12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229 |
- //===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This describes the calling conventions for the X86-32 and X86-64
- // architectures.
- //
- //===----------------------------------------------------------------------===//
- /// CCIfSubtarget - Match if the current subtarget has a feature F.
- class CCIfSubtarget<string F, CCAction A>
- : CCIf<!strconcat("static_cast<const X86Subtarget&>"
- "(State.getMachineFunction().getSubtarget()).", F),
- A>;
- /// CCIfNotSubtarget - Match if the current subtarget doesn't has a feature F.
- class CCIfNotSubtarget<string F, CCAction A>
- : CCIf<!strconcat("!static_cast<const X86Subtarget&>"
- "(State.getMachineFunction().getSubtarget()).", F),
- A>;
- /// CCIfIsVarArgOnWin - Match if isVarArg on Windows 32bits.
- class CCIfIsVarArgOnWin<CCAction A>
- : CCIf<"State.isVarArg() && "
- "State.getMachineFunction().getSubtarget().getTargetTriple()."
- "isWindowsMSVCEnvironment()",
- A>;
- // Register classes for RegCall
- class RC_X86_RegCall {
- list<Register> GPR_8 = [];
- list<Register> GPR_16 = [];
- list<Register> GPR_32 = [];
- list<Register> GPR_64 = [];
- list<Register> FP_CALL = [FP0];
- list<Register> FP_RET = [FP0, FP1];
- list<Register> XMM = [];
- list<Register> YMM = [];
- list<Register> ZMM = [];
- }
- // RegCall register classes for 32 bits
- def RC_X86_32_RegCall : RC_X86_RegCall {
- let GPR_8 = [AL, CL, DL, DIL, SIL];
- let GPR_16 = [AX, CX, DX, DI, SI];
- let GPR_32 = [EAX, ECX, EDX, EDI, ESI];
- let GPR_64 = [RAX]; ///< Not actually used, but AssignToReg can't handle []
- ///< \todo Fix AssignToReg to enable empty lists
- let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7];
- let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7];
- let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7];
- }
- class RC_X86_64_RegCall : RC_X86_RegCall {
- let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
- XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15];
- let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
- YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15];
- let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7,
- ZMM8, ZMM9, ZMM10, ZMM11, ZMM12, ZMM13, ZMM14, ZMM15];
- }
- def RC_X86_64_RegCall_Win : RC_X86_64_RegCall {
- let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R10B, R11B, R12B, R14B, R15B];
- let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R10W, R11W, R12W, R14W, R15W];
- let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R10D, R11D, R12D, R14D, R15D];
- let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R10, R11, R12, R14, R15];
- }
- def RC_X86_64_RegCall_SysV : RC_X86_64_RegCall {
- let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R12B, R13B, R14B, R15B];
- let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R12W, R13W, R14W, R15W];
- let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R12D, R13D, R14D, R15D];
- let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R12, R13, R14, R15];
- }
- // X86-64 Intel regcall calling convention.
- multiclass X86_RegCall_base<RC_X86_RegCall RC> {
- def CC_#NAME : CallingConv<[
- // Handles byval parameters.
- CCIfSubtarget<"is64Bit()", CCIfByVal<CCPassByVal<8, 8>>>,
- CCIfByVal<CCPassByVal<4, 4>>,
- // Promote i1/i8/i16/v1i1 arguments to i32.
- CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
- // Promote v8i1/v16i1/v32i1 arguments to i32.
- CCIfType<[v8i1, v16i1, v32i1], CCPromoteToType<i32>>,
- // bool, char, int, enum, long, pointer --> GPR
- CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
- // long long, __int64 --> GPR
- CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
- // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
- CCIfType<[v64i1], CCPromoteToType<i64>>,
- CCIfSubtarget<"is64Bit()", CCIfType<[i64],
- CCAssignToReg<RC.GPR_64>>>,
- CCIfSubtarget<"is32Bit()", CCIfType<[i64],
- CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
- // float, double, float128 --> XMM
- // In the case of SSE disabled --> save to stack
- CCIfType<[f32, f64, f128],
- CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
- // long double --> FP
- CCIfType<[f80], CCAssignToReg<RC.FP_CALL>>,
- // __m128, __m128i, __m128d --> XMM
- // In the case of SSE disabled --> save to stack
- CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
- CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
- // __m256, __m256i, __m256d --> YMM
- // In the case of SSE disabled --> save to stack
- CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
- CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
- // __m512, __m512i, __m512d --> ZMM
- // In the case of SSE disabled --> save to stack
- CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
- CCIfSubtarget<"hasAVX512()",CCAssignToReg<RC.ZMM>>>,
- // If no register was found -> assign to stack
- // In 64 bit, assign 64/32 bit values to 8 byte stack
- CCIfSubtarget<"is64Bit()", CCIfType<[i32, i64, f32, f64],
- CCAssignToStack<8, 8>>>,
- // In 32 bit, assign 64/32 bit values to 8/4 byte stack
- CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
- CCIfType<[i64, f64], CCAssignToStack<8, 4>>,
- // MMX type gets 8 byte slot in stack , while alignment depends on target
- CCIfSubtarget<"is64Bit()", CCIfType<[x86mmx], CCAssignToStack<8, 8>>>,
- CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
- // float 128 get stack slots whose size and alignment depends
- // on the subtarget.
- CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
- // Vectors get 16-byte stack slots that are 16-byte aligned.
- CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
- CCAssignToStack<16, 16>>,
- // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
- CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
- CCAssignToStack<32, 32>>,
- // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
- CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
- CCAssignToStack<64, 64>>
- ]>;
- def RetCC_#NAME : CallingConv<[
- // Promote i1, v1i1, v8i1 arguments to i8.
