) {
- mp_digit d = b->digits[ix];
- for (unsigned jx = 0; jx < MP_DIGIT_BIT; ++jx) {
- if (d & 1) {
- REQUIRE(mp_int_mul(c, TEMP(0), c));
- }
- d >>= 1;
- if (d == 0 && ix + 1 == MP_USED(b)) break;
- REQUIRE(mp_int_sqr(TEMP(0), TEMP(0)));
- }
- }
- CLEANUP_TEMP();
- return MP_OK;
- }
- int mp_int_compare(mp_int a, mp_int b) {
- assert(a != NULL && b != NULL);
- mp_sign sa = MP_SIGN(a);
- if (sa == MP_SIGN(b)) {
- int cmp = s_ucmp(a, b);
- /* If they're both zero or positive, the normal comparison applies; if both
- negative, the sense is reversed. */
- if (sa == MP_ZPOS) {
- return cmp;
- } else {
- return -cmp;
- }
- } else if (sa == MP_ZPOS) {
- return 1;
- } else {
- return -1;
- }
- }
- int mp_int_compare_unsigned(mp_int a, mp_int b) {
- assert(a != NULL && b != NULL);
- return s_ucmp(a, b);
- }
- int mp_int_compare_zero(mp_int z) {
- assert(z != NULL);
- if (MP_USED(z) == 1 && z->digits[0] == 0) {
- return 0;
- } else if (MP_SIGN(z) == MP_ZPOS) {
- return 1;
- } else {
- return -1;
- }
- }
- int mp_int_compare_value(mp_int z, mp_small value) {
- assert(z != NULL);
- mp_sign vsign = (value < 0) ? MP_NEG : MP_ZPOS;
- if (vsign == MP_SIGN(z)) {
- int cmp = s_vcmp(z, value);
- return (vsign == MP_ZPOS) ? cmp : -cmp;
- } else {
- return (value < 0) ? 1 : -1;
- }
- }
- int mp_int_compare_uvalue(mp_int z, mp_usmall uv) {
- assert(z != NULL);
- if (MP_SIGN(z) == MP_NEG) {
- return -1;
- } else {
- return s_uvcmp(z, uv);
- }
- }
- mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c) {
- assert(a != NULL && b != NULL && c != NULL && m != NULL);
- /* Zero moduli and negative exponents are not considered. */
- if (CMPZ(m) == 0) return MP_UNDEF;
- if (CMPZ(b) < 0) return MP_RANGE;
- mp_size um = MP_USED(m);
- DECLARE_TEMP(3);
- REQUIRE(GROW(TEMP(0), 2 * um));
- REQUIRE(GROW(TEMP(1), 2 * um));
- mp_int s;
- if (c == b || c == m) {
- REQUIRE(GROW(TEMP(2), 2 * um));
- s = TEMP(2);
- } else {
- s = c;
- }
- REQUIRE(mp_int_mod(a, m, TEMP(0)));
- REQUIRE(s_brmu(TEMP(1), m));
- REQUIRE(s_embar(TEMP(0), b, m, TEMP(1), s));
- REQUIRE(mp_int_copy(s, c));
- CLEANUP_TEMP();
- return MP_OK;
- }
- mp_result mp_int_exptmod_evalue(mp_int a, mp_small value, mp_int m, mp_int c) {
- mpz_t vtmp;
- mp_digit vbuf[MP_VALUE_DIGITS(value)];
- s_fake(&vtmp, value, vbuf);
- return mp_int_exptmod(a, &vtmp, m, c);
- }
- mp_result mp_int_exptmod_bvalue(mp_small value, mp_int b, mp_int m, mp_int c) {
- mpz_t vtmp;
- mp_digit vbuf[MP_VALUE_DIGITS(value)];
- s_fake(&vtmp, value, vbuf);
- return mp_int_exptmod(&vtmp, b, m, c);
- }
- mp_result mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu,
- mp_int c) {
- assert(a && b && m && c);
- /* Zero moduli and negative exponents are not considered. */
- if (CMPZ(m) == 0) return MP_UNDEF;
- if (CMPZ(b) < 0) return MP_RANGE;
- DECLARE_TEMP(2);
- mp_size um = MP_USED(m);
- REQUIRE(GROW(TEMP(0), 2 * um));
- mp_int s;
- if (c == b || c == m) {
- REQUIRE(GROW(TEMP(1), 2 * um));
- s = TEMP(1);
- } else {
- s = c;
- }
- REQUIRE(mp_int_mod(a, m, TEMP(0)));
- REQUIRE(s_embar(TEMP(0), b, m, mu, s));
- REQUIRE(mp_int_copy(s, c));
- CLEANUP_TEMP();
- return MP_OK;
- }
- mp_result mp_int_redux_const(mp_int m, mp_int c) {
- assert(m != NULL && c != NULL && m != c);
- return s_brmu(c, m);
- }
- mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c) {
- assert(a != NULL && m != NULL && c != NULL);
- if (CMPZ(a) == 0 || CMPZ(m) <= 0) return MP_RANGE;
- DECLARE_TEMP(2);
- REQUIRE(mp_int_egcd(a, m, TEMP(0), TEMP(1), NULL));
- if (mp_int_compare_value(TEMP(0), 1) != 0) {
- REQUIRE(MP_UNDEF);
- }
- /* It is first necessary to constrain the value to the proper range */
- REQUIRE(mp_int_mod(TEMP(1), m, TEMP(1)));
- /* Now, if 'a' was originally negative, the value we have is actually the
- magnitude of the negative representative; to get the positive value we
- have to subtract from the modulus. Otherwise, the value is okay as it
- stands.
- */
- if (MP_SIGN(a) == MP_NEG) {
- REQUIRE(mp_int_sub(m, TEMP(1), c));
- } else {
- REQUIRE(mp_int_copy(TEMP(1), c));
- }
- CLEANUP_TEMP();
- return MP_OK;
- }
- /* Binary GCD algorithm due to Josef Stein, 1961 */
- mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c) {
- assert(a != NULL && b != NULL && c != NULL);
- int ca = CMPZ(a);
- int cb = CMPZ(b);
- if (ca == 0 && cb == 0) {
- return MP_UNDEF;
- } else if (ca == 0) {
- return mp_int_abs(b, c);
- } else if (cb == 0) {
- return mp_int_abs(a, c);
- }
- DECLARE_TEMP(3);
- REQUIRE(mp_int_copy(a, TEMP(0)));
- REQUIRE(mp_int_copy(b, TEMP(1)));
- TEMP(0)->sign = MP_ZPOS;
- TEMP(1)->sign = MP_ZPOS;
- int k = 0;
- { /* Divide out common factors of 2 from u and v */
- int div2_u = s_dp2k(TEMP(0));
- int div2_v = s_dp2k(TEMP(1));
- k = MIN(div2_u, div2_v);
- s_qdiv(TEMP(0), (mp_size)k);
- s_qdiv(TEMP(1), (mp_size)k);
- }
- if (mp_int_is_odd(TEMP(0))) {
- REQUIRE(mp_int_neg(TEMP(1), TEMP(2)));
- } else {
- REQUIRE(mp_int_copy(TEMP(0), TEMP(2)));
- }
- for (;;) {
- s_qdiv(TEMP(2), s_dp2k(TEMP(2)));
- if (CMPZ(TEMP(2)) > 0) {
- REQUIRE(mp_int_copy(TEMP(2), TEMP(0)));
- } else {
- REQUIRE(mp_int_neg(TEMP(2), TEMP(1)));
- }
- REQUIRE(mp_int_sub(TEMP(0), TEMP(1), TEMP(2)));
- if (CMPZ(TEMP(2)) == 0) break;
- }
- REQUIRE(mp_int_abs(TEMP(0), c));
- if (!s_qmul(c, (mp_size)k)) REQUIRE(MP_MEMORY);
- CLEANUP_TEMP();
- return MP_OK;
- }
- /* This is the binary GCD algorithm again, but this time we keep track of the
- elementary matrix operations as we go, so we can get values x and y
- satisfying c = ax + by.
