X86InstrInfo.cpp 340 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461
  1. //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This file contains the X86 implementation of the TargetInstrInfo class.
  10. //
  11. //===----------------------------------------------------------------------===//
  12. #include "X86InstrInfo.h"
  13. #include "X86.h"
  14. #include "X86InstrBuilder.h"
  15. #include "X86InstrFoldTables.h"
  16. #include "X86MachineFunctionInfo.h"
  17. #include "X86Subtarget.h"
  18. #include "X86TargetMachine.h"
  19. #include "llvm/ADT/STLExtras.h"
  20. #include "llvm/ADT/Sequence.h"
  21. #include "llvm/CodeGen/LiveIntervals.h"
  22. #include "llvm/CodeGen/LivePhysRegs.h"
  23. #include "llvm/CodeGen/LiveVariables.h"
  24. #include "llvm/CodeGen/MachineConstantPool.h"
  25. #include "llvm/CodeGen/MachineDominators.h"
  26. #include "llvm/CodeGen/MachineFrameInfo.h"
  27. #include "llvm/CodeGen/MachineInstrBuilder.h"
  28. #include "llvm/CodeGen/MachineModuleInfo.h"
  29. #include "llvm/CodeGen/MachineRegisterInfo.h"
  30. #include "llvm/CodeGen/StackMaps.h"
  31. #include "llvm/IR/DebugInfoMetadata.h"
  32. #include "llvm/IR/DerivedTypes.h"
  33. #include "llvm/IR/Function.h"
  34. #include "llvm/MC/MCAsmInfo.h"
  35. #include "llvm/MC/MCExpr.h"
  36. #include "llvm/MC/MCInst.h"
  37. #include "llvm/Support/CommandLine.h"
  38. #include "llvm/Support/Debug.h"
  39. #include "llvm/Support/ErrorHandling.h"
  40. #include "llvm/Support/raw_ostream.h"
  41. #include "llvm/Target/TargetOptions.h"
  42. using namespace llvm;
  43. #define DEBUG_TYPE "x86-instr-info"
  44. #define GET_INSTRINFO_CTOR_DTOR
  45. #include "X86GenInstrInfo.inc"
  46. static cl::opt<bool>
  47. NoFusing("disable-spill-fusing",
  48. cl::desc("Disable fusing of spill code into instructions"),
  49. cl::Hidden);
  50. static cl::opt<bool>
  51. PrintFailedFusing("print-failed-fuse-candidates",
  52. cl::desc("Print instructions that the allocator wants to"
  53. " fuse, but the X86 backend currently can't"),
  54. cl::Hidden);
  55. static cl::opt<bool>
  56. ReMatPICStubLoad("remat-pic-stub-load",
  57. cl::desc("Re-materialize load from stub in PIC mode"),
  58. cl::init(false), cl::Hidden);
  59. static cl::opt<unsigned>
  60. PartialRegUpdateClearance("partial-reg-update-clearance",
  61. cl::desc("Clearance between two register writes "
  62. "for inserting XOR to avoid partial "
  63. "register update"),
  64. cl::init(64), cl::Hidden);
  65. static cl::opt<unsigned>
  66. UndefRegClearance("undef-reg-clearance",
  67. cl::desc("How many idle instructions we would like before "
  68. "certain undef register reads"),
  69. cl::init(128), cl::Hidden);
  70. // Pin the vtable to this file.
  71. void X86InstrInfo::anchor() {}
  72. X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
  73. : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
  74. : X86::ADJCALLSTACKDOWN32),
  75. (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
  76. : X86::ADJCALLSTACKUP32),
  77. X86::CATCHRET,
  78. (STI.is64Bit() ? X86::RET64 : X86::RET32)),
  79. Subtarget(STI), RI(STI.getTargetTriple()) {
  80. }
  81. bool
  82. X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
  83. Register &SrcReg, Register &DstReg,
  84. unsigned &SubIdx) const {
  85. switch (MI.getOpcode()) {
  86. default: break;
  87. case X86::MOVSX16rr8:
  88. case X86::MOVZX16rr8:
  89. case X86::MOVSX32rr8:
  90. case X86::MOVZX32rr8:
  91. case X86::MOVSX64rr8:
  92. if (!Subtarget.is64Bit())
  93. // It's not always legal to reference the low 8-bit of the larger
  94. // register in 32-bit mode.
  95. return false;
  96. LLVM_FALLTHROUGH;
  97. case X86::MOVSX32rr16:
  98. case X86::MOVZX32rr16:
  99. case X86::MOVSX64rr16:
  100. case X86::MOVSX64rr32: {
  101. if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
  102. // Be conservative.
