123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652 |
- //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains the X86 implementation of the TargetInstrInfo class.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H
- #define LLVM_LIB_TARGET_X86_X86INSTRINFO_H
- #include "MCTargetDesc/X86BaseInfo.h"
- #include "X86InstrFMA3Info.h"
- #include "X86RegisterInfo.h"
- #include "llvm/CodeGen/ISDOpcodes.h"
- #include "llvm/CodeGen/TargetInstrInfo.h"
- #include <vector>
- #define GET_INSTRINFO_HEADER
- #include "X86GenInstrInfo.inc"
- namespace llvm {
- class X86Subtarget;
- namespace X86 {
- enum AsmComments {
- // For instr that was compressed from EVEX to VEX.
- AC_EVEX_2_VEX = MachineInstr::TAsmComments
- };
- /// Return a pair of condition code for the given predicate and whether
- /// the instruction operands should be swaped to match the condition code.
- std::pair<CondCode, bool> getX86ConditionCode(CmpInst::Predicate Predicate);
- /// Return a cmov opcode for the given register size in bytes, and operand type.
- unsigned getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand = false);
- // Turn jCC instruction into condition code.
- CondCode getCondFromBranch(const MachineInstr &MI);
- // Turn setCC instruction into condition code.
- CondCode getCondFromSETCC(const MachineInstr &MI);
- // Turn CMov instruction into condition code.
- CondCode getCondFromCMov(const MachineInstr &MI);
- /// GetOppositeBranchCondition - Return the inverse of the specified cond,
- /// e.g. turning COND_E to COND_NE.
- CondCode GetOppositeBranchCondition(CondCode CC);
- /// Get the VPCMP immediate for the given condition.
- unsigned getVPCMPImmForCond(ISD::CondCode CC);
- /// Get the VPCMP immediate if the opcodes are swapped.
- unsigned getSwappedVPCMPImm(unsigned Imm);
- /// Get the VPCOM immediate if the opcodes are swapped.
- unsigned getSwappedVPCOMImm(unsigned Imm);
- /// Get the VCMP immediate if the opcodes are swapped.
- unsigned getSwappedVCMPImm(unsigned Imm);
- /// Check if the instruction is X87 instruction.
- bool isX87Instruction(MachineInstr &MI);
- } // namespace X86
- /// isGlobalStubReference - Return true if the specified TargetFlag operand is
- /// a reference to a stub for a global, not the global itself.
- inline static bool isGlobalStubReference(unsigned char TargetFlag) {
- switch (TargetFlag) {
- case X86II::MO_DLLIMPORT: // dllimport stub.
- case X86II::MO_GOTPCREL: // rip-relative GOT reference.
- case X86II::MO_GOTPCREL_NORELAX: // rip-relative GOT reference.
- case X86II::MO_GOT: // normal GOT reference.
- case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
- case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref.
- case X86II::MO_COFFSTUB: // COFF .refptr stub.
- return true;
- default:
- return false;
- }
- }
- /// isGlobalRelativeToPICBase - Return true if the specified global value
- /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this
- /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
- inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
- switch (TargetFlag) {
- case X86II::MO_GOTOFF: // isPICStyleGOT: local global.
- case X86II::MO_GOT: // isPICStyleGOT: other global.
- case X86II::MO_PIC_BASE_OFFSET: // Darwin local global.
- case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
- case X86II::MO_TLVP: // ??? Pretty sure..