- */
- mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c, mp_int x, mp_int y) {
- assert(a != NULL && b != NULL && c != NULL && (x != NULL || y != NULL));
- mp_result res = MP_OK;
- int ca = CMPZ(a);
- int cb = CMPZ(b);
- if (ca == 0 && cb == 0) {
- return MP_UNDEF;
- } else if (ca == 0) {
- if ((res = mp_int_abs(b, c)) != MP_OK) return res;
- mp_int_zero(x);
- (void)mp_int_set_value(y, 1);
- return MP_OK;
- } else if (cb == 0) {
- if ((res = mp_int_abs(a, c)) != MP_OK) return res;
- (void)mp_int_set_value(x, 1);
- mp_int_zero(y);
- return MP_OK;
- }
- /* Initialize temporaries:
- A:0, B:1, C:2, D:3, u:4, v:5, ou:6, ov:7 */
- DECLARE_TEMP(8);
- REQUIRE(mp_int_set_value(TEMP(0), 1));
- REQUIRE(mp_int_set_value(TEMP(3), 1));
- REQUIRE(mp_int_copy(a, TEMP(4)));
- REQUIRE(mp_int_copy(b, TEMP(5)));
- /* We will work with absolute values here */
- TEMP(4)->sign = MP_ZPOS;
- TEMP(5)->sign = MP_ZPOS;
- int k = 0;
- { /* Divide out common factors of 2 from u and v */
- int div2_u = s_dp2k(TEMP(4)), div2_v = s_dp2k(TEMP(5));
- k = MIN(div2_u, div2_v);
- s_qdiv(TEMP(4), k);
- s_qdiv(TEMP(5), k);
- }
- REQUIRE(mp_int_copy(TEMP(4), TEMP(6)));
- REQUIRE(mp_int_copy(TEMP(5), TEMP(7)));
- for (;;) {
- while (mp_int_is_even(TEMP(4))) {
- s_qdiv(TEMP(4), 1);
- if (mp_int_is_odd(TEMP(0)) || mp_int_is_odd(TEMP(1))) {
- REQUIRE(mp_int_add(TEMP(0), TEMP(7), TEMP(0)));
- REQUIRE(mp_int_sub(TEMP(1), TEMP(6), TEMP(1)));
- }
- s_qdiv(TEMP(0), 1);
- s_qdiv(TEMP(1), 1);
- }
- while (mp_int_is_even(TEMP(5))) {
- s_qdiv(TEMP(5), 1);
- if (mp_int_is_odd(TEMP(2)) || mp_int_is_odd(TEMP(3))) {
- REQUIRE(mp_int_add(TEMP(2), TEMP(7), TEMP(2)));
- REQUIRE(mp_int_sub(TEMP(3), TEMP(6), TEMP(3)));
- }
- s_qdiv(TEMP(2), 1);
- s_qdiv(TEMP(3), 1);
- }
- if (mp_int_compare(TEMP(4), TEMP(5)) >= 0) {
- REQUIRE(mp_int_sub(TEMP(4), TEMP(5), TEMP(4)));
- REQUIRE(mp_int_sub(TEMP(0), TEMP(2), TEMP(0)));
- REQUIRE(mp_int_sub(TEMP(1), TEMP(3), TEMP(1)));
- } else {
- REQUIRE(mp_int_sub(TEMP(5), TEMP(4), TEMP(5)));
- REQUIRE(mp_int_sub(TEMP(2), TEMP(0), TEMP(2)));
- REQUIRE(mp_int_sub(TEMP(3), TEMP(1), TEMP(3)));
- }
- if (CMPZ(TEMP(4)) == 0) {
- if (x) REQUIRE(mp_int_copy(TEMP(2), x));
- if (y) REQUIRE(mp_int_copy(TEMP(3), y));
- if (c) {
- if (!s_qmul(TEMP(5), k)) {
- REQUIRE(MP_MEMORY);
- }
- REQUIRE(mp_int_copy(TEMP(5), c));
- }
- break;
- }
- }
- CLEANUP_TEMP();
- return MP_OK;
- }
- mp_result mp_int_lcm(mp_int a, mp_int b, mp_int c) {
- assert(a != NULL && b != NULL && c != NULL);
- /* Since a * b = gcd(a, b) * lcm(a, b), we can compute
- lcm(a, b) = (a / gcd(a, b)) * b.
- This formulation insures everything works even if the input
- variables share space.
- */
- DECLARE_TEMP(1);
- REQUIRE(mp_int_gcd(a, b, TEMP(0)));
- REQUIRE(mp_int_div(a, TEMP(0), TEMP(0), NULL));
- REQUIRE(mp_int_mul(TEMP(0), b, TEMP(0)));
- REQUIRE(mp_int_copy(TEMP(0), c));
- CLEANUP_TEMP();
- return MP_OK;
- }
- bool mp_int_divisible_value(mp_int a, mp_small v) {
- mp_small rem = 0;
- if (mp_int_div_value(a, v, NULL, &rem) != MP_OK) {
- return false;
- }
- return rem == 0;
- }
- int mp_int_is_pow2(mp_int z) {
- assert(z != NULL);
- return s_isp2(z);
- }
- /* Implementation of Newton's root finding method, based loosely on a patch
- contributed by Hal Finkel <half@halssoftware.com>
- modified by M. J. Fromberger.