  103. return false;
  104. SrcReg = MI.getOperand(1).getReg();
  105. DstReg = MI.getOperand(0).getReg();
  106. switch (MI.getOpcode()) {
  107. default: llvm_unreachable("Unreachable!");
  108. case X86::MOVSX16rr8:
  109. case X86::MOVZX16rr8:
  110. case X86::MOVSX32rr8:
  111. case X86::MOVZX32rr8:
  112. case X86::MOVSX64rr8:
  113. SubIdx = X86::sub_8bit;
  114. break;
  115. case X86::MOVSX32rr16:
  116. case X86::MOVZX32rr16:
  117. case X86::MOVSX64rr16:
  118. SubIdx = X86::sub_16bit;
  119. break;
  120. case X86::MOVSX64rr32:
  121. SubIdx = X86::sub_32bit;
  122. break;
  123. }
  124. return true;
  125. }
  126. }
  127. return false;
  128. }
  129. bool X86InstrInfo::isDataInvariant(MachineInstr &MI) {
  130. switch (MI.getOpcode()) {
  131. default:
  132. // By default, assume that the instruction is not data invariant.
  133. return false;
  134. // Some target-independent operations that trivially lower to data-invariant
  135. // instructions.
  136. case TargetOpcode::COPY:
  137. case TargetOpcode::INSERT_SUBREG:
  138. case TargetOpcode::SUBREG_TO_REG:
  139. return true;
  140. // On x86 it is believed that imul is constant time w.r.t. the loaded data.
  141. // However, they set flags and are perhaps the most surprisingly constant
  142. // time operations so we call them out here separately.
  143. case X86::IMUL16rr:
  144. case X86::IMUL16rri8:
  145. case X86::IMUL16rri:
  146. case X86::IMUL32rr:
  147. case X86::IMUL32rri8:
  148. case X86::IMUL32rri:
  149. case X86::IMUL64rr:
  150. case X86::IMUL64rri32:
  151. case X86::IMUL64rri8:
  152. // Bit scanning and counting instructions that are somewhat surprisingly
  153. // constant time as they scan across bits and do other fairly complex
  154. // operations like popcnt, but are believed to be constant time on x86.
  155. // However, these set flags.
  156. case X86::BSF16rr:
  157. case X86::BSF32rr:
  158. case X86::BSF64rr:
  159. case X86::BSR16rr:
  160. case X86::BSR32rr:
  161. case X86::BSR64rr:
  162. case X86::LZCNT16rr:
  163. case X86::LZCNT32rr:
  164. case X86::LZCNT64rr:
  165. case X86::POPCNT16rr:
  166. case X86::POPCNT32rr:
  167. case X86::POPCNT64rr:
  168. case X86::TZCNT16rr:
  169. case X86::TZCNT32rr:
  170. case X86::TZCNT64rr:
  171. // Bit manipulation instructions are effectively combinations of basic
  172. // arithmetic ops, and should still execute in constant time. These also
  173. // set flags.
  174. case X86::BLCFILL32rr:
  175. case X86::BLCFILL64rr:
  176. case X86::BLCI32rr:
  177. case X86::BLCI64rr:
  178. case X86::BLCIC32rr:
  179. case X86::BLCIC64rr:
  180. case X86::BLCMSK32rr:
  181. case X86::BLCMSK64rr:
  182. case X86::BLCS32rr:
  183. case X86::BLCS64rr:
  184. case X86::BLSFILL32rr:
  185. case X86::BLSFILL64rr:
  186. case X86::BLSI32rr:
  187. case X86::BLSI64rr:
  188. case X86::BLSIC32rr:
  189. case X86::BLSIC64rr:
  190. case X86::BLSMSK32rr:
  191. case X86::BLSMSK64rr:
  192. case X86::BLSR32rr:
  193. case X86::BLSR64rr:
  194. case X86::TZMSK32rr:
  195. case X86::TZMSK64rr:
  196. // Bit extracting and clearing instructions should execute in constant time,
  197. // and set flags.
  198. case X86::BEXTR32rr:
  199. case X86::BEXTR64rr:
  200. case X86::BEXTRI32ri:
  201. case X86::BEXTRI64ri:
  202. case X86::BZHI32rr:
  203. case X86::BZHI64rr:
  204. // Shift and rotate.
