123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171 |
- /*
- * Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- */
- #include "mpdecimal.h"
- #include "bits.h"
- #include "constants.h"
- #include "convolute.h"
- #include "fnt.h"
- #include "fourstep.h"
- #include "numbertheory.h"
- #include "sixstep.h"
- #include "umodarith.h"
- /* Bignum: Fast convolution using the Number Theoretic Transform. Used for
- the multiplication of very large coefficients. */
- /* Convolute the data in c1 and c2. Result is in c1. */
- int
- fnt_convolute(mpd_uint_t *c1, mpd_uint_t *c2, mpd_size_t n, int modnum)
- {
- int (*fnt)(mpd_uint_t *, mpd_size_t, int);
- int (*inv_fnt)(mpd_uint_t *, mpd_size_t, int);
- #ifdef PPRO
- double dmod;
- uint32_t dinvmod[3];
- #endif
- mpd_uint_t n_inv, umod;
- mpd_size_t i;
- SETMODULUS(modnum);
- n_inv = POWMOD(n, (umod-2));
- if (ispower2(n)) {
- if (n > SIX_STEP_THRESHOLD) {
- fnt = six_step_fnt;
- inv_fnt = inv_six_step_fnt;
- }
- else {
- fnt = std_fnt;
- inv_fnt = std_inv_fnt;
- }
- }
- else {
- fnt = four_step_fnt;
- inv_fnt = inv_four_step_fnt;
- }
- if (!fnt(c1, n, modnum)) {
- return 0;
- }
- if (!fnt(c2, n, modnum)) {
- return 0;
- }
- for (i = 0; i < n-1; i += 2) {
- mpd_uint_t x0 = c1[i];
- mpd_uint_t y0 = c2[i];
- mpd_uint_t x1 = c1[i+1];
- mpd_uint_t y1 = c2[i+1];
- MULMOD2(&x0, y0, &x1, y1);
- c1[i] = x0;
- c1[i+1] = x1;
- }
- if (!inv_fnt(c1, n, modnum)) {
- return 0;
- }
- for (i = 0; i < n-3; i += 4) {
- mpd_uint_t x0 = c1[i];
- mpd_uint_t x1 = c1[i+1];
- mpd_uint_t x2 = c1[i+2];
- mpd_uint_t x3 = c1[i+3];
- MULMOD2C(&x0, &x1, n_inv);
- MULMOD2C(&x2, &x3, n_inv);
- c1[i] = x0;
- c1[i+1] = x1;
- c1[i+2] = x2;
- c1[i+3] = x3;
- }
- return 1;
- }
- /* Autoconvolute the data in c1. Result is in c1. */
- int
- fnt_autoconvolute(mpd_uint_t *c1, mpd_size_t n, int modnum)
- {
- int (*fnt)(mpd_uint_t *, mpd_size_t, int);
- int (*inv_fnt)(mpd_uint_t *, mpd_size_t, int);
- #ifdef PPRO
- double dmod;
- uint32_t dinvmod[3];
- #endif
- mpd_uint_t n_inv, umod;
- mpd_size_t i;
- SETMODULUS(modnum);
- n_inv = POWMOD(n, (umod-2));
- if (ispower2(n)) {
- if (n > SIX_STEP_THRESHOLD) {
- fnt = six_step_fnt;
- inv_fnt = inv_six_step_fnt;
- }
- else {
- fnt = std_fnt;
- inv_fnt = std_inv_fnt;
- }
- }
- else {
- fnt = four_step_fnt;
- inv_fnt = inv_four_step_fnt;
- }
- if (!fnt(c1, n, modnum)) {
- return 0;
- }
- for (i = 0; i < n-1; i += 2) {
- mpd_uint_t x0 = c1[i];
- mpd_uint_t x1 = c1[i+1];
- MULMOD2(&x0, x0, &x1, x1);
- c1[i] = x0;
- c1[i+1] = x1;
- }
- if (!inv_fnt(c1, n, modnum)) {
- return 0;
- }
- for (i = 0; i < n-3; i += 4) {
- mpd_uint_t x0 = c1[i];
- mpd_uint_t x1 = c1[i+1];
- mpd_uint_t x2 = c1[i+2];
- mpd_uint_t x3 = c1[i+3];
- MULMOD2C(&x0, &x1, n_inv);
- MULMOD2C(&x2, &x3, n_inv);
- c1[i] = x0;
- c1[i+1] = x1;
- c1[i+2] = x2;
- c1[i+3] = x3;
- }
- return 1;
- }
|