- */
- mp_result mp_int_root(mp_int a, mp_small b, mp_int c) {
- assert(a != NULL && c != NULL && b > 0);
- if (b == 1) {
- return mp_int_copy(a, c);
- }
- bool flips = false;
- if (MP_SIGN(a) == MP_NEG) {
- if (b % 2 == 0) {
- return MP_UNDEF; /* root does not exist for negative a with even b */
- } else {
- flips = true;
- }
- }
- DECLARE_TEMP(5);
- REQUIRE(mp_int_copy(a, TEMP(0)));
- REQUIRE(mp_int_copy(a, TEMP(1)));
- TEMP(0)->sign = MP_ZPOS;
- TEMP(1)->sign = MP_ZPOS;
- for (;;) {
- REQUIRE(mp_int_expt(TEMP(1), b, TEMP(2)));
- if (mp_int_compare_unsigned(TEMP(2), TEMP(0)) <= 0) break;
- REQUIRE(mp_int_sub(TEMP(2), TEMP(0), TEMP(2)));
- REQUIRE(mp_int_expt(TEMP(1), b - 1, TEMP(3)));
- REQUIRE(mp_int_mul_value(TEMP(3), b, TEMP(3)));
- REQUIRE(mp_int_div(TEMP(2), TEMP(3), TEMP(4), NULL));
- REQUIRE(mp_int_sub(TEMP(1), TEMP(4), TEMP(4)));
- if (mp_int_compare_unsigned(TEMP(1), TEMP(4)) == 0) {
- REQUIRE(mp_int_sub_value(TEMP(4), 1, TEMP(4)));
- }
- REQUIRE(mp_int_copy(TEMP(4), TEMP(1)));
- }
- REQUIRE(mp_int_copy(TEMP(1), c));
- /* If the original value of a was negative, flip the output sign. */
- if (flips) (void)mp_int_neg(c, c); /* cannot fail */
- CLEANUP_TEMP();
- return MP_OK;
- }
- mp_result mp_int_to_int(mp_int z, mp_small *out) {
- assert(z != NULL);
- /* Make sure the value is representable as a small integer */
- mp_sign sz = MP_SIGN(z);
- if ((sz == MP_ZPOS && mp_int_compare_value(z, MP_SMALL_MAX) > 0) ||
- mp_int_compare_value(z, MP_SMALL_MIN) < 0) {
- return MP_RANGE;
- }
- mp_usmall uz = MP_USED(z);
- mp_digit *dz = MP_DIGITS(z) + uz - 1;
- mp_small uv = 0;
- while (uz > 0) {
- uv <<= MP_DIGIT_BIT / 2;
- uv = (uv << (MP_DIGIT_BIT / 2)) | *dz--;
- --uz;
- }
- if (out) *out = (mp_small)((sz == MP_NEG) ? -uv : uv);
- return MP_OK;
- }
- mp_result mp_int_to_uint(mp_int z, mp_usmall *out) {
- assert(z != NULL);
- /* Make sure the value is representable as an unsigned small integer */
- mp_size sz = MP_SIGN(z);
- if (sz == MP_NEG || mp_int_compare_uvalue(z, MP_USMALL_MAX) > 0) {
- return MP_RANGE;
- }
- mp_size uz = MP_USED(z);
- mp_digit *dz = MP_DIGITS(z) + uz - 1;
- mp_usmall uv = 0;
- while (uz > 0) {
- uv <<= MP_DIGIT_BIT / 2;
- uv = (uv << (MP_DIGIT_BIT / 2)) | *dz--;
- --uz;
- }
- if (out) *out = uv;
- return MP_OK;
- }
- mp_result mp_int_to_string(mp_int z, mp_size radix, char *str, int limit) {
- assert(z != NULL && str != NULL && limit >= 2);
- assert(radix >= MP_MIN_RADIX && radix <= MP_MAX_RADIX);
- int cmp = 0;
- if (CMPZ(z) == 0) {
- *str++ = s_val2ch(0, 1);
- } else {
- mp_result res;
- mpz_t tmp;
- char *h, *t;
- if ((res = mp_int_init_copy(&tmp, z)) != MP_OK) return res;
- if (MP_SIGN(z) == MP_NEG) {
- *str++ = '-';
- --limit;
- }
- h = str;
- /* Generate digits in reverse order until finished or limit reached */
- for (/* */; limit > 0; --limit) {
- mp_digit d;
- if ((cmp = CMPZ(&tmp)) == 0) break;
- d = s_ddiv(&tmp, (mp_digit)radix);
- *str++ = s_val2ch(d, 1);
- }
- t = str - 1;
- /* Put digits back in correct output order */
- while (h < t) {
- char tc = *h;
- *h++ = *t;
- *t-- = tc;
- }
- mp_int_clear(&tmp);
- }
- *str = '\0';
- if (cmp == 0) {
- return MP_OK;
- } else {
- return MP_TRUNC;
- }
- }
- mp_result mp_int_string_len(mp_int z, mp_size radix) {
- assert(z != NULL);
- assert(radix >= MP_MIN_RADIX && radix <= MP_MAX_RADIX);
- int len = s_outlen(z, radix) + 1; /* for terminator */
- /* Allow for sign marker on negatives */
- if (MP_SIGN(z) == MP_NEG) len += 1;
- return len;
- }
- /* Read zero-terminated string into z */
- mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str) {
- return mp_int_read_cstring(z, radix, str, NULL);
- }
- mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str,
- char **end) {
- assert(z != NULL && str != NULL);
- assert(radix >= MP_MIN_RADIX && radix <= MP_MAX_RADIX);
- /* Skip leading whitespace */
- while (isspace((unsigned char)*str)) ++str;
- /* Handle leading sign tag (+/-, positive default) */
- switch (*str) {
- case '-':
- z->sign = MP_NEG;
- ++str;
- break;
- case '+':
- ++str; /* fallthrough */
- default:
- z->sign = MP_ZPOS;
- break;
- }
- /* Skip leading zeroes */
- int ch;
- while ((ch = s_ch2val(*str, radix)) == 0) ++str;
- /* Make sure there is enough space for the value */
- if (!s_pad(z, s_inlen(strlen(str), radix))) return MP_MEMORY;
- z->used = 1;
- z->digits[0] = 0;
- while (*str != '\0' && ((ch = s_ch2val(*str, radix)) >= 0)) {
- s_dmul(z, (mp_digit)radix);
- s_dadd(z, (mp_digit)ch);
- ++str;
- }
- CLAMP(z);
- /* Override sign for zero, even if negative specified. */
- if (CMPZ(z) == 0) z->sign = MP_ZPOS;
- if (end != NULL) *end = (char *)str;
- /* Return a truncation error if the string has unprocessed characters
- remaining, so the caller can tell if the whole string was done */
- if (*str != '\0') {
- return MP_TRUNC;
- } else {
- return MP_OK;
- }
- }
- mp_result mp_int_count_bits(mp_int z) {
- assert(z != NULL);
- mp_size uz = MP_USED(z);
- if (uz == 1 && z->digits[0] == 0) return 1;
- --uz;
- mp_size nbits = uz * MP_DIGIT_BIT;
- mp_digit d = z->digits[uz];
- while (d != 0) {
- d >>= 1;
- ++nbits;
- }
- return nbits;
- }
- mp_result mp_int_to_binary(mp_int z, unsigned char *buf, int limit) {
- static const int PAD_FOR_2C = 1;
- assert(z != NULL && buf != NULL);
- int limpos = limit;
- mp_result res = s_tobin(z, buf, &limpos, PAD_FOR_2C);
- if (MP_SIGN(z) == MP_NEG) s_2comp(buf, limpos);
- return res;
- }
- mp_result mp_int_read_binary(mp_int z, unsigned char *buf, int len) {
- assert(z != NULL && buf != NULL && len > 0);
- /* Figure out how many digits are needed to represent this value */
- mp_size need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
- if (!s_pad(z, need)) return MP_MEMORY;
- mp_int_zero(z);
- /* If the high-order bit is set, take the 2's complement before reading the
- value (it will be restored afterward) */
- if (buf[0] >> (CHAR_BIT - 1)) {
- z->sign = MP_NEG;
- s_2comp(buf, len);
- }
- mp_digit *dz = MP_DIGITS(z);
- unsigned char *tmp = buf;
- for (int i = len; i > 0; --i, ++tmp) {
- s_qmul(z, (mp_size)CHAR_BIT);
- *dz |= *tmp;
- }
- /* Restore 2's complement if we took it before */
- if (MP_SIGN(z) == MP_NEG) s_2comp(buf, len);