  205. case X86::ROL8r1:
  206. case X86::ROL16r1:
  207. case X86::ROL32r1:
  208. case X86::ROL64r1:
  209. case X86::ROL8rCL:
  210. case X86::ROL16rCL:
  211. case X86::ROL32rCL:
  212. case X86::ROL64rCL:
  213. case X86::ROL8ri:
  214. case X86::ROL16ri:
  215. case X86::ROL32ri:
  216. case X86::ROL64ri:
  217. case X86::ROR8r1:
  218. case X86::ROR16r1:
  219. case X86::ROR32r1:
  220. case X86::ROR64r1:
  221. case X86::ROR8rCL:
  222. case X86::ROR16rCL:
  223. case X86::ROR32rCL:
  224. case X86::ROR64rCL:
  225. case X86::ROR8ri:
  226. case X86::ROR16ri:
  227. case X86::ROR32ri:
  228. case X86::ROR64ri:
  229. case X86::SAR8r1:
  230. case X86::SAR16r1:
  231. case X86::SAR32r1:
  232. case X86::SAR64r1:
  233. case X86::SAR8rCL:
  234. case X86::SAR16rCL:
  235. case X86::SAR32rCL:
  236. case X86::SAR64rCL:
  237. case X86::SAR8ri:
  238. case X86::SAR16ri:
  239. case X86::SAR32ri:
  240. case X86::SAR64ri:
  241. case X86::SHL8r1:
  242. case X86::SHL16r1:
  243. case X86::SHL32r1:
  244. case X86::SHL64r1:
  245. case X86::SHL8rCL:
  246. case X86::SHL16rCL:
  247. case X86::SHL32rCL:
  248. case X86::SHL64rCL:
  249. case X86::SHL8ri:
  250. case X86::SHL16ri:
  251. case X86::SHL32ri:
  252. case X86::SHL64ri:
  253. case X86::SHR8r1:
  254. case X86::SHR16r1:
  255. case X86::SHR32r1:
  256. case X86::SHR64r1:
  257. case X86::SHR8rCL:
  258. case X86::SHR16rCL:
  259. case X86::SHR32rCL:
  260. case X86::SHR64rCL:
  261. case X86::SHR8ri:
  262. case X86::SHR16ri:
  263. case X86::SHR32ri:
  264. case X86::SHR64ri:
  265. case X86::SHLD16rrCL:
  266. case X86::SHLD32rrCL:
  267. case X86::SHLD64rrCL:
  268. case X86::SHLD16rri8:
  269. case X86::SHLD32rri8:
  270. case X86::SHLD64rri8:
  271. case X86::SHRD16rrCL:
  272. case X86::SHRD32rrCL:
  273. case X86::SHRD64rrCL:
  274. case X86::SHRD16rri8:
  275. case X86::SHRD32rri8:
  276. case X86::SHRD64rri8:
  277. // Basic arithmetic is constant time on the input but does set flags.
  278. case X86::ADC8rr:
  279. case X86::ADC8ri:
  280. case X86::ADC16rr:
  281. case X86::ADC16ri:
  282. case X86::ADC16ri8:
  283. case X86::ADC32rr:
  284. case X86::ADC32ri:
  285. case X86::ADC32ri8:
  286. case X86::ADC64rr:
  287. case X86::ADC64ri8:
  288. case X86::ADC64ri32:
  289. case X86::ADD8rr:
  290. case X86::ADD8ri:
  291. case X86::ADD16rr:
  292. case X86::ADD16ri:
  293. case X86::ADD16ri8:
  294. case X86::ADD32rr:
  295. case X86::ADD32ri:
  296. case X86::ADD32ri8:
  297. case X86::ADD64rr:
  298. case X86::ADD64ri8:
  299. case X86::ADD64ri32:
  300. case X86::AND8rr:
  301. case X86::AND8ri:
  302. case X86::AND16rr:
  303. case X86::AND16ri:
  304. case X86::AND16ri8:
  305. case X86::AND32rr:
  306. case X86::AND32ri:
  307. case X86::AND32ri8:
  308. case X86::AND64rr:
  309. case X86::AND64ri8:
  310. case X86::AND64ri32:
  311. case X86::OR8rr:
  312. case X86::OR8ri:
  313. case X86::OR16rr:
  314. case X86::OR16ri:
  315. case X86::OR16ri8:
  316. case X86::OR32rr:
  317. case X86::OR32ri:
  318. case X86::OR32ri8:
  319. case X86::OR64rr:
  320. case X86::OR64ri8:
  321. case X86::OR64ri32:
  322. case X86::SBB8rr:
  323. case X86::SBB8ri:
  324. case X86::SBB16rr:
  325. case X86::SBB16ri:
  326. case X86::SBB16ri8:
  327. case X86::SBB32rr:
  328. case X86::SBB32ri:
  329. case X86::SBB32ri8:
  330. case X86::SBB64rr:
  331. case X86::SBB64ri8:
  332. case X86::SBB64ri32:
  333. case X86::SUB8rr:
  334. case X86::SUB8ri:
  335. case X86::SUB16rr:
  336. case X86::SUB16ri:
  337. case X86::SUB16ri8:
  338. case X86::SUB32rr:
  339. case X86::SUB32ri:
  340. case X86::SUB32ri8:
  341. case X86::SUB64rr:
  342. case X86::SUB64ri8:
  343. case X86::SUB64ri32:
  344. case X86::XOR8rr:
  345. case X86::XOR8ri:
  346. case X86::XOR16rr:
  347. case X86::XOR16ri:
  348. case X86::XOR16ri8:
  349. case X86::XOR32rr:
  350. case X86::XOR32ri:
  351. case X86::XOR32ri8:
  352. case X86::XOR64rr:
  353. case X86::XOR64ri8:
  354. case X86::XOR64ri32:
  355. // Arithmetic with just 32-bit and 64-bit variants and no immediates.