- CCIfType<[i1, v1i1, v8i1], CCPromoteToType<i8>>,
- // Promote v16i1 arguments to i16.
- CCIfType<[v16i1], CCPromoteToType<i16>>,
- // Promote v32i1 arguments to i32.
- CCIfType<[v32i1], CCPromoteToType<i32>>,
- // bool, char, int, enum, long, pointer --> GPR
- CCIfType<[i8], CCAssignToReg<RC.GPR_8>>,
- CCIfType<[i16], CCAssignToReg<RC.GPR_16>>,
- CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
- // long long, __int64 --> GPR
- CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
- // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
- CCIfType<[v64i1], CCPromoteToType<i64>>,
- CCIfSubtarget<"is64Bit()", CCIfType<[i64],
- CCAssignToReg<RC.GPR_64>>>,
- CCIfSubtarget<"is32Bit()", CCIfType<[i64],
- CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
- // long double --> FP
- CCIfType<[f80], CCAssignToReg<RC.FP_RET>>,
- // float, double, float128 --> XMM
- CCIfType<[f32, f64, f128],
- CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
- // __m128, __m128i, __m128d --> XMM
- CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
- CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
- // __m256, __m256i, __m256d --> YMM
- CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
- CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
- // __m512, __m512i, __m512d --> ZMM
- CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
- CCIfSubtarget<"hasAVX512()", CCAssignToReg<RC.ZMM>>>
- ]>;
- }
- //===----------------------------------------------------------------------===//
- // Return Value Calling Conventions
- //===----------------------------------------------------------------------===//
- // Return-value conventions common to all X86 CC's.
- def RetCC_X86Common : CallingConv<[
- // Scalar values are returned in AX first, then DX. For i8, the ABI
- // requires the values to be in AL and AH, however this code uses AL and DL
- // instead. This is because using AH for the second register conflicts with
- // the way LLVM does multiple return values -- a return of {i16,i8} would end
- // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
- // for functions that return two i8 values are currently expected to pack the
- // values into an i16 (which uses AX, and thus AL:AH).
- //
- // For code that doesn't care about the ABI, we allow returning more than two
- // integer values in registers.
- CCIfType<[v1i1], CCPromoteToType<i8>>,
- CCIfType<[i1], CCPromoteToType<i8>>,
- CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
- CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
- CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
- CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,
- // Boolean vectors of AVX-512 are returned in SIMD registers.
- // The call from AVX to AVX-512 function should work,
- // since the boolean types in AVX/AVX2 are promoted by default.
- CCIfType<[v2i1], CCPromoteToType<v2i64>>,
- CCIfType<[v4i1], CCPromoteToType<v4i32>>,
- CCIfType<[v8i1], CCPromoteToType<v8i16>>,
- CCIfType<[v16i1], CCPromoteToType<v16i8>>,
- CCIfType<[v32i1], CCPromoteToType<v32i8>>,
- CCIfType<[v64i1], CCPromoteToType<v64i8>>,
- // Vector types are returned in XMM0 and XMM1, when they fit. XMM2 and XMM3
- // can only be used by ABI non-compliant code. If the target doesn't have XMM
- // registers, it won't have vector types.
- CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
- CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
- // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
- // can only be used by ABI non-compliant code. This vector type is only
- // supported while using the AVX target feature.
- CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
- CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
- // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3
- // can only be used by ABI non-compliant code. This vector type is only
- // supported while using the AVX-512 target feature.
- CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
- CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
- // MMX vector types are always returned in MM0. If the target doesn't have
- // MM0, it doesn't support these vector types.
- CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
- // Long double types are always returned in FP0 (even with SSE),
- // except on Win64.
- CCIfNotSubtarget<"isTargetWin64()", CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>>
- ]>;
- // X86-32 C return-value convention.
- def RetCC_X86_32_C : CallingConv<[
- // The X86-32 calling convention returns FP values in FP0, unless marked
- // with "inreg" (used here to distinguish one kind of reg from another,
- // weirdly; this is really the sse-regparm calling convention) in which
- // case they use XMM0, otherwise it is the same as the common X86 calling
- // conv.
- CCIfInReg<CCIfSubtarget<"hasSSE2()",
- CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
- CCIfSubtarget<"hasX87()",
- CCIfType<[f32, f64], CCAssignToReg<[FP0, FP1]>>>,
- CCIfNotSubtarget<"hasX87()",
- CCIfType<[f32], CCAssignToReg<[EAX, EDX, ECX]>>>,
- CCIfType<[f16], CCAssignToReg<[XMM0,XMM1,XMM2]>>,
- CCDelegateTo<RetCC_X86Common>
- ]>;
- // X86-32 FastCC return-value convention.
- def RetCC_X86_32_Fast : CallingConv<[
- // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
- // SSE2.
- // This can happen when a float, 2 x float, or 3 x float vector is split by
- // target lowering, and is returned in 1-3 sse regs.
- CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
- CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
- // For integers, ECX can be used as an extra return register
- CCIfType<[i8], CCAssignToReg<[AL, DL, CL]>>,
- CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
- CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
- // Otherwise, it is the same as the common X86 calling convention.
- CCDelegateTo<RetCC_X86Common>
- ]>;
- // Intel_OCL_BI return-value convention.
- def RetCC_Intel_OCL_BI : CallingConv<[
- // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
- CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
- CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
- // 256-bit FP vectors
- // No more than 4 registers
- CCIfType<[v8f32, v4f64, v8i32, v4i64],
- CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
- // 512-bit FP vectors
- CCIfType<[v16f32, v8f64, v16i32, v8i64],
- CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
- // i32, i64 in the standard way
- CCDelegateTo<RetCC_X86Common>
- ]>;
- // X86-32 HiPE return-value convention.