- return MP_OK;
- }
- mp_result mp_int_binary_len(mp_int z) {
- mp_result res = mp_int_count_bits(z);
- if (res <= 0) return res;
- int bytes = mp_int_unsigned_len(z);
- /* If the highest-order bit falls exactly on a byte boundary, we need to pad
- with an extra byte so that the sign will be read correctly when reading it
- back in. */
- if (bytes * CHAR_BIT == res) ++bytes;
- return bytes;
- }
- mp_result mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit) {
- static const int NO_PADDING = 0;
- assert(z != NULL && buf != NULL);
- return s_tobin(z, buf, &limit, NO_PADDING);
- }
- mp_result mp_int_read_unsigned(mp_int z, unsigned char *buf, int len) {
- assert(z != NULL && buf != NULL && len > 0);
- /* Figure out how many digits are needed to represent this value */
- mp_size need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
- if (!s_pad(z, need)) return MP_MEMORY;
- mp_int_zero(z);
- unsigned char *tmp = buf;
- for (int i = len; i > 0; --i, ++tmp) {
- (void)s_qmul(z, CHAR_BIT);
- *MP_DIGITS(z) |= *tmp;
- }
- return MP_OK;
- }
- mp_result mp_int_unsigned_len(mp_int z) {
- mp_result res = mp_int_count_bits(z);
- if (res <= 0) return res;
- int bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT;
- return bytes;
- }
- const char *mp_error_string(mp_result res) {
- if (res > 0) return s_unknown_err;
- res = -res;
- int ix;
- for (ix = 0; ix < res && s_error_msg[ix] != NULL; ++ix)
- ;
- if (s_error_msg[ix] != NULL) {
- return s_error_msg[ix];
- } else {
- return s_unknown_err;
- }
- }
- /*------------------------------------------------------------------------*/
- /* Private functions for internal use. These make assumptions. */
- #if DEBUG
- static const mp_digit fill = (mp_digit)0xdeadbeefabad1dea;
- #endif
- static mp_digit *s_alloc(mp_size num) {
- mp_digit *out = malloc(num * sizeof(mp_digit));
- assert(out != NULL);
- #if DEBUG
- for (mp_size ix = 0; ix < num; ++ix) out[ix] = fill;
- #endif
- return out;
- }
- static mp_digit *s_realloc(mp_digit *old, mp_size osize, mp_size nsize) {
- #if DEBUG
- mp_digit *new = s_alloc(nsize);
- assert(new != NULL);
- for (mp_size ix = 0; ix < nsize; ++ix) new[ix] = fill;
- memcpy(new, old, osize * sizeof(mp_digit));
- #else
- mp_digit *new = realloc(old, nsize * sizeof(mp_digit));
- assert(new != NULL);
- #endif
- return new;
- }
- static void s_free(void *ptr) { free(ptr); }
- static bool s_pad(mp_int z, mp_size min) {
- if (MP_ALLOC(z) < min) {
- mp_size nsize = s_round_prec(min);
- mp_digit *tmp;
- if (z->digits == &(z->single)) {
- if ((tmp = s_alloc(nsize)) == NULL) return false;
- tmp[0] = z->single;
- } else if ((tmp = s_realloc(MP_DIGITS(z), MP_ALLOC(z), nsize)) == NULL) {
- return false;
- }
- z->digits = tmp;
- z->alloc = nsize;
- }
- return true;
- }
- /* Note: This will not work correctly when value == MP_SMALL_MIN */
- static void s_fake(mp_int z, mp_small value, mp_digit vbuf[]) {
- mp_usmall uv = (mp_usmall)(value < 0) ? -value : value;
- s_ufake(z, uv, vbuf);
- if (value < 0) z->sign = MP_NEG;
- }
- static void s_ufake(mp_int z, mp_usmall value, mp_digit vbuf[]) {
- mp_size ndig = (mp_size)s_uvpack(value, vbuf);
- z->used = ndig;
- z->alloc = MP_VALUE_DIGITS(value);
- z->sign = MP_ZPOS;
- z->digits = vbuf;
- }
- static int s_cdig(mp_digit *da, mp_digit *db, mp_size len) {
- mp_digit *dat = da + len - 1, *dbt = db + len - 1;
- for (/* */; len != 0; --len, --dat, --dbt) {
- if (*dat > *dbt) {
- return 1;
- } else if (*dat < *dbt) {
- return -1;
- }
- }
- return 0;
- }
- static int s_uvpack(mp_usmall uv, mp_digit t[]) {
- int ndig = 0;
- if (uv == 0)
- t[ndig++] = 0;
- else {
- while (uv != 0) {
- t[ndig++] = (mp_digit)uv;
- uv >>= MP_DIGIT_BIT / 2;
- uv >>= MP_DIGIT_BIT / 2;
- }
- }
- return ndig;
- }
- static int s_ucmp(mp_int a, mp_int b) {
- mp_size ua = MP_USED(a), ub = MP_USED(b);
- if (ua > ub) {
- return 1;
- } else if (ub > ua) {
- return -1;
- } else {
- return s_cdig(MP_DIGITS(a), MP_DIGITS(b), ua);
- }
- }
- static int s_vcmp(mp_int a, mp_small v) {
- mp_usmall uv = (v < 0) ? -(mp_usmall)v : (mp_usmall)v;
- return s_uvcmp(a, uv);
- }
- static int s_uvcmp(mp_int a, mp_usmall uv) {
- mpz_t vtmp;
- mp_digit vdig[MP_VALUE_DIGITS(uv)];
- s_ufake(&vtmp, uv, vdig);
- return s_ucmp(a, &vtmp);
- }
- static mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
- mp_size size_b) {
- mp_size pos;
- mp_word w = 0;
- /* Insure that da is the longer of the two to simplify later code */
- if (size_b > size_a) {
- SWAP(mp_digit *, da, db);
- SWAP(mp_size, size_a, size_b);
- }
- /* Add corresponding digits until the shorter number runs out */
- for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc) {
- w = w + (mp_word)*da + (mp_word)*db;
- *dc = LOWER_HALF(w);
- w = UPPER_HALF(w);
- }
- /* Propagate carries as far as necessary */
- for (/* */; pos < size_a; ++pos, ++da, ++dc) {
- w = w + *da;
- *dc = LOWER_HALF(w);
- w = UPPER_HALF(w);
- }
- /* Return carry out */
- return (mp_digit)w;
- }
- static void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
- mp_size size_b) {
- mp_size pos;
- mp_word w = 0;
- /* We assume that |a| >= |b| so this should definitely hold */
- assert(size_a >= size_b);
- /* Subtract corresponding digits and propagate borrow */
- for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc) {
- w = ((mp_word)MP_DIGIT_MAX + 1 + /* MP_RADIX */
- (mp_word)*da) -
- w - (mp_word)*db;
- *dc = LOWER_HALF(w);
- w = (UPPER_HALF(w) == 0);
- }
- /* Finish the subtraction for remaining upper digits of da */
- for (/* */; pos < size_a; ++pos, ++da, ++dc) {
- w = ((mp_word)MP_DIGIT_MAX + 1 + /* MP_RADIX */
- (mp_word)*da) -
- w;
- *dc = LOWER_HALF(w);
- w = (UPPER_HALF(w) == 0);
- }
- /* If there is a borrow out at the end, it violates the precondition */
- assert(w == 0);
- }
- static int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
- mp_size size_b) {
- mp_size bot_size;
- /* Make sure b is the smaller of the two input values */
- if (size_b > size_a) {
- SWAP(mp_digit *, da, db);
- SWAP(mp_size, size_a, size_b);
- }
- /* Insure that the bottom is the larger half in an odd-length split; the code
- below relies on this being true.