  356. case X86::ADCX32rr:
  357. case X86::ADCX64rr:
  358. case X86::ADOX32rr:
  359. case X86::ADOX64rr:
  360. case X86::ANDN32rr:
  361. case X86::ANDN64rr:
  362. // Unary arithmetic operations.
  363. case X86::DEC8r:
  364. case X86::DEC16r:
  365. case X86::DEC32r:
  366. case X86::DEC64r:
  367. case X86::INC8r:
  368. case X86::INC16r:
  369. case X86::INC32r:
  370. case X86::INC64r:
  371. case X86::NEG8r:
  372. case X86::NEG16r:
  373. case X86::NEG32r:
  374. case X86::NEG64r:
  375. // Unlike other arithmetic, NOT doesn't set EFLAGS.
  376. case X86::NOT8r:
  377. case X86::NOT16r:
  378. case X86::NOT32r:
  379. case X86::NOT64r:
  380. // Various move instructions used to zero or sign extend things. Note that we
  381. // intentionally don't support the _NOREX variants as we can't handle that
  382. // register constraint anyways.
  383. case X86::MOVSX16rr8:
  384. case X86::MOVSX32rr8:
  385. case X86::MOVSX32rr16:
  386. case X86::MOVSX64rr8:
  387. case X86::MOVSX64rr16:
  388. case X86::MOVSX64rr32:
  389. case X86::MOVZX16rr8:
  390. case X86::MOVZX32rr8:
  391. case X86::MOVZX32rr16:
  392. case X86::MOVZX64rr8:
  393. case X86::MOVZX64rr16:
  394. case X86::MOV32rr:
  395. // Arithmetic instructions that are both constant time and don't set flags.
  396. case X86::RORX32ri:
  397. case X86::RORX64ri:
  398. case X86::SARX32rr:
  399. case X86::SARX64rr:
  400. case X86::SHLX32rr:
  401. case X86::SHLX64rr:
  402. case X86::SHRX32rr:
  403. case X86::SHRX64rr:
  404. // LEA doesn't actually access memory, and its arithmetic is constant time.
  405. case X86::LEA16r:
  406. case X86::LEA32r:
  407. case X86::LEA64_32r:
  408. case X86::LEA64r:
  409. return true;
  410. }
  411. }
  412. bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) {
  413. switch (MI.getOpcode()) {
  414. default:
  415. // By default, assume that the load will immediately leak.
  416. return false;
  417. // On x86 it is believed that imul is constant time w.r.t. the loaded data.
  418. // However, they set flags and are perhaps the most surprisingly constant
  419. // time operations so we call them out here separately.
  420. case X86::IMUL16rm:
  421. case X86::IMUL16rmi8:
  422. case X86::IMUL16rmi:
  423. case X86::IMUL32rm:
  424. case X86::IMUL32rmi8:
  425. case X86::IMUL32rmi:
  426. case X86::IMUL64rm:
  427. case X86::IMUL64rmi32:
  428. case X86::IMUL64rmi8:
  429. // Bit scanning and counting instructions that are somewhat surprisingly
  430. // constant time as they scan across bits and do other fairly complex
  431. // operations like popcnt, but are believed to be constant time on x86.
  432. // However, these set flags.
  433. case X86::BSF16rm:
  434. case X86::BSF32rm:
  435. case X86::BSF64rm:
  436. case X86::BSR16rm:
  437. case X86::BSR32rm:
  438. case X86::BSR64rm:
  439. case X86::LZCNT16rm:
  440. case X86::LZCNT32rm:
  441. case X86::LZCNT64rm:
  442. case X86::POPCNT16rm:
  443. case X86::POPCNT32rm:
  444. case X86::POPCNT64rm:
  445. case X86::TZCNT16rm:
  446. case X86::TZCNT32rm:
  447. case X86::TZCNT64rm:
  448. // Bit manipulation instructions are effectively combinations of basic
  449. // arithmetic ops, and should still execute in constant time. These also
  450. // set flags.