- def RetCC_X86_32_HiPE : CallingConv<[
- // Promote all types to i32
- CCIfType<[i8, i16], CCPromoteToType<i32>>,
- // Return: HP, P, VAL1, VAL2
- CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
- ]>;
- // X86-32 Vectorcall return-value convention.
- def RetCC_X86_32_VectorCall : CallingConv<[
- // Floating Point types are returned in XMM0,XMM1,XMMM2 and XMM3.
- CCIfType<[f32, f64, f128],
- CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
- // Return integers in the standard way.
- CCDelegateTo<RetCC_X86Common>
- ]>;
- // X86-64 C return-value convention.
- def RetCC_X86_64_C : CallingConv<[
- // The X86-64 calling convention always returns FP values in XMM0.
- CCIfType<[f16], CCAssignToReg<[XMM0, XMM1]>>,
- CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
- CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
- CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>,
- // MMX vector types are always returned in XMM0.
- CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
- // Pointers are always returned in full 64-bit registers.
- CCIfPtr<CCCustom<"CC_X86_64_Pointer">>,
- CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
- CCDelegateTo<RetCC_X86Common>
- ]>;
- // X86-Win64 C return-value convention.
- def RetCC_X86_Win64_C : CallingConv<[
- // The X86-Win64 calling convention always returns __m64 values in RAX.
- CCIfType<[x86mmx], CCBitConvertToType<i64>>,
- // GCC returns FP values in RAX on Win64.
- CCIfType<[f32], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i32>>>,
- CCIfType<[f64], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i64>>>,
- // Otherwise, everything is the same as 'normal' X86-64 C CC.
- CCDelegateTo<RetCC_X86_64_C>
- ]>;
- // X86-64 vectorcall return-value convention.
- def RetCC_X86_64_Vectorcall : CallingConv<[
- // Vectorcall calling convention always returns FP values in XMMs.
- CCIfType<[f32, f64, f128],
- CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
- // Otherwise, everything is the same as Windows X86-64 C CC.
- CCDelegateTo<RetCC_X86_Win64_C>
- ]>;
- // X86-64 HiPE return-value convention.
- def RetCC_X86_64_HiPE : CallingConv<[
- // Promote all types to i64
- CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
- // Return: HP, P, VAL1, VAL2
- CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>>
- ]>;
- // X86-64 WebKit_JS return-value convention.
- def RetCC_X86_64_WebKit_JS : CallingConv<[
- // Promote all types to i64
- CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
- // Return: RAX
- CCIfType<[i64], CCAssignToReg<[RAX]>>
- ]>;
- def RetCC_X86_64_Swift : CallingConv<[
- CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
- // For integers, ECX, R8D can be used as extra return registers.
- CCIfType<[v1i1], CCPromoteToType<i8>>,
- CCIfType<[i1], CCPromoteToType<i8>>,
- CCIfType<[i8] , CCAssignToReg<[AL, DL, CL, R8B]>>,
- CCIfType<[i16], CCAssignToReg<[AX, DX, CX, R8W]>>,
- CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX, R8D]>>,
- CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX, R8]>>,
- // XMM0, XMM1, XMM2 and XMM3 can be used to return FP values.
- CCIfType<[f32], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
- CCIfType<[f64], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
- CCIfType<[f128], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
- // MMX vector types are returned in XMM0, XMM1, XMM2 and XMM3.
- CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
- CCDelegateTo<RetCC_X86Common>
- ]>;
- // X86-64 AnyReg return-value convention. No explicit register is specified for
- // the return-value. The register allocator is allowed and expected to choose
- // any free register.
- //
- // This calling convention is currently only supported by the stackmap and
- // patchpoint intrinsics. All other uses will result in an assert on Debug
- // builds. On Release builds we fallback to the X86 C calling convention.
- def RetCC_X86_64_AnyReg : CallingConv<[
- CCCustom<"CC_X86_AnyReg_Error">
- ]>;
- // X86-64 HHVM return-value convention.
- def RetCC_X86_64_HHVM: CallingConv<[
- // Promote all types to i64
- CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
- // Return: could return in any GP register save RSP and R12.
- CCIfType<[i64], CCAssignToReg<[RBX, RBP, RDI, RSI, RDX, RCX, R8, R9,
- RAX, R10, R11, R13, R14, R15]>>
- ]>;
- defm X86_32_RegCall :
- X86_RegCall_base<RC_X86_32_RegCall>;
- defm X86_Win64_RegCall :
- X86_RegCall_base<RC_X86_64_RegCall_Win>;
- defm X86_SysV64_RegCall :
- X86_RegCall_base<RC_X86_64_RegCall_SysV>;
- // This is the root return-value convention for the X86-32 backend.
- def RetCC_X86_32 : CallingConv<[
- // If FastCC, use RetCC_X86_32_Fast.
- CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
- CCIfCC<"CallingConv::Tail", CCDelegateTo<RetCC_X86_32_Fast>>,
- // CFGuard_Check never returns a value so does not need a RetCC.
- // If HiPE, use RetCC_X86_32_HiPE.
- CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,
- CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_32_VectorCall>>,
- CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_32_RegCall>>,
- // Otherwise, use RetCC_X86_32_C.
- CCDelegateTo<RetCC_X86_32_C>
- ]>;
- // This is the root return-value convention for the X86-64 backend.
- def RetCC_X86_64 : CallingConv<[
- // HiPE uses RetCC_X86_64_HiPE
- CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>,
- // Handle JavaScript calls.
- CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>,
- CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>,
- // Handle Swift calls.