- */
- bot_size = (size_a + 1) / 2;
- /* If the values are big enough to bother with recursion, use the Karatsuba
- algorithm to compute the product; otherwise use the normal multiplication
- algorithm
- */
- if (multiply_threshold && size_a >= multiply_threshold && size_b > bot_size) {
- mp_digit *t1, *t2, *t3, carry;
- mp_digit *a_top = da + bot_size;
- mp_digit *b_top = db + bot_size;
- mp_size at_size = size_a - bot_size;
- mp_size bt_size = size_b - bot_size;
- mp_size buf_size = 2 * bot_size;
- /* Do a single allocation for all three temporary buffers needed; each
- buffer must be big enough to hold the product of two bottom halves, and
- one buffer needs space for the completed product; twice the space is
- plenty.
- */
- if ((t1 = s_alloc(4 * buf_size)) == NULL) return 0;
- t2 = t1 + buf_size;
- t3 = t2 + buf_size;
- ZERO(t1, 4 * buf_size);
- /* t1 and t2 are initially used as temporaries to compute the inner product
- (a1 + a0)(b1 + b0) = a1b1 + a1b0 + a0b1 + a0b0
- */
- carry = s_uadd(da, a_top, t1, bot_size, at_size); /* t1 = a1 + a0 */
- t1[bot_size] = carry;
- carry = s_uadd(db, b_top, t2, bot_size, bt_size); /* t2 = b1 + b0 */
- t2[bot_size] = carry;
- (void)s_kmul(t1, t2, t3, bot_size + 1, bot_size + 1); /* t3 = t1 * t2 */
- /* Now we'll get t1 = a0b0 and t2 = a1b1, and subtract them out so that
- we're left with only the pieces we want: t3 = a1b0 + a0b1
- */
- ZERO(t1, buf_size);
- ZERO(t2, buf_size);
- (void)s_kmul(da, db, t1, bot_size, bot_size); /* t1 = a0 * b0 */
- (void)s_kmul(a_top, b_top, t2, at_size, bt_size); /* t2 = a1 * b1 */
- /* Subtract out t1 and t2 to get the inner product */
- s_usub(t3, t1, t3, buf_size + 2, buf_size);
- s_usub(t3, t2, t3, buf_size + 2, buf_size);
- /* Assemble the output value */
- COPY(t1, dc, buf_size);
- carry = s_uadd(t3, dc + bot_size, dc + bot_size, buf_size + 1, buf_size);
- assert(carry == 0);
- carry =
- s_uadd(t2, dc + 2 * bot_size, dc + 2 * bot_size, buf_size, buf_size);
- assert(carry == 0);
- s_free(t1); /* note t2 and t3 are just internal pointers to t1 */
- } else {
- s_umul(da, db, dc, size_a, size_b);
- }
- return 1;
- }
- static void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
- mp_size size_b) {
- mp_size a, b;
- mp_word w;
- for (a = 0; a < size_a; ++a, ++dc, ++da) {
- mp_digit *dct = dc;
- mp_digit *dbt = db;
- if (*da == 0) continue;
- w = 0;
- for (b = 0; b < size_b; ++b, ++dbt, ++dct) {
- w = (mp_word)*da * (mp_word)*dbt + w + (mp_word)*dct;
- *dct = LOWER_HALF(w);
- w = UPPER_HALF(w);
- }
- *dct = (mp_digit)w;
- }
- }
- static int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a) {
- if (multiply_threshold && size_a > multiply_threshold) {
- mp_size bot_size = (size_a + 1) / 2;
- mp_digit *a_top = da + bot_size;
- mp_digit *t1, *t2, *t3, carry;
- mp_size at_size = size_a - bot_size;
- mp_size buf_size = 2 * bot_size;
- if ((t1 = s_alloc(4 * buf_size)) == NULL) return 0;
- t2 = t1 + buf_size;
- t3 = t2 + buf_size;
- ZERO(t1, 4 * buf_size);
- (void)s_ksqr(da, t1, bot_size); /* t1 = a0 ^ 2 */
- (void)s_ksqr(a_top, t2, at_size); /* t2 = a1 ^ 2 */
- (void)s_kmul(da, a_top, t3, bot_size, at_size); /* t3 = a0 * a1 */
- /* Quick multiply t3 by 2, shifting left (can't overflow) */
- {
- int i, top = bot_size + at_size;
- mp_word w, save = 0;
- for (i = 0; i < top; ++i) {
- w = t3[i];
- w = (w << 1) | save;
- t3[i] = LOWER_HALF(w);
- save = UPPER_HALF(w);
- }
- t3[i] = LOWER_HALF(save);
- }
- /* Assemble the output value */
- COPY(t1, dc, 2 * bot_size);
- carry = s_uadd(t3, dc + bot_size, dc + bot_size, buf_size + 1, buf_size);
- assert(carry == 0);
- carry =
- s_uadd(t2, dc + 2 * bot_size, dc + 2 * bot_size, buf_size, buf_size);
- assert(carry == 0);
- s_free(t1); /* note that t2 and t2 are internal pointers only */
- } else {
- s_usqr(da, dc, size_a);
- }
- return 1;
- }
- static void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a) {
- mp_size i, j;
- mp_word w;
- for (i = 0; i < size_a; ++i, dc += 2, ++da) {
- mp_digit *dct = dc, *dat = da;
- if (*da == 0) continue;
- /* Take care of the first digit, no rollover */
- w = (mp_word)*dat * (mp_word)*dat + (mp_word)*dct;
- *dct = LOWER_HALF(w);
- w = UPPER_HALF(w);
- ++dat;
- ++dct;
- for (j = i + 1; j < size_a; ++j, ++dat, ++dct) {
- mp_word t = (mp_word)*da * (mp_word)*dat;
- mp_word u = w + (mp_word)*dct, ov = 0;
- /* Check if doubling t will overflow a word */
- if (HIGH_BIT_SET(t)) ov = 1;
- w = t + t;
- /* Check if adding u to w will overflow a word */
- if (ADD_WILL_OVERFLOW(w, u)) ov = 1;
- w += u;
- *dct = LOWER_HALF(w);
- w = UPPER_HALF(w);
- if (ov) {
- w += MP_DIGIT_MAX; /* MP_RADIX */
- ++w;
- }
- }
- w = w + *dct;
- *dct = (mp_digit)w;
- while ((w = UPPER_HALF(w)) != 0) {
- ++dct;
- w = w + *dct;
- *dct = LOWER_HALF(w);
- }
- assert(w == 0);
- }
- }
- static void s_dadd(mp_int a, mp_digit b) {
- mp_word w = 0;
- mp_digit *da = MP_DIGITS(a);
- mp_size ua = MP_USED(a);
- w = (mp_word)*da + b;
- *da++ = LOWER_HALF(w);
- w = UPPER_HALF(w);
- for (ua -= 1; ua > 0; --ua, ++da) {
- w = (mp_word)*da + w;
- *da = LOWER_HALF(w);
- w = UPPER_HALF(w);
- }
- if (w) {
- *da = (mp_digit)w;
- a->used += 1;
- }
- }
- static void s_dmul(mp_int a, mp_digit b) {
- mp_word w = 0;
- mp_digit *da = MP_DIGITS(a);
- mp_size ua = MP_USED(a);
- while (ua > 0) {
- w = (mp_word)*da * b + w;