- return true;
- default:
- return false;
- }
- }
- inline static bool isScale(const MachineOperand &MO) {
- return MO.isImm() && (MO.getImm() == 1 || MO.getImm() == 2 ||
- MO.getImm() == 4 || MO.getImm() == 8);
- }
- inline static bool isLeaMem(const MachineInstr &MI, unsigned Op) {
- if (MI.getOperand(Op).isFI())
- return true;
- return Op + X86::AddrSegmentReg <= MI.getNumOperands() &&
- MI.getOperand(Op + X86::AddrBaseReg).isReg() &&
- isScale(MI.getOperand(Op + X86::AddrScaleAmt)) &&
- MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
- (MI.getOperand(Op + X86::AddrDisp).isImm() ||
- MI.getOperand(Op + X86::AddrDisp).isGlobal() ||
- MI.getOperand(Op + X86::AddrDisp).isCPI() ||
- MI.getOperand(Op + X86::AddrDisp).isJTI());
- }
- inline static bool isMem(const MachineInstr &MI, unsigned Op) {
- if (MI.getOperand(Op).isFI())
- return true;
- return Op + X86::AddrNumOperands <= MI.getNumOperands() &&
- MI.getOperand(Op + X86::AddrSegmentReg).isReg() && isLeaMem(MI, Op);
- }
- class X86InstrInfo final : public X86GenInstrInfo {
- X86Subtarget &Subtarget;
- const X86RegisterInfo RI;
- virtual void anchor();
- bool AnalyzeBranchImpl(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
- MachineBasicBlock *&FBB,
- SmallVectorImpl<MachineOperand> &Cond,
- SmallVectorImpl<MachineInstr *> &CondBranches,
- bool AllowModify) const;
- public:
- explicit X86InstrInfo(X86Subtarget &STI);
- /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
- /// such, whenever a client has an instance of instruction info, it should
- /// always be able to get register info as well (through this method).
- ///
- const X86RegisterInfo &getRegisterInfo() const { return RI; }
- /// Returns the stack pointer adjustment that happens inside the frame
- /// setup..destroy sequence (e.g. by pushes, or inside the callee).
- int64_t getFrameAdjustment(const MachineInstr &I) const {
- assert(isFrameInstr(I));
- if (isFrameSetup(I))
- return I.getOperand(2).getImm();
- return I.getOperand(1).getImm();
- }
- /// Sets the stack pointer adjustment made inside the frame made up by this
- /// instruction.
- void setFrameAdjustment(MachineInstr &I, int64_t V) const {
- assert(isFrameInstr(I));
- if (isFrameSetup(I))
- I.getOperand(2).setImm(V);
- else
- I.getOperand(1).setImm(V);
- }
- /// getSPAdjust - This returns the stack pointer adjustment made by
- /// this instruction. For x86, we need to handle more complex call
- /// sequences involving PUSHes.
- int getSPAdjust(const MachineInstr &MI) const override;
- /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
- /// extension instruction. That is, it's like a copy where it's legal for the
- /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
- /// true, then it's expected the pre-extension value is available as a subreg
- /// of the result register. This also returns the sub-register index in
- /// SubIdx.
- bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
- Register &DstReg, unsigned &SubIdx) const override;
- /// Returns true if the instruction has no behavior (specified or otherwise)
- /// that is based on the value of any of its register operands
- ///
- /// Instructions are considered data invariant even if they set EFLAGS.
- ///
- /// A classical example of something that is inherently not data invariant is
- /// an indirect jump -- the destination is loaded into icache based on the
- /// bits set in the jump destination register.
- ///
- /// FIXME: This should become part of our instruction tables.
- static bool isDataInvariant(MachineInstr &MI);
- /// Returns true if the instruction has no behavior (specified or otherwise)
- /// that is based on the value loaded from memory or the value of any
- /// non-address register operands.
- ///
- /// For example, if the latency of the instruction is dependent on the
- /// particular bits set in any of the registers *or* any of the bits loaded
- /// from memory.
- ///
- /// Instructions are considered data invariant even if they set EFLAGS.
- ///
- /// A classical example of something that is inherently not data invariant is
- /// an indirect jump -- the destination is loaded into icache based on the
- /// bits set in the jump destination register.
- ///
- /// FIXME: This should become part of our instruction tables.
- static bool isDataInvariantLoad(MachineInstr &MI);
- unsigned isLoadFromStackSlot(const MachineInstr &MI,
- int &FrameIndex) const override;
- unsigned isLoadFromStackSlot(const MachineInstr &MI,
- int &FrameIndex,
- unsigned &MemBytes) const override;
- /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
- /// stack locations as well. This uses a heuristic so it isn't
- /// reliable for correctness.
- unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
- int &FrameIndex) const override;
- unsigned isStoreToStackSlot(const MachineInstr &MI,
- int &FrameIndex) const override;
- unsigned isStoreToStackSlot(const MachineInstr &MI,
- int &FrameIndex,
- unsigned &MemBytes) const override;
- /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
- /// stack locations as well. This uses a heuristic so it isn't
- /// reliable for correctness.
- unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
- int &FrameIndex) const override;
- bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
- AAResults *AA) const override;
- void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
- Register DestReg, unsigned SubIdx,
- const MachineInstr &Orig,
- const TargetRegisterInfo &TRI) const override;
- /// Given an operand within a MachineInstr, insert preceding code to put it
- /// into the right format for a particular kind of LEA instruction. This may
- /// involve using an appropriate super-register instead (with an implicit use
- /// of the original) or creating a new virtual register and inserting COPY
- /// instructions to get the data into the right class.
- ///
- /// Reference parameters are set to indicate how caller should add this
- /// operand to the LEA instruction.
- bool classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
- unsigned LEAOpcode, bool AllowSP, Register &NewSrc,
- bool &isKill, MachineOperand &ImplicitOp,
- LiveVariables *LV, LiveIntervals *LIS) const;
- /// convertToThreeAddress - This method must be implemented by targets that
- /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
- /// may be able to convert a two-address instruction into a true
- /// three-address instruction on demand. This allows the X86 target (for
- /// example) to convert ADD and SHL instructions into LEA instructions if they
- /// would require register copies due to two-addressness.
- ///
- /// This method returns a null pointer if the transformation cannot be
- /// performed, otherwise it returns the new instruction.
- ///
- MachineInstr *convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
- LiveIntervals *LIS) const override;
- /// Returns true iff the routine could find two commutable operands in the
- /// given machine instruction.
- /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
- /// input values can be re-defined in this method only if the input values
- /// are not pre-defined, which is designated by the special value
- /// 'CommuteAnyOperandIndex' assigned to it.
- /// If both of indices are pre-defined and refer to some operands, then the
- /// method simply returns true if the corresponding operands are commutable
- /// and returns false otherwise.
- ///
- /// For example, calling this method this way:
- /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
- /// findCommutedOpIndices(MI, Op1, Op2);
- /// can be interpreted as a query asking to find an operand that would be
- /// commutable with the operand#1.
- bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1,
- unsigned &SrcOpIdx2) const override;
- /// Returns true if we have preference on the operands order in MI, the
- /// commute decision is returned in Commute.
- bool hasCommutePreference(MachineInstr &MI, bool &Commute) const override;
- /// Returns an adjusted FMA opcode that must be used in FMA instruction that
- /// performs the same computations as the given \p MI but which has the
- /// operands \p SrcOpIdx1 and \p SrcOpIdx2 commuted.
- /// It may return 0 if it is unsafe to commute the operands.
- /// Note that a machine instruction (instead of its opcode) is passed as the
- /// first parameter to make it possible to analyze the instruction's uses and
- /// commute the first operand of FMA even when it seems unsafe when you look
- /// at the opcode. For example, it is Ok to commute the first operand of
- /// VFMADD*SD_Int, if ONLY the lowest 64-bit element of the result is used.
- ///
- /// The returned FMA opcode may differ from the opcode in the given \p MI.
- /// For example, commuting the operands #1 and #3 in the following FMA
- /// FMA213 #1, #2, #3
- /// results into instruction with adjusted opcode:
- /// FMA231 #3, #2, #1
- unsigned
- getFMA3OpcodeToCommuteOperands(const MachineInstr &MI, unsigned SrcOpIdx1,
- unsigned SrcOpIdx2,
- const X86InstrFMA3Group &FMA3Group) const;
- // Branch analysis.
