123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420 |
- //===-- NVPTXTargetTransformInfo.cpp - NVPTX specific TTI -----------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- #include "NVPTXTargetTransformInfo.h"
- #include "NVPTXUtilities.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/CodeGen/BasicTTIImpl.h"
- #include "llvm/CodeGen/CostTable.h"
- #include "llvm/CodeGen/TargetLowering.h"
- #include "llvm/IR/IntrinsicsNVPTX.h"
- #include "llvm/Support/Debug.h"
- using namespace llvm;
- #define DEBUG_TYPE "NVPTXtti"
- // Whether the given intrinsic reads threadIdx.x/y/z.
- static bool readsThreadIndex(const IntrinsicInst *II) {
- switch (II->getIntrinsicID()) {
- default: return false;
- case Intrinsic::nvvm_read_ptx_sreg_tid_x:
- case Intrinsic::nvvm_read_ptx_sreg_tid_y:
- case Intrinsic::nvvm_read_ptx_sreg_tid_z:
- return true;
- }
- }
- static bool readsLaneId(const IntrinsicInst *II) {
- return II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_laneid;
- }
- // Whether the given intrinsic is an atomic instruction in PTX.
- static bool isNVVMAtomic(const IntrinsicInst *II) {
- switch (II->getIntrinsicID()) {
- default: return false;
- case Intrinsic::nvvm_atomic_load_inc_32:
- case Intrinsic::nvvm_atomic_load_dec_32:
- case Intrinsic::nvvm_atomic_add_gen_f_cta:
- case Intrinsic::nvvm_atomic_add_gen_f_sys:
- case Intrinsic::nvvm_atomic_add_gen_i_cta:
- case Intrinsic::nvvm_atomic_add_gen_i_sys:
- case Intrinsic::nvvm_atomic_and_gen_i_cta:
- case Intrinsic::nvvm_atomic_and_gen_i_sys:
- case Intrinsic::nvvm_atomic_cas_gen_i_cta:
- case Intrinsic::nvvm_atomic_cas_gen_i_sys:
- case Intrinsic::nvvm_atomic_dec_gen_i_cta:
- case Intrinsic::nvvm_atomic_dec_gen_i_sys:
- case Intrinsic::nvvm_atomic_inc_gen_i_cta:
- case Intrinsic::nvvm_atomic_inc_gen_i_sys:
- case Intrinsic::nvvm_atomic_max_gen_i_cta:
- case Intrinsic::nvvm_atomic_max_gen_i_sys:
- case Intrinsic::nvvm_atomic_min_gen_i_cta:
- case Intrinsic::nvvm_atomic_min_gen_i_sys:
- case Intrinsic::nvvm_atomic_or_gen_i_cta:
- case Intrinsic::nvvm_atomic_or_gen_i_sys:
- case Intrinsic::nvvm_atomic_exch_gen_i_cta:
- case Intrinsic::nvvm_atomic_exch_gen_i_sys:
- case Intrinsic::nvvm_atomic_xor_gen_i_cta:
- case Intrinsic::nvvm_atomic_xor_gen_i_sys:
- return true;
- }
- }
- bool NVPTXTTIImpl::isSourceOfDivergence(const Value *V) {
- // Without inter-procedural analysis, we conservatively assume that arguments
- // to __device__ functions are divergent.
- if (const Argument *Arg = dyn_cast<Argument>(V))
- return !isKernelFunction(*Arg->getParent());
- if (const Instruction *I = dyn_cast<Instruction>(V)) {
- // Without pointer analysis, we conservatively assume values loaded from
- // generic or local address space are divergent.
- if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
- unsigned AS = LI->getPointerAddressSpace();
- return AS == ADDRESS_SPACE_GENERIC || AS == ADDRESS_SPACE_LOCAL;
- }
- // Atomic instructions may cause divergence. Atomic instructions are
- // executed sequentially across all threads in a warp. Therefore, an earlier
- // executed thread may see different memory inputs than a later executed
- // thread. For example, suppose *a = 0 initially.
- //
- // atom.global.add.s32 d, [a], 1
- //
- // returns 0 for the first thread that enters the critical region, and 1 for
- // the second thread.
- if (I->isAtomic())
- return true;
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- // Instructions that read threadIdx are obviously divergent.
- if (readsThreadIndex(II) || readsLaneId(II))
- return true;
- // Handle the NVPTX atomic instrinsics that cannot be represented as an
- // atomic IR instruction.