- CCIfCC<"CallingConv::Swift", CCDelegateTo<RetCC_X86_64_Swift>>,
- CCIfCC<"CallingConv::SwiftTail", CCDelegateTo<RetCC_X86_64_Swift>>,
- // Handle explicit CC selection
- CCIfCC<"CallingConv::Win64", CCDelegateTo<RetCC_X86_Win64_C>>,
- CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>,
- // Handle Vectorcall CC
- CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_64_Vectorcall>>,
- // Handle HHVM calls.
- CCIfCC<"CallingConv::HHVM", CCDelegateTo<RetCC_X86_64_HHVM>>,
- CCIfCC<"CallingConv::X86_RegCall",
- CCIfSubtarget<"isTargetWin64()",
- CCDelegateTo<RetCC_X86_Win64_RegCall>>>,
- CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_SysV64_RegCall>>,
-
- // Mingw64 and native Win64 use Win64 CC
- CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
- // Otherwise, drop to normal X86-64 CC
- CCDelegateTo<RetCC_X86_64_C>
- ]>;
- // This is the return-value convention used for the entire X86 backend.
- let Entry = 1 in
- def RetCC_X86 : CallingConv<[
- // Check if this is the Intel OpenCL built-ins calling convention
- CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>,
- CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
- CCDelegateTo<RetCC_X86_32>
- ]>;
- //===----------------------------------------------------------------------===//
- // X86-64 Argument Calling Conventions
- //===----------------------------------------------------------------------===//
- def CC_X86_64_C : CallingConv<[
- // Handles byval parameters.
- CCIfByVal<CCPassByVal<8, 8>>,
- // Promote i1/i8/i16/v1i1 arguments to i32.
- CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
- // The 'nest' parameter, if any, is passed in R10.
- CCIfNest<CCIfSubtarget<"isTarget64BitILP32()", CCAssignToReg<[R10D]>>>,
- CCIfNest<CCAssignToReg<[R10]>>,
- // Pass SwiftSelf in a callee saved register.
- CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>,
- // A SwiftError is passed in R12.
- CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
- // Pass SwiftAsync in an otherwise callee saved register so that calls to
- // normal functions don't need to save it somewhere.
- CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[R14]>>>,
- // For Swift Calling Conventions, pass sret in %rax.
- CCIfCC<"CallingConv::Swift",
- CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>,
- CCIfCC<"CallingConv::SwiftTail",
- CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>,
- // Pointers are always passed in full 64-bit registers.
- CCIfPtr<CCCustom<"CC_X86_64_Pointer">>,
- // The first 6 integer arguments are passed in integer registers.
- CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
- CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
- // The first 8 MMX vector arguments are passed in XMM registers on Darwin.
- CCIfType<[x86mmx],
- CCIfSubtarget<"isTargetDarwin()",
- CCIfSubtarget<"hasSSE2()",
- CCPromoteToType<v2i64>>>>,
- // Boolean vectors of AVX-512 are passed in SIMD registers.
- // The call from AVX to AVX-512 function should work,
- // since the boolean types in AVX/AVX2 are promoted by default.
- CCIfType<[v2i1], CCPromoteToType<v2i64>>,
- CCIfType<[v4i1], CCPromoteToType<v4i32>>,
- CCIfType<[v8i1], CCPromoteToType<v8i16>>,
- CCIfType<[v16i1], CCPromoteToType<v16i8>>,
- CCIfType<[v32i1], CCPromoteToType<v32i8>>,
- CCIfType<[v64i1], CCPromoteToType<v64i8>>,
- // The first 8 FP/Vector arguments are passed in XMM registers.
- CCIfType<[f16, f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
- CCIfSubtarget<"hasSSE1()",
- CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
- // The first 8 256-bit vector arguments are passed in YMM registers, unless
- // this is a vararg function.
- // FIXME: This isn't precisely correct; the x86-64 ABI document says that
- // fixed arguments to vararg functions are supposed to be passed in
- // registers. Actually modeling that would be a lot of work, though.
- CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
- CCIfSubtarget<"hasAVX()",
- CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
- YMM4, YMM5, YMM6, YMM7]>>>>,
- // The first 8 512-bit vector arguments are passed in ZMM registers.
- CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
- CCIfSubtarget<"hasAVX512()",
- CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>,
- // Integer/FP values get stored in stack slots that are 8 bytes in size and
- // 8-byte aligned if there are no more registers to hold them.
- CCIfType<[i32, i64, f16, f32, f64], CCAssignToStack<8, 8>>,
- // Long doubles get stack slots whose size and alignment depends on the
- // subtarget.
- CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
- // Vectors get 16-byte stack slots that are 16-byte aligned.
- CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64], CCAssignToStack<16, 16>>,
- // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
- CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
- CCAssignToStack<32, 32>>,
- // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
- CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
- CCAssignToStack<64, 64>>
- ]>;
- // Calling convention for X86-64 HHVM.
- def CC_X86_64_HHVM : CallingConv<[
- // Use all/any GP registers for args, except RSP.
- CCIfType<[i64], CCAssignToReg<[RBX, R12, RBP, R15,
- RDI, RSI, RDX, RCX, R8, R9,
- RAX, R10, R11, R13, R14]>>
- ]>;
- // Calling convention for helper functions in HHVM.
- def CC_X86_64_HHVM_C : CallingConv<[
- // Pass the first argument in RBP.
- CCIfType<[i64], CCAssignToReg<[RBP]>>,
- // Otherwise it's the same as the regular C calling convention.
- CCDelegateTo<CC_X86_64_C>
- ]>;
- // Calling convention used on Win64
- def CC_X86_Win64_C : CallingConv<[
- // FIXME: Handle varargs.