- *da++ = LOWER_HALF(w);
- w = UPPER_HALF(w);
- --ua;
- }
- if (w) {
- *da = (mp_digit)w;
- a->used += 1;
- }
- }
- static void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a) {
- mp_word w = 0;
- while (size_a > 0) {
- w = (mp_word)*da++ * (mp_word)b + w;
- *dc++ = LOWER_HALF(w);
- w = UPPER_HALF(w);
- --size_a;
- }
- if (w) *dc = LOWER_HALF(w);
- }
- static mp_digit s_ddiv(mp_int a, mp_digit b) {
- mp_word w = 0, qdigit;
- mp_size ua = MP_USED(a);
- mp_digit *da = MP_DIGITS(a) + ua - 1;
- for (/* */; ua > 0; --ua, --da) {
- w = (w << MP_DIGIT_BIT) | *da;
- if (w >= b) {
- qdigit = w / b;
- w = w % b;
- } else {
- qdigit = 0;
- }
- *da = (mp_digit)qdigit;
- }
- CLAMP(a);
- return (mp_digit)w;
- }
- static void s_qdiv(mp_int z, mp_size p2) {
- mp_size ndig = p2 / MP_DIGIT_BIT, nbits = p2 % MP_DIGIT_BIT;
- mp_size uz = MP_USED(z);
- if (ndig) {
- mp_size mark;
- mp_digit *to, *from;
- if (ndig >= uz) {
- mp_int_zero(z);
- return;
- }
- to = MP_DIGITS(z);
- from = to + ndig;
- for (mark = ndig; mark < uz; ++mark) {
- *to++ = *from++;
- }
- z->used = uz - ndig;
- }
- if (nbits) {
- mp_digit d = 0, *dz, save;
- mp_size up = MP_DIGIT_BIT - nbits;
- uz = MP_USED(z);
- dz = MP_DIGITS(z) + uz - 1;
- for (/* */; uz > 0; --uz, --dz) {
- save = *dz;
- *dz = (*dz >> nbits) | (d << up);
- d = save;
- }
- CLAMP(z);
- }
- if (MP_USED(z) == 1 && z->digits[0] == 0) z->sign = MP_ZPOS;
- }
- static void s_qmod(mp_int z, mp_size p2) {
- mp_size start = p2 / MP_DIGIT_BIT + 1, rest = p2 % MP_DIGIT_BIT;
- mp_size uz = MP_USED(z);
- mp_digit mask = (1u << rest) - 1;
- if (start <= uz) {
- z->used = start;
- z->digits[start - 1] &= mask;
- CLAMP(z);
- }
- }
- static int s_qmul(mp_int z, mp_size p2) {
- mp_size uz, need, rest, extra, i;
- mp_digit *from, *to, d;
- if (p2 == 0) return 1;
- uz = MP_USED(z);
- need = p2 / MP_DIGIT_BIT;
- rest = p2 % MP_DIGIT_BIT;
- /* Figure out if we need an extra digit at the top end; this occurs if the
- topmost `rest' bits of the high-order digit of z are not zero, meaning
- they will be shifted off the end if not preserved */
- extra = 0;
- if (rest != 0) {
- mp_digit *dz = MP_DIGITS(z) + uz - 1;
- if ((*dz >> (MP_DIGIT_BIT - rest)) != 0) extra = 1;
- }
- if (!s_pad(z, uz + need + extra)) return 0;
- /* If we need to shift by whole digits, do that in one pass, then
- to back and shift by partial digits.
- */
- if (need > 0) {
- from = MP_DIGITS(z) + uz - 1;
- to = from + need;
- for (i = 0; i < uz; ++i) *to-- = *from--;
- ZERO(MP_DIGITS(z), need);
- uz += need;
- }
- if (rest) {
- d = 0;
- for (i = need, from = MP_DIGITS(z) + need; i < uz; ++i, ++from) {
- mp_digit save = *from;
- *from = (*from << rest) | (d >> (MP_DIGIT_BIT - rest));
- d = save;
- }
- d >>= (MP_DIGIT_BIT - rest);
- if (d != 0) {
- *from = d;
- uz += extra;
- }
- }
- z->used = uz;
- CLAMP(z);
- return 1;
- }
- /* Compute z = 2^p2 - |z|; requires that 2^p2 >= |z|
- The sign of the result is always zero/positive.
- */
- static int s_qsub(mp_int z, mp_size p2) {
- mp_digit hi = (1u << (p2 % MP_DIGIT_BIT)), *zp;
- mp_size tdig = (p2 / MP_DIGIT_BIT), pos;
- mp_word w = 0;
- if (!s_pad(z, tdig + 1)) return 0;
- for (pos = 0, zp = MP_DIGITS(z); pos < tdig; ++pos, ++zp) {
- w = ((mp_word)MP_DIGIT_MAX + 1) - w - (mp_word)*zp;
- *zp = LOWER_HALF(w);
- w = UPPER_HALF(w) ? 0 : 1;
- }
- w = ((mp_word)MP_DIGIT_MAX + 1 + hi) - w - (mp_word)*zp;
- *zp = LOWER_HALF(w);
- assert(UPPER_HALF(w) != 0); /* no borrow out should be possible */
- z->sign = MP_ZPOS;
- CLAMP(z);
- return 1;
- }
- static int s_dp2k(mp_int z) {
- int k = 0;
- mp_digit *dp = MP_DIGITS(z), d;
- if (MP_USED(z) == 1 && *dp == 0) return 1;
- while (*dp == 0) {
- k += MP_DIGIT_BIT;
- ++dp;
- }
- d = *dp;
- while ((d & 1) == 0) {
- d >>= 1;
- ++k;
- }
- return k;
- }
- static int s_isp2(mp_int z) {
- mp_size uz = MP_USED(z), k = 0;
- mp_digit *dz = MP_DIGITS(z), d;
- while (uz > 1) {
- if (*dz++ != 0) return -1;
- k += MP_DIGIT_BIT;
- --uz;
- }
- d = *dz;
- while (d > 1) {
- if (d & 1) return -1;
- ++k;
- d >>= 1;
- }
- return (int)k;
- }
- static int s_2expt(mp_int z, mp_small k) {
- mp_size ndig, rest;
- mp_digit *dz;
- ndig = (k + MP_DIGIT_BIT) / MP_DIGIT_BIT;
- rest = k % MP_DIGIT_BIT;
- if (!s_pad(z, ndig)) return 0;
- dz = MP_DIGITS(z);
- ZERO(dz, ndig);
- *(dz + ndig - 1) = (1u << rest);
- z->used = ndig;
- return 1;
- }
- static int s_norm(mp_int a, mp_int b) {
- mp_digit d = b->digits[MP_USED(b) - 1];
- int k = 0;
- while (d < (1u << (mp_digit)(MP_DIGIT_BIT - 1))) { /* d < (MP_RADIX / 2) */
- d <<= 1;
- ++k;
- }
- /* These multiplications can't fail */
- if (k != 0) {
- (void)s_qmul(a, (mp_size)k);
- (void)s_qmul(b, (mp_size)k);
- }
- return k;
- }
- static mp_result s_brmu(mp_int z, mp_int m) {
- mp_size um = MP_USED(m) * 2;
- if (!s_pad(z, um)) return MP_MEMORY;
- s_2expt(z, MP_DIGIT_BIT * um);
- return mp_int_div(z, m, z, NULL);
- }
- static int s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2) {
- mp_size um = MP_USED(m), umb_p1, umb_m1;
- umb_p1 = (um + 1) * MP_DIGIT_BIT;
- umb_m1 = (um - 1) * MP_DIGIT_BIT;
- if (mp_int_copy(x, q1) != MP_OK) return 0;
- /* Compute q2 = floor((floor(x / b^(k-1)) * mu) / b^(k+1)) */
- s_qdiv(q1, umb_m1);
- UMUL(q1, mu, q2);
- s_qdiv(q2, umb_p1);
- /* Set x = x mod b^(k+1) */
- s_qmod(x, umb_p1);
- /* Now, q is a guess for the quotient a / m.