- if (isNVVMAtomic(II))
- return true;
- }
- // Conservatively consider the return value of function calls as divergent.
- // We could analyze callees with bodies more precisely using
- // inter-procedural analysis.
- if (isa<CallInst>(I))
- return true;
- }
- return false;
- }
- // Convert NVVM intrinsics to target-generic LLVM code where possible.
- static Instruction *simplifyNvvmIntrinsic(IntrinsicInst *II, InstCombiner &IC) {
- // Each NVVM intrinsic we can simplify can be replaced with one of:
- //
- // * an LLVM intrinsic,
- // * an LLVM cast operation,
- // * an LLVM binary operation, or
- // * ad-hoc LLVM IR for the particular operation.
- // Some transformations are only valid when the module's
- // flush-denormals-to-zero (ftz) setting is true/false, whereas other
- // transformations are valid regardless of the module's ftz setting.
- enum FtzRequirementTy {
- FTZ_Any, // Any ftz setting is ok.
- FTZ_MustBeOn, // Transformation is valid only if ftz is on.
- FTZ_MustBeOff, // Transformation is valid only if ftz is off.
- };
- // Classes of NVVM intrinsics that can't be replaced one-to-one with a
- // target-generic intrinsic, cast op, or binary op but that we can nonetheless
- // simplify.
- enum SpecialCase {
- SPC_Reciprocal,
- };
- // SimplifyAction is a poor-man's variant (plus an additional flag) that
- // represents how to replace an NVVM intrinsic with target-generic LLVM IR.
- struct SimplifyAction {
- // Invariant: At most one of these Optionals has a value.
- Optional<Intrinsic::ID> IID;
- Optional<Instruction::CastOps> CastOp;
- Optional<Instruction::BinaryOps> BinaryOp;
- Optional<SpecialCase> Special;
- FtzRequirementTy FtzRequirement = FTZ_Any;
- SimplifyAction() = default;
- SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq)
- : IID(IID), FtzRequirement(FtzReq) {}
- // Cast operations don't have anything to do with FTZ, so we skip that
- // argument.
- SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {}
- SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq)
- : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {}
- SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq)
- : Special(Special), FtzRequirement(FtzReq) {}
- };
- // Try to generate a SimplifyAction describing how to replace our
- // IntrinsicInstr with target-generic LLVM IR.
- const SimplifyAction Action = [II]() -> SimplifyAction {
- switch (II->getIntrinsicID()) {
- // NVVM intrinsics that map directly to LLVM intrinsics.
- case Intrinsic::nvvm_ceil_d:
- return {Intrinsic::ceil, FTZ_Any};
- case Intrinsic::nvvm_ceil_f:
- return {Intrinsic::ceil, FTZ_MustBeOff};
- case Intrinsic::nvvm_ceil_ftz_f:
- return {Intrinsic::ceil, FTZ_MustBeOn};
- case Intrinsic::nvvm_fabs_d:
- return {Intrinsic::fabs, FTZ_Any};
- case Intrinsic::nvvm_fabs_f:
- return {Intrinsic::fabs, FTZ_MustBeOff};
- case Intrinsic::nvvm_fabs_ftz_f:
- return {Intrinsic::fabs, FTZ_MustBeOn};
- case Intrinsic::nvvm_floor_d:
- return {Intrinsic::floor, FTZ_Any};
- case Intrinsic::nvvm_floor_f:
- return {Intrinsic::floor, FTZ_MustBeOff};
- case Intrinsic::nvvm_floor_ftz_f:
- return {Intrinsic::floor, FTZ_MustBeOn};
- case Intrinsic::nvvm_fma_rn_d:
- return {Intrinsic::fma, FTZ_Any};
- case Intrinsic::nvvm_fma_rn_f:
- return {Intrinsic::fma, FTZ_MustBeOff};
- case Intrinsic::nvvm_fma_rn_ftz_f:
- return {Intrinsic::fma, FTZ_MustBeOn};
- case Intrinsic::nvvm_fmax_d:
- return {Intrinsic::maxnum, FTZ_Any};
- case Intrinsic::nvvm_fmax_f:
- return {Intrinsic::maxnum, FTZ_MustBeOff};
- case Intrinsic::nvvm_fmax_ftz_f:
- return {Intrinsic::maxnum, FTZ_MustBeOn};
- case Intrinsic::nvvm_fmin_d:
- return {Intrinsic::minnum, FTZ_Any};
- case Intrinsic::nvvm_fmin_f:
- return {Intrinsic::minnum, FTZ_MustBeOff};
- case Intrinsic::nvvm_fmin_ftz_f:
- return {Intrinsic::minnum, FTZ_MustBeOn};
- case Intrinsic::nvvm_round_d:
- return {Intrinsic::round, FTZ_Any};
- case Intrinsic::nvvm_round_f:
- return {Intrinsic::round, FTZ_MustBeOff};
- case Intrinsic::nvvm_round_ftz_f:
- return {Intrinsic::round, FTZ_MustBeOn};
- case Intrinsic::nvvm_sqrt_rn_d:
- return {Intrinsic::sqrt, FTZ_Any};
- case Intrinsic::nvvm_sqrt_f:
- // nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the
- // ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts
- // the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are
- // the versions with explicit ftz-ness.