- // Byval aggregates are passed by pointer
- CCIfByVal<CCPassIndirect<i64>>,
- // Promote i1/v1i1 arguments to i8.
- CCIfType<[i1, v1i1], CCPromoteToType<i8>>,
- // The 'nest' parameter, if any, is passed in R10.
- CCIfNest<CCAssignToReg<[R10]>>,
- // A SwiftError is passed in R12.
- CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
- // Pass SwiftSelf in a callee saved register.
- CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>,
- // Pass SwiftAsync in an otherwise callee saved register so that calls to
- // normal functions don't need to save it somewhere.
- CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[R14]>>>,
- // The 'CFGuardTarget' parameter, if any, is passed in RAX.
- CCIfCFGuardTarget<CCAssignToReg<[RAX]>>,
- // 128 bit vectors are passed by pointer
- CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64], CCPassIndirect<i64>>,
- // 256 bit vectors are passed by pointer
- CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64], CCPassIndirect<i64>>,
- // 512 bit vectors are passed by pointer
- CCIfType<[v64i8, v32i16, v16i32, v32f16, v16f32, v8f64, v8i64], CCPassIndirect<i64>>,
- // Long doubles are passed by pointer
- CCIfType<[f80], CCPassIndirect<i64>>,
- // The first 4 MMX vector arguments are passed in GPRs.
- CCIfType<[x86mmx], CCBitConvertToType<i64>>,
- // If SSE was disabled, pass FP values smaller than 64-bits as integers in
- // GPRs or on the stack.
- CCIfType<[f32], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i32>>>,
- CCIfType<[f64], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i64>>>,
- // The first 4 FP/Vector arguments are passed in XMM registers.
- CCIfType<[f16, f32, f64],
- CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
- [RCX , RDX , R8 , R9 ]>>,
- // The first 4 integer arguments are passed in integer registers.
- CCIfType<[i8 ], CCAssignToRegWithShadow<[CL , DL , R8B , R9B ],
- [XMM0, XMM1, XMM2, XMM3]>>,
- CCIfType<[i16], CCAssignToRegWithShadow<[CX , DX , R8W , R9W ],
- [XMM0, XMM1, XMM2, XMM3]>>,
- CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
- [XMM0, XMM1, XMM2, XMM3]>>,
- // Do not pass the sret argument in RCX, the Win64 thiscall calling
- // convention requires "this" to be passed in RCX.
- CCIfCC<"CallingConv::X86_ThisCall",
- CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8 , R9 ],
- [XMM1, XMM2, XMM3]>>>>,
- CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8 , R9 ],
- [XMM0, XMM1, XMM2, XMM3]>>,
- // Integer/FP values get stored in stack slots that are 8 bytes in size and
- // 8-byte aligned if there are no more registers to hold them.
- CCIfType<[i8, i16, i32, i64, f16, f32, f64], CCAssignToStack<8, 8>>
- ]>;
- def CC_X86_Win64_VectorCall : CallingConv<[
- CCCustom<"CC_X86_64_VectorCall">,
- // Delegate to fastcall to handle integer types.
- CCDelegateTo<CC_X86_Win64_C>
- ]>;
- def CC_X86_64_GHC : CallingConv<[
- // Promote i8/i16/i32 arguments to i64.
- CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
- // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
- CCIfType<[i64],
- CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
- // Pass in STG registers: F1, F2, F3, F4, D1, D2
- CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
- CCIfSubtarget<"hasSSE1()",
- CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>,
- // AVX
- CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
- CCIfSubtarget<"hasAVX()",
- CCAssignToReg<[YMM1, YMM2, YMM3, YMM4, YMM5, YMM6]>>>,
- // AVX-512
- CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
- CCIfSubtarget<"hasAVX512()",
- CCAssignToReg<[ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6]>>>
- ]>;
- def CC_X86_64_HiPE : CallingConv<[
- // Promote i8/i16/i32 arguments to i64.
- CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
- // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3
- CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>,
- // Integer/FP values get stored in stack slots that are 8 bytes in size and
- // 8-byte aligned if there are no more registers to hold them.
- CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
- ]>;
- def CC_X86_64_WebKit_JS : CallingConv<[
- // Promote i8/i16 arguments to i32.
- CCIfType<[i8, i16], CCPromoteToType<i32>>,
- // Only the first integer argument is passed in register.
- CCIfType<[i32], CCAssignToReg<[EAX]>>,
- CCIfType<[i64], CCAssignToReg<[RAX]>>,
- // The remaining integer arguments are passed on the stack. 32bit integer and
- // floating-point arguments are aligned to 4 byte and stored in 4 byte slots.
- // 64bit integer and floating-point arguments are aligned to 8 byte and stored
- // in 8 byte stack slots.
- CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
- CCIfType<[i64, f64], CCAssignToStack<8, 8>>
- ]>;
- // No explicit register is specified for the AnyReg calling convention. The
- // register allocator may assign the arguments to any free register.
- //
- // This calling convention is currently only supported by the stackmap and
- // patchpoint intrinsics. All other uses will result in an assert on Debug
- // builds. On Release builds we fallback to the X86 C calling convention.
- def CC_X86_64_AnyReg : CallingConv<[
- CCCustom<"CC_X86_AnyReg_Error">
- ]>;
- //===----------------------------------------------------------------------===//
- // X86 C Calling Convention
- //===----------------------------------------------------------------------===//
- /// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector
- /// values are spilled on the stack.
- def CC_X86_32_Vector_Common : CallingConv<[
- // Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
- CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
- CCAssignToStack<16, 16>>,
- // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
- CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
- CCAssignToStack<32, 32>>,
- // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
- CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
- CCAssignToStack<64, 64>>
- ]>;
- /// CC_X86_Win32_Vector - In X86 Win32 calling conventions, extra vector
- /// values are spilled on the stack.