- bool isUnconditionalTailCall(const MachineInstr &MI) const override;
- bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
- const MachineInstr &TailCall) const override;
- void replaceBranchWithTailCall(MachineBasicBlock &MBB,
- SmallVectorImpl<MachineOperand> &Cond,
- const MachineInstr &TailCall) const override;
- bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
- MachineBasicBlock *&FBB,
- SmallVectorImpl<MachineOperand> &Cond,
- bool AllowModify) const override;
- Optional<ExtAddrMode>
- getAddrModeFromMemoryOp(const MachineInstr &MemI,
- const TargetRegisterInfo *TRI) const override;
- bool getConstValDefinedInReg(const MachineInstr &MI, const Register Reg,
- int64_t &ImmVal) const override;
- bool preservesZeroValueInReg(const MachineInstr *MI,
- const Register NullValueReg,
- const TargetRegisterInfo *TRI) const override;
- bool getMemOperandsWithOffsetWidth(
- const MachineInstr &LdSt,
- SmallVectorImpl<const MachineOperand *> &BaseOps, int64_t &Offset,
- bool &OffsetIsScalable, unsigned &Width,
- const TargetRegisterInfo *TRI) const override;
- bool analyzeBranchPredicate(MachineBasicBlock &MBB,
- TargetInstrInfo::MachineBranchPredicate &MBP,
- bool AllowModify = false) const override;
- unsigned removeBranch(MachineBasicBlock &MBB,
- int *BytesRemoved = nullptr) const override;
- unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
- MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
- const DebugLoc &DL,
- int *BytesAdded = nullptr) const override;
- bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
- Register, Register, Register, int &, int &,
- int &) const override;
- void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
- const DebugLoc &DL, Register DstReg,
- ArrayRef<MachineOperand> Cond, Register TrueReg,
- Register FalseReg) const override;
- void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
- const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
- bool KillSrc) const override;
- void storeRegToStackSlot(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI, Register SrcReg,
- bool isKill, int FrameIndex,
- const TargetRegisterClass *RC,
- const TargetRegisterInfo *TRI) const override;
- void loadRegFromStackSlot(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI, Register DestReg,
- int FrameIndex, const TargetRegisterClass *RC,
- const TargetRegisterInfo *TRI) const override;
- bool expandPostRAPseudo(MachineInstr &MI) const override;
- /// Check whether the target can fold a load that feeds a subreg operand
- /// (or a subreg operand that feeds a store).
- bool isSubregFoldable() const override { return true; }
- /// foldMemoryOperand - If this target supports it, fold a load or store of
- /// the specified stack slot into the specified machine instruction for the
- /// specified operand(s). If this is possible, the target should perform the
- /// folding and return true, otherwise it should return false. If it folds
- /// the instruction, it is likely that the MachineInstruction the iterator
- /// references has been changed.
- MachineInstr *
- foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
- ArrayRef<unsigned> Ops,
- MachineBasicBlock::iterator InsertPt, int FrameIndex,
- LiveIntervals *LIS = nullptr,
- VirtRegMap *VRM = nullptr) const override;
- /// foldMemoryOperand - Same as the previous version except it allows folding
- /// of any load and store from / to any address, not just from a specific
- /// stack slot.
- MachineInstr *foldMemoryOperandImpl(
- MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
- MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
- LiveIntervals *LIS = nullptr) const override;
- /// unfoldMemoryOperand - Separate a single instruction which folded a load or
- /// a store or a load and a store into two or more instruction. If this is
- /// possible, returns true as well as the new instructions by reference.
- bool
- unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
- bool UnfoldLoad, bool UnfoldStore,
- SmallVectorImpl<MachineInstr *> &NewMIs) const override;
- bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
- SmallVectorImpl<SDNode *> &NewNodes) const override;
- /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
- /// instruction after load / store are unfolded from an instruction of the
- /// specified opcode. It returns zero if the specified unfolding is not
- /// possible. If LoadRegIndex is non-null, it is filled in with the operand
- /// index of the operand which will hold the register holding the loaded
- /// value.
- unsigned
- getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
- unsigned *LoadRegIndex = nullptr) const override;
- /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
- /// to determine if two loads are loading from the same base address. It
- /// should only return true if the base pointers are the same and the
- /// only differences between the two addresses are the offset. It also returns
- /// the offsets by reference.
- bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
- int64_t &Offset2) const override;
- /// isSchedulingBoundary - Overrides the isSchedulingBoundary from
- /// Codegen/TargetInstrInfo.cpp to make it capable of identifying ENDBR
- /// intructions and prevent it from being re-scheduled.
- bool isSchedulingBoundary(const MachineInstr &MI,
- const MachineBasicBlock *MBB,
- const MachineFunction &MF) const override;
- /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
- /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads
- /// should be scheduled togther. On some targets if two loads are loading from
- /// addresses in the same cache line, it's better if they are scheduled
- /// together. This function takes two integers that represent the load offsets
- /// from the common base address. It returns true if it decides it's desirable
- /// to schedule the two loads together. "NumLoads" is the number of loads that
- /// have already been scheduled after Load1.
- bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1,
- int64_t Offset2,
- unsigned NumLoads) const override;
- MCInst getNop() const override;
- bool
- reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
- /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
- /// instruction that defines the specified register class.
- bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;
- /// True if MI has a condition code def, e.g. EFLAGS, that is
- /// not marked dead.
- bool hasLiveCondCodeDef(MachineInstr &MI) const;
- /// getGlobalBaseReg - Return a virtual register initialized with the
- /// the global base register value. Output instructions required to
- /// initialize the register in the function entry block, if necessary.
- ///
- unsigned getGlobalBaseReg(MachineFunction *MF) const;
- std::pair<uint16_t, uint16_t>
- getExecutionDomain(const MachineInstr &MI) const override;
- uint16_t getExecutionDomainCustom(const MachineInstr &MI) const;
- void setExecutionDomain(MachineInstr &MI, unsigned Domain) const override;
- bool setExecutionDomainCustom(MachineInstr &MI, unsigned Domain) const;
- unsigned
- getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
- const TargetRegisterInfo *TRI) const override;
- unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
- const TargetRegisterInfo *TRI) const override;
- void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
- const TargetRegisterInfo *TRI) const override;
- MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
- unsigned OpNum,
- ArrayRef<MachineOperand> MOs,
- MachineBasicBlock::iterator InsertPt,
- unsigned Size, Align Alignment,
- bool AllowCommute) const;
- bool isHighLatencyDef(int opc) const override;
- bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
- const MachineRegisterInfo *MRI,
- const MachineInstr &DefMI, unsigned DefIdx,
- const MachineInstr &UseMI,
- unsigned UseIdx) const override;
- bool useMachineCombiner() const override { return true; }
- bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;
- bool hasReassociableOperands(const MachineInstr &Inst,
- const MachineBasicBlock *MBB) const override;
- void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
- MachineInstr &NewMI1,
- MachineInstr &NewMI2) const override;
- /// analyzeCompare - For a comparison instruction, return the source registers
- /// in SrcReg and SrcReg2 if having two register operands, and the value it
- /// compares against in CmpValue. Return true if the comparison instruction
- /// can be analyzed.
- bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
- Register &SrcReg2, int64_t &CmpMask,
- int64_t &CmpValue) const override;
- /// optimizeCompareInstr - Check if there exists an earlier instruction that
- /// operates on the same source operands and sets flags in the same way as
- /// Compare; remove Compare if possible.
- bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
- Register SrcReg2, int64_t CmpMask, int64_t CmpValue,
- const MachineRegisterInfo *MRI) const override;
- /// optimizeLoadInstr - Try to remove the load by folding it to a register
- /// operand at the use. We fold the load instructions if and only if the
- /// def and use are in the same BB. We only look at one load and see
- /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
- /// defined by the load we are trying to fold. DefMI returns the machine
- /// instruction that defines FoldAsLoadDefReg, and the function returns
- /// the machine instruction generated due to folding.
- MachineInstr *optimizeLoadInstr(MachineInstr &MI,
- const MachineRegisterInfo *MRI,
- Register &FoldAsLoadDefReg,
- MachineInstr *&DefMI) const override;
- std::pair<unsigned, unsigned>
- decomposeMachineOperandsTargetFlags(unsigned TF) const override;
- ArrayRef<std::pair<unsigned, const char *>>
- getSerializableDirectMachineOperandTargetFlags() const override;
- virtual outliner::OutlinedFunction getOutliningCandidateInfo(
- std::vector<outliner::Candidate> &RepeatedSequenceLocs) const override;
- bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
- bool OutlineFromLinkOnceODRs) const override;
- outliner::InstrType
- getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const override;
- void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
- const outliner::OutlinedFunction &OF) const override;
- MachineBasicBlock::iterator
- insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
- MachineBasicBlock::iterator &It, MachineFunction &MF,
- const outliner::Candidate &C) const override;
- #define GET_INSTRINFO_HELPER_DECLS
- #include "X86GenInstrInfo.inc"
- static bool hasLockPrefix(const MachineInstr &MI) {
- return MI.getDesc().TSFlags & X86II::LOCK;
- }
- Optional<ParamLoadedValue> describeLoadedValue(const MachineInstr &MI,
- Register Reg) const override;
- protected:
- /// Commutes the operands in the given instruction by changing the operands
- /// order and/or changing the instruction's opcode and/or the immediate value
- /// operand.