- return {Intrinsic::sqrt, FTZ_Any};
- case Intrinsic::nvvm_sqrt_rn_f:
- return {Intrinsic::sqrt, FTZ_MustBeOff};
- case Intrinsic::nvvm_sqrt_rn_ftz_f:
- return {Intrinsic::sqrt, FTZ_MustBeOn};
- case Intrinsic::nvvm_trunc_d:
- return {Intrinsic::trunc, FTZ_Any};
- case Intrinsic::nvvm_trunc_f:
- return {Intrinsic::trunc, FTZ_MustBeOff};
- case Intrinsic::nvvm_trunc_ftz_f:
- return {Intrinsic::trunc, FTZ_MustBeOn};
- // NVVM intrinsics that map to LLVM cast operations.
- //
- // Note that llvm's target-generic conversion operators correspond to the rz
- // (round to zero) versions of the nvvm conversion intrinsics, even though
- // most everything else here uses the rn (round to nearest even) nvvm ops.
- case Intrinsic::nvvm_d2i_rz:
- case Intrinsic::nvvm_f2i_rz:
- case Intrinsic::nvvm_d2ll_rz:
- case Intrinsic::nvvm_f2ll_rz:
- return {Instruction::FPToSI};
- case Intrinsic::nvvm_d2ui_rz:
- case Intrinsic::nvvm_f2ui_rz:
- case Intrinsic::nvvm_d2ull_rz:
- case Intrinsic::nvvm_f2ull_rz:
- return {Instruction::FPToUI};
- case Intrinsic::nvvm_i2d_rz:
- case Intrinsic::nvvm_i2f_rz:
- case Intrinsic::nvvm_ll2d_rz:
- case Intrinsic::nvvm_ll2f_rz:
- return {Instruction::SIToFP};
- case Intrinsic::nvvm_ui2d_rz:
- case Intrinsic::nvvm_ui2f_rz:
- case Intrinsic::nvvm_ull2d_rz:
- case Intrinsic::nvvm_ull2f_rz:
- return {Instruction::UIToFP};
- // NVVM intrinsics that map to LLVM binary ops.
- case Intrinsic::nvvm_add_rn_d:
- return {Instruction::FAdd, FTZ_Any};
- case Intrinsic::nvvm_add_rn_f:
- return {Instruction::FAdd, FTZ_MustBeOff};
- case Intrinsic::nvvm_add_rn_ftz_f:
- return {Instruction::FAdd, FTZ_MustBeOn};
- case Intrinsic::nvvm_mul_rn_d:
- return {Instruction::FMul, FTZ_Any};
- case Intrinsic::nvvm_mul_rn_f:
- return {Instruction::FMul, FTZ_MustBeOff};
- case Intrinsic::nvvm_mul_rn_ftz_f:
- return {Instruction::FMul, FTZ_MustBeOn};
- case Intrinsic::nvvm_div_rn_d:
- return {Instruction::FDiv, FTZ_Any};
- case Intrinsic::nvvm_div_rn_f:
- return {Instruction::FDiv, FTZ_MustBeOff};
- case Intrinsic::nvvm_div_rn_ftz_f:
- return {Instruction::FDiv, FTZ_MustBeOn};
- // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but
- // need special handling.
- //
- // We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just
- // as well.