- def CC_X86_Win32_Vector : CallingConv<[
- // Other SSE vectors get 16-byte stack slots that are 4-byte aligned.
- CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
- CCAssignToStack<16, 4>>,
- // 256-bit AVX vectors get 32-byte stack slots that are 4-byte aligned.
- CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
- CCAssignToStack<32, 4>>,
- // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 4-byte aligned.
- CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
- CCAssignToStack<64, 4>>
- ]>;
- // CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in
- // vector registers
- def CC_X86_32_Vector_Standard : CallingConv<[
- // SSE vector arguments are passed in XMM registers.
- CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
- CCAssignToReg<[XMM0, XMM1, XMM2]>>>,
- // AVX 256-bit vector arguments are passed in YMM registers.
- CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
- CCIfSubtarget<"hasAVX()",
- CCAssignToReg<[YMM0, YMM1, YMM2]>>>>,
- // AVX 512-bit vector arguments are passed in ZMM registers.
- CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
- CCAssignToReg<[ZMM0, ZMM1, ZMM2]>>>,
- CCIfIsVarArgOnWin<CCDelegateTo<CC_X86_Win32_Vector>>,
- CCDelegateTo<CC_X86_32_Vector_Common>
- ]>;
- // CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in
- // vector registers.
- def CC_X86_32_Vector_Darwin : CallingConv<[
- // SSE vector arguments are passed in XMM registers.
- CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
- CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
- // AVX 256-bit vector arguments are passed in YMM registers.
- CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
- CCIfSubtarget<"hasAVX()",
- CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
- // AVX 512-bit vector arguments are passed in ZMM registers.
- CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
- CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>>,
- CCDelegateTo<CC_X86_32_Vector_Common>
- ]>;
- /// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
- /// values are spilled on the stack.
- def CC_X86_32_Common : CallingConv<[
- // Handles byval/preallocated parameters.
- CCIfByVal<CCPassByVal<4, 4>>,
- CCIfPreallocated<CCPassByVal<4, 4>>,
- // The first 3 float or double arguments, if marked 'inreg' and if the call
- // is not a vararg call and if SSE2 is available, are passed in SSE registers.
- CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
- CCIfSubtarget<"hasSSE2()",
- CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
- CCIfNotVarArg<CCIfInReg<CCIfType<[f16], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
- // The first 3 __m64 vector arguments are passed in mmx registers if the
- // call is not a vararg call.
- CCIfNotVarArg<CCIfType<[x86mmx],
- CCAssignToReg<[MM0, MM1, MM2]>>>,
- CCIfType<[f16], CCAssignToStack<4, 4>>,
- // Integer/Float values get stored in stack slots that are 4 bytes in
- // size and 4-byte aligned.
- CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
- // Doubles get 8-byte slots that are 4-byte aligned.
- CCIfType<[f64], CCAssignToStack<8, 4>>,
- // Long doubles get slots whose size and alignment depends on the subtarget.
- CCIfType<[f80], CCAssignToStack<0, 0>>,
- // Boolean vectors of AVX-512 are passed in SIMD registers.
- // The call from AVX to AVX-512 function should work,
- // since the boolean types in AVX/AVX2 are promoted by default.
- CCIfType<[v2i1], CCPromoteToType<v2i64>>,
- CCIfType<[v4i1], CCPromoteToType<v4i32>>,
- CCIfType<[v8i1], CCPromoteToType<v8i16>>,
- CCIfType<[v16i1], CCPromoteToType<v16i8>>,
- CCIfType<[v32i1], CCPromoteToType<v32i8>>,
- CCIfType<[v64i1], CCPromoteToType<v64i8>>,
- // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
- // passed in the parameter area.
- CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
- // Darwin passes vectors in a form that differs from the i386 psABI
- CCIfSubtarget<"isTargetDarwin()", CCDelegateTo<CC_X86_32_Vector_Darwin>>,
- // Otherwise, drop to 'normal' X86-32 CC
- CCDelegateTo<CC_X86_32_Vector_Standard>
- ]>;
- def CC_X86_32_C : CallingConv<[
- // Promote i1/i8/i16/v1i1 arguments to i32.
- CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
- // The 'nest' parameter, if any, is passed in ECX.
- CCIfNest<CCAssignToReg<[ECX]>>,
- // On swifttailcc pass swiftself in ECX.
- CCIfCC<"CallingConv::SwiftTail",
- CCIfSwiftSelf<CCIfType<[i32], CCAssignToReg<[ECX]>>>>,
- // The first 3 integer arguments, if marked 'inreg' and if the call is not
- // a vararg call, are passed in integer registers.
- CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
- // Otherwise, same as everything else.
- CCDelegateTo<CC_X86_32_Common>
- ]>;
- def CC_X86_32_MCU : CallingConv<[
- // Handles byval parameters. Note that, like FastCC, we can't rely on
- // the delegation to CC_X86_32_Common because that happens after code that
- // puts arguments in registers.
- CCIfByVal<CCPassByVal<4, 4>>,
- // Promote i1/i8/i16/v1i1 arguments to i32.
- CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
- // If the call is not a vararg call, some arguments may be passed
- // in integer registers.
- CCIfNotVarArg<CCIfType<[i32], CCCustom<"CC_X86_32_MCUInReg">>>,
- // Otherwise, same as everything else.
- CCDelegateTo<CC_X86_32_Common>
- ]>;
- def CC_X86_32_FastCall : CallingConv<[
- // Promote i1 to i8.