- Compute x - q * m mod b^(k+1), replacing x. This may be off
- by a factor of 2m, but no more than that.
- */
- UMUL(q2, m, q1);
- s_qmod(q1, umb_p1);
- (void)mp_int_sub(x, q1, x); /* can't fail */
- /* The result may be < 0; if it is, add b^(k+1) to pin it in the proper
- range. */
- if ((CMPZ(x) < 0) && !s_qsub(x, umb_p1)) return 0;
- /* If x > m, we need to back it off until it is in range. This will be
- required at most twice. */
- if (mp_int_compare(x, m) >= 0) {
- (void)mp_int_sub(x, m, x);
- if (mp_int_compare(x, m) >= 0) {
- (void)mp_int_sub(x, m, x);
- }
- }
- /* At this point, x has been properly reduced. */
- return 1;
- }
- /* Perform modular exponentiation using Barrett's method, where mu is the
- reduction constant for m. Assumes a < m, b > 0. */
- static mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c) {
- mp_digit umu = MP_USED(mu);
- mp_digit *db = MP_DIGITS(b);
- mp_digit *dbt = db + MP_USED(b) - 1;
- DECLARE_TEMP(3);
- REQUIRE(GROW(TEMP(0), 4 * umu));
- REQUIRE(GROW(TEMP(1), 4 * umu));
- REQUIRE(GROW(TEMP(2), 4 * umu));
- ZERO(TEMP(0)->digits, TEMP(0)->alloc);
- ZERO(TEMP(1)->digits, TEMP(1)->alloc);
- ZERO(TEMP(2)->digits, TEMP(2)->alloc);
- (void)mp_int_set_value(c, 1);
- /* Take care of low-order digits */
- while (db < dbt) {
- mp_digit d = *db;
- for (int i = MP_DIGIT_BIT; i > 0; --i, d >>= 1) {
- if (d & 1) {
- /* The use of a second temporary avoids allocation */
- UMUL(c, a, TEMP(0));
- if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
- REQUIRE(MP_MEMORY);
- }
- mp_int_copy(TEMP(0), c);
- }
- USQR(a, TEMP(0));
- assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
- if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
- REQUIRE(MP_MEMORY);
- }
- assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
- mp_int_copy(TEMP(0), a);
- }
- ++db;
- }
- /* Take care of highest-order digit */
- mp_digit d = *dbt;
- for (;;) {
- if (d & 1) {
- UMUL(c, a, TEMP(0));
- if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
- REQUIRE(MP_MEMORY);
- }
- mp_int_copy(TEMP(0), c);
- }
- d >>= 1;
- if (!d) break;
- USQR(a, TEMP(0));
- if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
- REQUIRE(MP_MEMORY);
- }
- (void)mp_int_copy(TEMP(0), a);
- }
- CLEANUP_TEMP();
- return MP_OK;
- }
- /* Division of nonnegative integers
- This function implements division algorithm for unsigned multi-precision
- integers. The algorithm is based on Algorithm D from Knuth's "The Art of
- Computer Programming", 3rd ed. 1998, pg 272-273.
- We diverge from Knuth's algorithm in that we do not perform the subtraction
- from the remainder until we have determined that we have the correct
- quotient digit. This makes our algorithm less efficient that Knuth because
- we might have to perform multiple multiplication and comparison steps before
- the subtraction. The advantage is that it is easy to implement and ensure
- correctness without worrying about underflow from the subtraction.
- inputs: u a n+m digit integer in base b (b is 2^MP_DIGIT_BIT)
- v a n digit integer in base b (b is 2^MP_DIGIT_BIT)
- n >= 1
- m >= 0
- outputs: u / v stored in u
- u % v stored in v
- */
- static mp_result s_udiv_knuth(mp_int u, mp_int v) {
- /* Force signs to positive */
- u->sign = MP_ZPOS;
- v->sign = MP_ZPOS;
- /* Use simple division algorithm when v is only one digit long */
- if (MP_USED(v) == 1) {
- mp_digit d, rem;
- d = v->digits[0];
- rem = s_ddiv(u, d);
- mp_int_set_value(v, rem);
- return MP_OK;
- }
- /* Algorithm D
- The n and m variables are defined as used by Knuth.
- u is an n digit number with digits u_{n-1}..u_0.
- v is an n+m digit number with digits from v_{m+n-1}..v_0.
- We require that n > 1 and m >= 0
- */
- mp_size n = MP_USED(v);
- mp_size m = MP_USED(u) - n;
- assert(n > 1);
- /* assert(m >= 0) follows because m is unsigned. */
- /* D1: Normalize.
- The normalization step provides the necessary condition for Theorem B,
- which states that the quotient estimate for q_j, call it qhat
- qhat = u_{j+n}u_{j+n-1} / v_{n-1}
- is bounded by
- qhat - 2 <= q_j <= qhat.
- That is, qhat is always greater than the actual quotient digit q,
- and it is never more than two larger than the actual quotient digit.
- */
- int k = s_norm(u, v);
- /* Extend size of u by one if needed.
- The algorithm begins with a value of u that has one more digit of input.
- The normalization step sets u_{m+n}..u_0 = 2^k * u_{m+n-1}..u_0. If the
- multiplication did not increase the number of digits of u, we need to add
- a leading zero here.
- */
- if (k == 0 || MP_USED(u) != m + n + 1) {
- if (!s_pad(u, m + n + 1)) return MP_MEMORY;
- u->digits[m + n] = 0;
- u->used = m + n + 1;
- }
- /* Add a leading 0 to v.
- The multiplication in step D4 multiplies qhat * 0v_{n-1}..v_0. We need to
- add the leading zero to v here to ensure that the multiplication will
- produce the full n+1 digit result.
- */
- if (!s_pad(v, n + 1)) return MP_MEMORY;
- v->digits[n] = 0;
- /* Initialize temporary variables q and t.