- case Intrinsic::nvvm_rcp_rn_d:
- return {SPC_Reciprocal, FTZ_Any};
- case Intrinsic::nvvm_rcp_rn_f:
- return {SPC_Reciprocal, FTZ_MustBeOff};
- case Intrinsic::nvvm_rcp_rn_ftz_f:
- return {SPC_Reciprocal, FTZ_MustBeOn};
- // We do not currently simplify intrinsics that give an approximate
- // answer. These include:
- //
- // - nvvm_cos_approx_{f,ftz_f}
- // - nvvm_ex2_approx_{d,f,ftz_f}
- // - nvvm_lg2_approx_{d,f,ftz_f}
- // - nvvm_sin_approx_{f,ftz_f}
- // - nvvm_sqrt_approx_{f,ftz_f}
- // - nvvm_rsqrt_approx_{d,f,ftz_f}
- // - nvvm_div_approx_{ftz_d,ftz_f,f}
- // - nvvm_rcp_approx_ftz_d
- //
- // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast"
- // means that fastmath is enabled in the intrinsic. Unfortunately only
- // binary operators (currently) have a fastmath bit in SelectionDAG, so
- // this information gets lost and we can't select on it.
- //
- // TODO: div and rcp are lowered to a binary op, so these we could in
- // theory lower them to "fast fdiv".
- default:
- return {};
- }
- }();
- // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we
- // can bail out now. (Notice that in the case that IID is not an NVVM
- // intrinsic, we don't have to look up any module metadata, as
- // FtzRequirementTy will be FTZ_Any.)
- if (Action.FtzRequirement != FTZ_Any) {
- StringRef Attr = II->getFunction()
- ->getFnAttribute("denormal-fp-math-f32")
- .getValueAsString();
- DenormalMode Mode = parseDenormalFPAttribute(Attr);
- bool FtzEnabled = Mode.Output != DenormalMode::IEEE;
- if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn))
- return nullptr;
- }
- // Simplify to target-generic intrinsic.
- if (Action.IID) {
- SmallVector<Value *, 4> Args(II->args());
- // All the target-generic intrinsics currently of interest to us have one
- // type argument, equal to that of the nvvm intrinsic's argument.
- Type *Tys[] = {II->getArgOperand(0)->getType()};
- return CallInst::Create(
- Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args);
- }
- // Simplify to target-generic binary op.
- if (Action.BinaryOp)
- return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0),
- II->getArgOperand(1), II->getName());
- // Simplify to target-generic cast op.
- if (Action.CastOp)
- return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(),
- II->getName());
- // All that's left are the special cases.
- if (!Action.Special)
- return nullptr;
- switch (*Action.Special) {
- case SPC_Reciprocal:
- // Simplify reciprocal.
- return BinaryOperator::Create(
- Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1),
- II->getArgOperand(0), II->getName());
- }
- llvm_unreachable("All SpecialCase enumerators should be handled in switch.");
- }
- Optional<Instruction *>
- NVPTXTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
- if (Instruction *I = simplifyNvvmIntrinsic(&II, IC)) {
- return I;
- }
- return None;
- }
- InstructionCost NVPTXTTIImpl::getArithmeticInstrCost(
- unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
- TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
- TTI::OperandValueProperties Opd1PropInfo,
- TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
- const Instruction *CxtI) {
- // Legalize the type.
- std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- switch (ISD) {
- default:
- return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
- Opd2Info,
- Opd1PropInfo, Opd2PropInfo);
- case ISD::ADD:
- case ISD::MUL:
- case ISD::XOR:
- case ISD::OR:
- case ISD::AND:
- // The machine code (SASS) simulates an i64 with two i32. Therefore, we
- // estimate that arithmetic operations on i64 are twice as expensive as
- // those on types that can fit into one machine register.
- if (LT.second.SimpleTy == MVT::i64)
- return 2 * LT.first;
- // Delegate other cases to the basic TTI.
- return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
- Opd2Info,
- Opd1PropInfo, Opd2PropInfo);
- }
- }
- void NVPTXTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
- TTI::UnrollingPreferences &UP,
- OptimizationRemarkEmitter *ORE) {
- BaseT::getUnrollingPreferences(L, SE, UP, ORE);
- // Enable partial unrolling and runtime unrolling, but reduce the
- // threshold. This partially unrolls small loops which are often
- // unrolled by the PTX to SASS compiler and unrolling earlier can be
- // beneficial.
- UP.Partial = UP.Runtime = true;
- UP.PartialThreshold = UP.Threshold / 4;
- }
- void NVPTXTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
- TTI::PeelingPreferences &PP) {
- BaseT::getPeelingPreferences(L, SE, PP);
- }
|