- CCIfType<[i1], CCPromoteToType<i8>>,
- // The 'nest' parameter, if any, is passed in EAX.
- CCIfNest<CCAssignToReg<[EAX]>>,
- // The first 2 integer arguments are passed in ECX/EDX
- CCIfInReg<CCIfType<[ i8], CCAssignToReg<[ CL, DL]>>>,
- CCIfInReg<CCIfType<[i16], CCAssignToReg<[ CX, DX]>>>,
- CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>,
- // Otherwise, same as everything else.
- CCDelegateTo<CC_X86_32_Common>
- ]>;
- def CC_X86_Win32_VectorCall : CallingConv<[
- // Pass floating point in XMMs
- CCCustom<"CC_X86_32_VectorCall">,
- // Delegate to fastcall to handle integer types.
- CCDelegateTo<CC_X86_32_FastCall>
- ]>;
- def CC_X86_32_ThisCall_Common : CallingConv<[
- // The first integer argument is passed in ECX
- CCIfType<[i32], CCAssignToReg<[ECX]>>,
- // Otherwise, same as everything else.
- CCDelegateTo<CC_X86_32_Common>
- ]>;
- def CC_X86_32_ThisCall_Mingw : CallingConv<[
- // Promote i1/i8/i16/v1i1 arguments to i32.
- CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
- CCDelegateTo<CC_X86_32_ThisCall_Common>
- ]>;
- def CC_X86_32_ThisCall_Win : CallingConv<[
- // Promote i1/i8/i16/v1i1 arguments to i32.
- CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
- // Pass sret arguments indirectly through stack.
- CCIfSRet<CCAssignToStack<4, 4>>,
- CCDelegateTo<CC_X86_32_ThisCall_Common>
- ]>;
- def CC_X86_32_ThisCall : CallingConv<[
- CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>,
- CCDelegateTo<CC_X86_32_ThisCall_Win>
- ]>;
- def CC_X86_32_FastCC : CallingConv<[
- // Handles byval parameters. Note that we can't rely on the delegation
- // to CC_X86_32_Common for this because that happens after code that
- // puts arguments in registers.
- CCIfByVal<CCPassByVal<4, 4>>,
- // Promote i1/i8/i16/v1i1 arguments to i32.
- CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
- // The 'nest' parameter, if any, is passed in EAX.
- CCIfNest<CCAssignToReg<[EAX]>>,
- // The first 2 integer arguments are passed in ECX/EDX
- CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
- // The first 3 float or double arguments, if the call is not a vararg
- // call and if SSE2 is available, are passed in SSE registers.
- CCIfNotVarArg<CCIfType<[f32,f64],
- CCIfSubtarget<"hasSSE2()",
- CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
- // Doubles get 8-byte slots that are 8-byte aligned.
- CCIfType<[f64], CCAssignToStack<8, 8>>,
- // Otherwise, same as everything else.
- CCDelegateTo<CC_X86_32_Common>
- ]>;
- def CC_X86_Win32_CFGuard_Check : CallingConv<[
- // The CFGuard check call takes exactly one integer argument
- // (i.e. the target function address), which is passed in ECX.
- CCIfType<[i32], CCAssignToReg<[ECX]>>
- ]>;
- def CC_X86_32_GHC : CallingConv<[
- // Promote i8/i16 arguments to i32.
- CCIfType<[i8, i16], CCPromoteToType<i32>>,
- // Pass in STG registers: Base, Sp, Hp, R1
- CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
- ]>;
- def CC_X86_32_HiPE : CallingConv<[
- // Promote i8/i16 arguments to i32.
- CCIfType<[i8, i16], CCPromoteToType<i32>>,
- // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2
- CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>,
- // Integer/Float values get stored in stack slots that are 4 bytes in
- // size and 4-byte aligned.
- CCIfType<[i32, f32], CCAssignToStack<4, 4>>
- ]>;
- // X86-64 Intel OpenCL built-ins calling convention.
- def CC_Intel_OCL_BI : CallingConv<[
- CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>,
- CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8, R9 ]>>>,
- CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>,
- CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>,
- CCIfType<[i32], CCAssignToStack<4, 4>>,
- // The SSE vector arguments are passed in XMM registers.
- CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
- CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
- // The 256-bit vector arguments are passed in YMM registers.
- CCIfType<[v8f32, v4f64, v8i32, v4i64],
- CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>,
- // The 512-bit vector arguments are passed in ZMM registers.
- CCIfType<[v16f32, v8f64, v16i32, v8i64],
- CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>,
- // Pass masks in mask registers
- CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>,
- CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
- CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64_C>>,
- CCDelegateTo<CC_X86_32_C>
- ]>;
- //===----------------------------------------------------------------------===//
- // X86 Root Argument Calling Conventions
- //===----------------------------------------------------------------------===//
- // This is the root argument convention for the X86-32 backend.
- def CC_X86_32 : CallingConv<[
- // X86_INTR calling convention is valid in MCU target and should override the
- // MCU calling convention. Thus, this should be checked before isTargetMCU().
- CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>,
- CCIfSubtarget<"isTargetMCU()", CCDelegateTo<CC_X86_32_MCU>>,
- CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
- CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win32_VectorCall>>,
- CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
- CCIfCC<"CallingConv::CFGuard_Check", CCDelegateTo<CC_X86_Win32_CFGuard_Check>>,
- CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
- CCIfCC<"CallingConv::Tail", CCDelegateTo<CC_X86_32_FastCC>>,
- CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
- CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>,
- CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_32_RegCall>>,
- // Otherwise, drop to normal X86-32 CC
- CCDelegateTo<CC_X86_32_C>
- ]>;
- // This is the root argument convention for the X86-64 backend.