- ///
- /// The arguments 'CommuteOpIdx1' and 'CommuteOpIdx2' specify the operands
- /// to be commuted.
- ///
- /// Do not call this method for a non-commutable instruction or
- /// non-commutable operands.
- /// Even though the instruction is commutable, the method may still
- /// fail to commute the operands, null pointer is returned in such cases.
- MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
- unsigned CommuteOpIdx1,
- unsigned CommuteOpIdx2) const override;
- /// If the specific machine instruction is a instruction that moves/copies
- /// value from one register to another register return destination and source
- /// registers as machine operands.
- Optional<DestSourcePair>
- isCopyInstrImpl(const MachineInstr &MI) const override;
- private:
- /// This is a helper for convertToThreeAddress for 8 and 16-bit instructions.
- /// We use 32-bit LEA to form 3-address code by promoting to a 32-bit
- /// super-register and then truncating back down to a 8/16-bit sub-register.
- MachineInstr *convertToThreeAddressWithLEA(unsigned MIOpc, MachineInstr &MI,
- LiveVariables *LV,
- LiveIntervals *LIS,
- bool Is8BitOp) const;
- /// Handles memory folding for special case instructions, for instance those
- /// requiring custom manipulation of the address.
- MachineInstr *foldMemoryOperandCustom(MachineFunction &MF, MachineInstr &MI,
- unsigned OpNum,
- ArrayRef<MachineOperand> MOs,
- MachineBasicBlock::iterator InsertPt,
- unsigned Size, Align Alignment) const;
- /// isFrameOperand - Return true and the FrameIndex if the specified
- /// operand and follow operands form a reference to the stack frame.
- bool isFrameOperand(const MachineInstr &MI, unsigned int Op,
- int &FrameIndex) const;
- /// Returns true iff the routine could find two commutable operands in the
- /// given machine instruction with 3 vector inputs.
- /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
- /// input values can be re-defined in this method only if the input values
- /// are not pre-defined, which is designated by the special value
- /// 'CommuteAnyOperandIndex' assigned to it.
- /// If both of indices are pre-defined and refer to some operands, then the
- /// method simply returns true if the corresponding operands are commutable
- /// and returns false otherwise.
- ///
- /// For example, calling this method this way:
- /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
- /// findThreeSrcCommutedOpIndices(MI, Op1, Op2);
- /// can be interpreted as a query asking to find an operand that would be
- /// commutable with the operand#1.
- ///
- /// If IsIntrinsic is set, operand 1 will be ignored for commuting.
- bool findThreeSrcCommutedOpIndices(const MachineInstr &MI,
- unsigned &SrcOpIdx1,
- unsigned &SrcOpIdx2,
- bool IsIntrinsic = false) const;
- /// Returns true when instruction \p FlagI produces the same flags as \p OI.
- /// The caller should pass in the results of calling analyzeCompare on \p OI:
- /// \p SrcReg, \p SrcReg2, \p ImmMask, \p ImmValue.
- /// If the flags match \p OI as if it had the input operands swapped then the
- /// function succeeds and sets \p IsSwapped to true.
- ///
- /// Examples of OI, FlagI pairs returning true:
- /// CMP %1, 42 and CMP %1, 42
- /// CMP %1, %2 and %3 = SUB %1, %2
- /// TEST %1, %1 and %2 = SUB %1, 0
- /// CMP %1, %2 and %3 = SUB %2, %1 ; IsSwapped=true
- bool isRedundantFlagInstr(const MachineInstr &FlagI, Register SrcReg,
- Register SrcReg2, int64_t ImmMask, int64_t ImmValue,
- const MachineInstr &OI, bool *IsSwapped,
- int64_t *ImmDelta) const;
- };
- } // namespace llvm
- #endif
|