  451. case X86::BLCFILL32rm:
  452. case X86::BLCFILL64rm:
  453. case X86::BLCI32rm:
  454. case X86::BLCI64rm:
  455. case X86::BLCIC32rm:
  456. case X86::BLCIC64rm:
  457. case X86::BLCMSK32rm:
  458. case X86::BLCMSK64rm:
  459. case X86::BLCS32rm:
  460. case X86::BLCS64rm:
  461. case X86::BLSFILL32rm:
  462. case X86::BLSFILL64rm:
  463. case X86::BLSI32rm:
  464. case X86::BLSI64rm:
  465. case X86::BLSIC32rm:
  466. case X86::BLSIC64rm:
  467. case X86::BLSMSK32rm:
  468. case X86::BLSMSK64rm:
  469. case X86::BLSR32rm:
  470. case X86::BLSR64rm:
  471. case X86::TZMSK32rm:
  472. case X86::TZMSK64rm:
  473. // Bit extracting and clearing instructions should execute in constant time,
  474. // and set flags.
  475. case X86::BEXTR32rm:
  476. case X86::BEXTR64rm:
  477. case X86::BEXTRI32mi:
  478. case X86::BEXTRI64mi:
  479. case X86::BZHI32rm:
  480. case X86::BZHI64rm:
  481. // Basic arithmetic is constant time on the input but does set flags.
  482. case X86::ADC8rm:
  483. case X86::ADC16rm:
  484. case X86::ADC32rm:
  485. case X86::ADC64rm:
  486. case X86::ADCX32rm:
  487. case X86::ADCX64rm:
  488. case X86::ADD8rm:
  489. case X86::ADD16rm:
  490. case X86::ADD32rm:
  491. case X86::ADD64rm:
  492. case X86::ADOX32rm:
  493. case X86::ADOX64rm:
  494. case X86::AND8rm:
  495. case X86::AND16rm:
  496. case X86::AND32rm:
  497. case X86::AND64rm:
  498. case X86::ANDN32rm:
  499. case X86::ANDN64rm:
  500. case X86::OR8rm:
  501. case X86::OR16rm:
  502. case X86::OR32rm:
  503. case X86::OR64rm:
  504. case X86::SBB8rm:
  505. case X86::SBB16rm:
  506. case X86::SBB32rm:
  507. case X86::SBB64rm:
  508. case X86::SUB8rm:
  509. case X86::SUB16rm:
  510. case X86::SUB32rm:
  511. case X86::SUB64rm:
  512. case X86::XOR8rm:
  513. case X86::XOR16rm:
  514. case X86::XOR32rm:
  515. case X86::XOR64rm:
  516. // Integer multiply w/o affecting flags is still believed to be constant
  517. // time on x86. Called out separately as this is among the most surprising
  518. // instructions to exhibit that behavior.
  519. case X86::MULX32rm:
  520. case X86::MULX64rm:
  521. // Arithmetic instructions that are both constant time and don't set flags.
  522. case X86::RORX32mi:
  523. case X86::RORX64mi:
  524. case X86::SARX32rm:
  525. case X86::SARX64rm:
  526. case X86::SHLX32rm:
  527. case X86::SHLX64rm:
  528. case X86::SHRX32rm:
  529. case X86::SHRX64rm:
  530. // Conversions are believed to be constant time and don't set flags.
  531. case X86::CVTTSD2SI64rm:
  532. case X86::VCVTTSD2SI64rm:
  533. case X86::VCVTTSD2SI64Zrm:
  534. case X86::CVTTSD2SIrm:
  535. case X86::VCVTTSD2SIrm:
  536. case X86::VCVTTSD2SIZrm:
  537. case X86::CVTTSS2SI64rm:
  538. case X86::VCVTTSS2SI64rm:
  539. case X86::VCVTTSS2SI64Zrm:
  540. case X86::CVTTSS2SIrm:
  541. case X86::VCVTTSS2SIrm:
  542. case X86::VCVTTSS2SIZrm:
  543. case X86::CVTSI2SDrm:
  544. case X86::VCVTSI2SDrm:
  545. case X86::VCVTSI2SDZrm:
  546. case X86::CVTSI2SSrm:
  547. case X86::VCVTSI2SSrm:
  548. case X86::VCVTSI2SSZrm:
  549. case X86::CVTSI642SDrm:
  550. case X86::VCVTSI642SDrm:
  551. case X86::VCVTSI642SDZrm:
  552. case X86::CVTSI642SSrm:
  553. case X86::VCVTSI642SSrm:
  554. case X86::VCVTSI642SSZrm:
  555. case X86::CVTSS2SDrm:
  556. case X86::VCVTSS2SDrm:
  557. case X86::VCVTSS2SDZrm:
  558. case X86::CVTSD2SSrm:
  559. case X86::VCVTSD2SSrm:
  560. case X86::VCVTSD2SSZrm:
  561. // AVX512 added unsigned integer conversions.