- def CC_X86_64 : CallingConv<[
- CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
- CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>,
- CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>,
- CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>,
- CCIfCC<"CallingConv::Win64", CCDelegateTo<CC_X86_Win64_C>>,
- CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>,
- CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win64_VectorCall>>,
- CCIfCC<"CallingConv::HHVM", CCDelegateTo<CC_X86_64_HHVM>>,
- CCIfCC<"CallingConv::HHVM_C", CCDelegateTo<CC_X86_64_HHVM_C>>,
- CCIfCC<"CallingConv::X86_RegCall",
- CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_RegCall>>>,
- CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_SysV64_RegCall>>,
- CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>,
- // Mingw64 and native Win64 use Win64 CC
- CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
- // Otherwise, drop to normal X86-64 CC
- CCDelegateTo<CC_X86_64_C>
- ]>;
- // This is the argument convention used for the entire X86 backend.
- let Entry = 1 in
- def CC_X86 : CallingConv<[
- CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>,
- CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
- CCDelegateTo<CC_X86_32>
- ]>;
- //===----------------------------------------------------------------------===//
- // Callee-saved Registers.
- //===----------------------------------------------------------------------===//
- def CSR_NoRegs : CalleeSavedRegs<(add)>;
- def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
- def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;
- def CSR_64_SwiftError : CalleeSavedRegs<(sub CSR_64, R12)>;
- def CSR_64_SwiftTail : CalleeSavedRegs<(sub CSR_64, R13, R14)>;
- def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
- def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;
- def CSR_Win64_NoSSE : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15)>;
- def CSR_Win64 : CalleeSavedRegs<(add CSR_Win64_NoSSE,
- (sequence "XMM%u", 6, 15))>;
- def CSR_Win64_SwiftError : CalleeSavedRegs<(sub CSR_Win64, R12)>;
- def CSR_Win64_SwiftTail : CalleeSavedRegs<(sub CSR_Win64, R13, R14)>;
- // The function used by Darwin to obtain the address of a thread-local variable
- // uses rdi to pass a single parameter and rax for the return value. All other
- // GPRs are preserved.
- def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI,
- R8, R9, R10, R11)>;
- // CSRs that are handled by prologue, epilogue.
- def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add RBP)>;
- // CSRs that are handled explicitly via copies.
- def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(sub CSR_64_TLS_Darwin, RBP)>;
- // All GPRs - except r11
- def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI,
- R8, R9, R10)>;
- // All registers - except r11
- def CSR_64_RT_AllRegs : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
- (sequence "XMM%u", 0, 15))>;
- def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
- (sequence "YMM%u", 0, 15))>;
- def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10,
- R11, R12, R13, R14, R15, RBP,
- (sequence "XMM%u", 0, 15))>;
- def CSR_32_AllRegs : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI,
- EDI)>;
- def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs,
- (sequence "XMM%u", 0, 7))>;
- def CSR_32_AllRegs_AVX : CalleeSavedRegs<(add CSR_32_AllRegs,
- (sequence "YMM%u", 0, 7))>;
- def CSR_32_AllRegs_AVX512 : CalleeSavedRegs<(add CSR_32_AllRegs,
- (sequence "ZMM%u", 0, 7),
- (sequence "K%u", 0, 7))>;
- def CSR_64_AllRegs : CalleeSavedRegs<(add CSR_64_MostRegs, RAX)>;
- def CSR_64_AllRegs_NoSSE : CalleeSavedRegs<(add RAX, RBX, RCX, RDX, RSI, RDI, R8, R9,
- R10, R11, R12, R13, R14, R15, RBP)>;
- def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
- (sequence "YMM%u", 0, 15)),
- (sequence "XMM%u", 0, 15))>;
- def CSR_64_AllRegs_AVX512 : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
- (sequence "ZMM%u", 0, 31),
- (sequence "K%u", 0, 7)),
- (sequence "XMM%u", 0, 15))>;
- // Standard C + YMM6-15
- def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12,
- R13, R14, R15,
- (sequence "YMM%u", 6, 15))>;
- def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI,
- R12, R13, R14, R15,
- (sequence "ZMM%u", 6, 21),
- K4, K5, K6, K7)>;
- //Standard C + XMM 8-15
- def CSR_64_Intel_OCL_BI : CalleeSavedRegs<(add CSR_64,
- (sequence "XMM%u", 8, 15))>;
- //Standard C + YMM 8-15
- def CSR_64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add CSR_64,
- (sequence "YMM%u", 8, 15))>;
- def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RSI, R14, R15,
- (sequence "ZMM%u", 16, 31),
- K4, K5, K6, K7)>;
- // Only R12 is preserved for PHP calls in HHVM.
- def CSR_64_HHVM : CalleeSavedRegs<(add R12)>;
- // Register calling convention preserves few GPR and XMM8-15
- def CSR_32_RegCall_NoSSE : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
- def CSR_32_RegCall : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE,
- (sequence "XMM%u", 4, 7))>;
- def CSR_Win32_CFGuard_Check_NoSSE : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE, ECX)>;
- def CSR_Win32_CFGuard_Check : CalleeSavedRegs<(add CSR_32_RegCall, ECX)>;
- def CSR_Win64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP,
- (sequence "R%u", 10, 15))>;
- def CSR_Win64_RegCall : CalleeSavedRegs<(add CSR_Win64_RegCall_NoSSE,
- (sequence "XMM%u", 8, 15))>;
- def CSR_SysV64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP,
- (sequence "R%u", 12, 15))>;
- def CSR_SysV64_RegCall : CalleeSavedRegs<(add CSR_SysV64_RegCall_NoSSE,
- (sequence "XMM%u", 8, 15))>;
|