- q allocates space for m+1 digits to store the quotient digits
- t allocates space for n+1 digits to hold the result of q_j*v
- */
- DECLARE_TEMP(2);
- REQUIRE(GROW(TEMP(0), m + 1));
- REQUIRE(GROW(TEMP(1), n + 1));
- /* D2: Initialize j */
- int j = m;
- mpz_t r;
- r.digits = MP_DIGITS(u) + j; /* The contents of r are shared with u */
- r.used = n + 1;
- r.sign = MP_ZPOS;
- r.alloc = MP_ALLOC(u);
- ZERO(TEMP(1)->digits, TEMP(1)->alloc);
- /* Calculate the m+1 digits of the quotient result */
- for (; j >= 0; j--) {
- /* D3: Calculate q' */
- /* r->digits is aligned to position j of the number u */
- mp_word pfx, qhat;
- pfx = r.digits[n];
- pfx <<= MP_DIGIT_BIT / 2;
- pfx <<= MP_DIGIT_BIT / 2;
- pfx |= r.digits[n - 1]; /* pfx = u_{j+n}{j+n-1} */
- qhat = pfx / v->digits[n - 1];
- /* Check to see if qhat > b, and decrease qhat if so.
- Theorem B guarantess that qhat is at most 2 larger than the
- actual value, so it is possible that qhat is greater than
- the maximum value that will fit in a digit */
- if (qhat > MP_DIGIT_MAX) qhat = MP_DIGIT_MAX;
- /* D4,D5,D6: Multiply qhat * v and test for a correct value of q
- We proceed a bit different than the way described by Knuth. This way is
- simpler but less efficent. Instead of doing the multiply and subtract
- then checking for underflow, we first do the multiply of qhat * v and
- see if it is larger than the current remainder r. If it is larger, we
- decrease qhat by one and try again. We may need to decrease qhat one
- more time before we get a value that is smaller than r.
- This way is less efficent than Knuth because we do more multiplies, but
- we do not need to worry about underflow this way.
- */
- /* t = qhat * v */
- s_dbmul(MP_DIGITS(v), (mp_digit)qhat, TEMP(1)->digits, n + 1);
- TEMP(1)->used = n + 1;
- CLAMP(TEMP(1));
- /* Clamp r for the comparison. Comparisons do not like leading zeros. */
- CLAMP(&r);
- if (s_ucmp(TEMP(1), &r) > 0) { /* would the remainder be negative? */
- qhat -= 1; /* try a smaller q */
- s_dbmul(MP_DIGITS(v), (mp_digit)qhat, TEMP(1)->digits, n + 1);
- TEMP(1)->used = n + 1;
- CLAMP(TEMP(1));
- if (s_ucmp(TEMP(1), &r) > 0) { /* would the remainder be negative? */
- assert(qhat > 0);
- qhat -= 1; /* try a smaller q */
- s_dbmul(MP_DIGITS(v), (mp_digit)qhat, TEMP(1)->digits, n + 1);
- TEMP(1)->used = n + 1;
- CLAMP(TEMP(1));
- }
- assert(s_ucmp(TEMP(1), &r) <= 0 && "The mathematics failed us.");
- }
- /* Unclamp r. The D algorithm expects r = u_{j+n}..u_j to always be n+1
- digits long. */
- r.used = n + 1;
- /* D4: Multiply and subtract
- Note: The multiply was completed above so we only need to subtract here.
- */
- s_usub(r.digits, TEMP(1)->digits, r.digits, r.used, TEMP(1)->used);
- /* D5: Test remainder
- Note: Not needed because we always check that qhat is the correct value
- before performing the subtract. Value cast to mp_digit to prevent
- warning, qhat has been clamped to MP_DIGIT_MAX
- */
- TEMP(0)->digits[j] = (mp_digit)qhat;
- /* D6: Add back
- Note: Not needed because we always check that qhat is the correct value
- before performing the subtract.
- */
- /* D7: Loop on j */
- r.digits--;
- ZERO(TEMP(1)->digits, TEMP(1)->alloc);
- }
- /* Get rid of leading zeros in q */
- TEMP(0)->used = m + 1;
- CLAMP(TEMP(0));
- /* Denormalize the remainder */
- CLAMP(u); /* use u here because the r.digits pointer is off-by-one */
- if (k != 0) s_qdiv(u, k);
- mp_int_copy(u, v); /* ok: 0 <= r < v */
- mp_int_copy(TEMP(0), u); /* ok: q <= u */
- CLEANUP_TEMP();
- return MP_OK;
- }
- static int s_outlen(mp_int z, mp_size r) {
- assert(r >= MP_MIN_RADIX && r <= MP_MAX_RADIX);
- mp_result bits = mp_int_count_bits(z);
- double raw = (double)bits * s_log2[r];
- return (int)(raw + 0.999999);
- }
- static mp_size s_inlen(int len, mp_size r) {
- double raw = (double)len / s_log2[r];
- mp_size bits = (mp_size)(raw + 0.5);
- return (mp_size)((bits + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT) + 1;
- }
- static int s_ch2val(char c, int r) {
- int out;
- /*
- * In some locales, isalpha() accepts characters outside the range A-Z,
- * producing out<0 or out>=36. The "out >= r" check will always catch
- * out>=36. Though nothing explicitly catches out<0, our caller reacts the
- * same way to every negative return value.
- */
- if (isdigit((unsigned char)c))
- out = c - '0';
- else if (r > 10 && isalpha((unsigned char)c))
- out = toupper((unsigned char)c) - 'A' + 10;
- else
- return -1;
- return (out >= r) ? -1 : out;
- }
- static char s_val2ch(int v, int caps) {
- assert(v >= 0);
- if (v < 10) {
- return v + '0';
- } else {
- char out = (v - 10) + 'a';
- if (caps) {
- return toupper((unsigned char)out);
- } else {
- return out;
- }
- }
- }
- static void s_2comp(unsigned char *buf, int len) {
- unsigned short s = 1;
- for (int i = len - 1; i >= 0; --i) {
- unsigned char c = ~buf[i];
- s = c + s;
- c = s & UCHAR_MAX;
- s >>= CHAR_BIT;
- buf[i] = c;
- }
- /* last carry out is ignored */
- }
- static mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad) {
- int pos = 0, limit = *limpos;
- mp_size uz = MP_USED(z);
- mp_digit *dz = MP_DIGITS(z);
- while (uz > 0 && pos < limit) {
- mp_digit d = *dz++;
- int i;
- for (i = sizeof(mp_digit); i > 0 && pos < limit; --i) {
- buf[pos++] = (unsigned char)d;
- d >>= CHAR_BIT;
- /* Don't write leading zeroes */
- if (d == 0 && uz == 1) i = 0; /* exit loop without signaling truncation */
- }
- /* Detect truncation (loop exited with pos >= limit) */
- if (i > 0) break;
- --uz;
- }
- if (pad != 0 && (buf[pos - 1] >> (CHAR_BIT - 1))) {
- if (pos < limit) {
- buf[pos++] = 0;
- } else {
- uz = 1;
- }
- }
- /* Digits are in reverse order, fix that */
- REV(buf, pos);
- /* Return the number of bytes actually written */
- *limpos = pos;
- return (uz == 0) ? MP_OK : MP_TRUNC;
- }
- /* Here there be dragons */
|