  562. case X86::VCVTTSD2USI64Zrm:
  563. case X86::VCVTTSD2USIZrm:
  564. case X86::VCVTTSS2USI64Zrm:
  565. case X86::VCVTTSS2USIZrm:
  566. case X86::VCVTUSI2SDZrm:
  567. case X86::VCVTUSI642SDZrm:
  568. case X86::VCVTUSI2SSZrm:
  569. case X86::VCVTUSI642SSZrm:
  570. // Loads to register don't set flags.
  571. case X86::MOV8rm:
  572. case X86::MOV8rm_NOREX:
  573. case X86::MOV16rm:
  574. case X86::MOV32rm:
  575. case X86::MOV64rm:
  576. case X86::MOVSX16rm8:
  577. case X86::MOVSX32rm16:
  578. case X86::MOVSX32rm8:
  579. case X86::MOVSX32rm8_NOREX:
  580. case X86::MOVSX64rm16:
  581. case X86::MOVSX64rm32:
  582. case X86::MOVSX64rm8:
  583. case X86::MOVZX16rm8:
  584. case X86::MOVZX32rm16:
  585. case X86::MOVZX32rm8:
  586. case X86::MOVZX32rm8_NOREX:
  587. case X86::MOVZX64rm16:
  588. case X86::MOVZX64rm8:
  589. return true;
  590. }
  591. }
  592. int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
  593. const MachineFunction *MF = MI.getParent()->getParent();
  594. const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
  595. if (isFrameInstr(MI)) {
  596. int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign());
  597. SPAdj -= getFrameAdjustment(MI);
  598. if (!isFrameSetup(MI))
  599. SPAdj = -SPAdj;
  600. return SPAdj;
  601. }
  602. // To know whether a call adjusts the stack, we need information
  603. // that is bound to the following ADJCALLSTACKUP pseudo.
  604. // Look for the next ADJCALLSTACKUP that follows the call.
  605. if (MI.isCall()) {
  606. const MachineBasicBlock *MBB = MI.getParent();
  607. auto I = ++MachineBasicBlock::const_iterator(MI);
  608. for (auto E = MBB->end(); I != E; ++I) {
  609. if (I->getOpcode() == getCallFrameDestroyOpcode() ||
  610. I->isCall())
  611. break;
  612. }
  613. // If we could not find a frame destroy opcode, then it has already
  614. // been simplified, so we don't care.
  615. if (I->getOpcode() != getCallFrameDestroyOpcode())
  616. return 0;
  617. return -(I->getOperand(1).getImm());
  618. }
  619. // Currently handle only PUSHes we can reasonably expect to see
  620. // in call sequences
  621. switch (MI.getOpcode()) {
  622. default:
  623. return 0;
  624. case X86::PUSH32i8:
  625. case X86::PUSH32r:
  626. case X86::PUSH32rmm:
  627. case X86::PUSH32rmr:
  628. case X86::PUSHi32:
  629. return 4;
  630. case X86::PUSH64i8:
  631. case X86::PUSH64r:
  632. case X86::PUSH64rmm:
  633. case X86::PUSH64rmr:
  634. case X86::PUSH64i32:
  635. return 8;
  636. }
  637. }
  638. /// Return true and the FrameIndex if the specified
  639. /// operand and follow operands form a reference to the stack frame.
  640. bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
  641. int &FrameIndex) const {
  642. if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
  643. MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
  644. MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
  645. MI.getOperand(Op + X86::AddrDisp).isImm() &&
  646. MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
  647. MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
  648. MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
  649. FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
  650. return true;
  651. }
  652. return false;
  653. }
  654. static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
  655. switch (Opcode) {
  656. default:
  657. return false;
  658. case X86::MOV8rm:
  659. case X86::KMOVBkm:
  660. MemBytes = 1;
  661. return true;
  662. case X86::MOV16rm:
  663. case X86::KMOVWkm:
  664. case X86::VMOVSHZrm:
  665. case X86::VMOVSHZrm_alt:
  666. MemBytes = 2;
  667. return true;
  668. case X86::MOV32rm:
  669. case X86::MOVSSrm:
  670. case X86::MOVSSrm_alt:
  671. case X86::VMOVSSrm:
  672. case X86::VMOVSSrm_alt:
  673. case X86::VMOVSSZrm:
  674. case X86::VMOVSSZrm_alt:
  675. case X86::KMOVDkm:
  676. MemBytes = 4;
  677. return true;
  678. case X86::MOV64rm:
  679. case X86::LD_Fp64m:
  680. case X86::MOVSDrm:
  681. case X86::MOVSDrm_alt:
  682. case X86::VMOVSDrm:
  683. case X86::VMOVSDrm_alt:
  684. case X86::VMOVSDZrm:
  685. case X86::VMOVSDZrm_alt:
  686. case X86::MMX_MOVD64rm:
  687. case X86::MMX_MOVQ64rm:
  688. case X86::KMOVQkm:
  689. MemBytes = 8;
  690. return true;
  691. case X86::MOVAPSrm:
  692. case X86::MOVUPSrm:
  693. case X86::MOVAPDrm:
  694. case X86::MOVUPDrm:
  695. case X86::MOVDQArm:
  696. case X86::MOVDQUrm:
  697. case X86::VMOVAPSrm:
  698. case X86::VMOVUPSrm:
  699. case X86::VMOVAPDrm:
  700. case X86::VMOVUPDrm:
  701. case X86::VMOVDQArm:
  702. case X86::VMOVDQUrm:
  703. case X86::VMOVAPSZ128rm:
  704. case X86::VMOVUPSZ128rm:
  705. case X86::VMOVAPSZ128rm_NOVLX:
  706. case X86::VMOVUPSZ128rm_NOVLX:
  707. case X86::VMOVAPDZ128rm:
  708. case X86::VMOVUPDZ128rm:
  709. case X86::VMOVDQU8Z128rm:
  710. case X86::VMOVDQU16Z128rm:
  711. case X86::VMOVDQA32Z128rm:
  712. case X86::VMOVDQU32Z128rm:
  713. case X86::VMOVDQA64Z128rm:
  714. case X86::VMOVDQU64Z128rm:
  715. MemBytes = 16;
  716. return true;
  717. case X86::VMOVAPSYrm:
  718. case X86::VMOVUPSYrm:
  719. case X86::VMOVAPDYrm:
  720. case X86::VMOVUPDYrm:
  721. case X86::VMOVDQAYrm:
  722. case X86::VMOVDQUYrm:
  723. case X86::VMOVAPSZ256rm:
  724. case X86::VMOVUPSZ256rm:
  725. case X86::VMOVAPSZ256rm_NOVLX:
  726. case X86::VMOVUPSZ256rm_NOVLX:
  727. case X86::VMOVAPDZ256rm:
  728. case X86::VMOVUPDZ256rm:
  729. case X86::VMOVDQU8Z256rm:
  730. case X86::VMOVDQU16Z256rm:
  731. case X86::VMOVDQA32Z256rm:
  732. case X86::VMOVDQU32Z256rm:
  733. case X86::VMOVDQA64Z256rm:
  734. case X86::VMOVDQU64Z256rm:
  735. MemBytes = 32;
  736. return true;
  737. case X86::VMOVAPSZrm:
  738. case X86::VMOVUPSZrm:
  739. case X86::VMOVAPDZrm:
  740. case X86::VMOVUPDZrm:
  741. case X86::VMOVDQU8Zrm:
  742. case X86::VMOVDQU16Zrm:
  743. case X86::VMOVDQA32Zrm:
  744. case X86::VMOVDQU32Zrm:
  745. case X86::VMOVDQA64Zrm:
  746. case X86::VMOVDQU64Zrm:
  747. MemBytes = 64;
  748. return true;
  749. }
  750. }
  751. static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
  752. switch (Opcode) {
  753. default:
  754. return false;
  755. case X86::MOV8mr:
  756. case X86::KMOVBmk:
  757. MemBytes = 1;
  758. return true;
  759. case X86::MOV16mr:
  760. case X86::KMOVWmk:
  761. case X86::VMOVSHZmr:
  762. MemBytes = 2;
  763. return true;
  764. case X86::MOV32mr:
  765. case X86::MOVSSmr:
  766. case X86::VMOVSSmr:
  767. case X86::VMOVSSZmr:
  768. case X86::KMOVDmk:
  769. MemBytes = 4;
  770. return true;
  771. case X86::MOV64mr:
  772. case X86::ST_FpP64m:
  773. case X86::MOVSDmr:
  774. case X86::VMOVSDmr:
  775. case X86::VMOVSDZmr:
  776. case X86::MMX_MOVD64mr:
  777. case X86::MMX_MOVQ64mr:
  778. case X86::MMX_MOVNTQmr:
  779. case X86::KMOVQmk:
  780. MemBytes = 8;
  781. return true;
  782. case X86::MOVAPSmr:
  783. case X86::MOVUPSmr:
  784. case X86::MOVAPDmr:
  785. case X86::MOVUPDmr:
  786. case X86::MOVDQAmr:
  787. case X86::MOVDQUmr:
  788. case X86::VMOVAPSmr:
  789. case X86::VMOVUPSmr:
  790. case X86::VMOVAPDmr:
  791. case X86::VMOVUPDmr:
  792. case X86::VMOVDQAmr:
  793. case X86::VMOVDQUmr:
  794. case X86::VMOVUPSZ128mr:
  795. case X86::VMOVAPSZ128mr:
  796. case X86::VMOVUPSZ128mr_NOVLX:
  797. case X86::VMOVAPSZ128mr_NOVLX:
  798. case X86::VMOVUPDZ128mr:
  799. case X86::VMOVAPDZ128mr:
  800. case X86::VMOVDQA32Z128mr:
  801. case X86::VMOVDQU32Z128mr:
  802. case X86::VMOVDQA64Z128mr:
  803. case X86::VMOVDQU64Z128mr:
  804. case X86::VMOVDQU8Z128mr:
  805. case X86::VMOVDQU16Z128mr:
  806. MemBytes = 16;
  807. return true;
  808. case X86::VMOVUPSYmr:
  809. case X86::VMOVAPSYmr:
  810. case X86::VMOVUPDYmr:
  811. case X86::VMOVAPDYmr:
  812. case X86::VMOVDQUYmr:
  813. case X86::VMOVDQAYmr:
  814. case X86::VMOVUPSZ256mr:
  815. case X86::VMOVAPSZ256mr:
  816. case X86::VMOVUPSZ256mr_NOVLX:
  817. case X86::VMOVAPSZ256mr_NOVLX:
  818. case X86::VMOVUPDZ256mr:
  819. case X86::VMOVAPDZ256mr:
  820. case X86::VMOVDQU8Z256mr:
  821. case X86::VMOVDQU16Z256mr:
  822. case X86::VMOVDQA32Z256mr:
  823. case X86::VMOVDQU32Z256mr:
  824. case X86::VMOVDQA64Z256mr:
  825. case X86::VMOVDQU64Z256mr:
  826. MemBytes = 32;
  827. return true;
  828. case X86::VMOVUPSZmr:
  829. case X86::VMOVAPSZmr:
  830. case X86::VMOVUPDZmr:
  831. case X86::VMOVAPDZmr:
  832. case X86::VMOVDQU8Zmr:
  833. case X86::VMOVDQU16Zmr:
  834. case X86::VMOVDQA32Zmr:
  835. case X86::VMOVDQU32Zmr:
  836. case X86::VMOVDQA64Zmr:
  837. case X86::VMOVDQU64Zmr:
  838. MemBytes = 64;
  839. return true;
  840. }
  841. return false;
  842. }
  843. unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
  844. int &FrameIndex) const {
  845. unsigned Dummy;
  846. return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
  847. }
  848. unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
  849. int &FrameIndex,
  850. unsigned &MemBytes) const {
  851. if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
  852. if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
  853. return MI.getOperand(0).getReg();
  854. return 0;
  855. }
  856. unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
  857. int &FrameIndex) const {
  858. unsigned Dummy;
  859. if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
  860. unsigned Reg;
  861. if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
  862. return Reg;
  863. // Check for post-frame index elimination operations
  864. SmallVector<const MachineMemOperand *, 1> Accesses;
  865. if (hasLoadFromStackSlot(MI, Accesses)) {
  866. FrameIndex =
  867. cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
  868. ->getFrameIndex();
  869. return MI.getOperand(0).getReg();
  870. }
  871. }
  872. return 0;
  873. }
  874. unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
  875. int &FrameIndex) const {
  876. unsigned Dummy;
  877. return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
  878. }
  879. unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
  880. int &FrameIndex,
  881. unsigned &MemBytes) const {
  882. if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
  883. if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
  884. isFrameOperand(MI, 0, FrameIndex))
  885. return MI.getOperand(X86::AddrNumOperands).getReg();
  886. return 0;
  887. }
  888. unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
  889. int &FrameIndex) const {
  890. unsigned Dummy;
  891. if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
  892. unsigned Reg;
  893. if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
  894. return Reg;
  895. // Check for post-frame index elimination operations
  896. SmallVector<const MachineMemOperand *, 1> Accesses;
  897. if (hasStoreToStackSlot(MI, Accesses)) {
  898. FrameIndex =
  899. cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
  900. ->getFrameIndex();
  901. return MI.getOperand(X86::AddrNumOperands).getReg();
  902. }
  903. }
  904. return 0;
  905. }
  906. /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
  907. static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) {
  908. // Don't waste compile time scanning use-def chains of physregs.
  909. if (!BaseReg.isVirtual())
  910. return false;
  911. bool isPICBase = false;
  912. for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
  913. E = MRI.def_instr_end(); I != E; ++I) {
  914. MachineInstr *DefMI = &*I;
  915. if (DefMI->getOpcode() != X86::MOVPC32r)
  916. return false;
  917. assert(!isPICBase && "More than one PIC base?");
  918. isPICBase = true;
  919. }
  920. return isPICBase;
  921. }
  922. bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
  923. AAResults *AA) const {
  924. switch (MI.getOpcode()) {
  925. default:
  926. // This function should only be called for opcodes with the ReMaterializable
  927. // flag set.
  928. llvm_unreachable("Unknown rematerializable operation!");
  929. break;
  930. case X86::LOAD_STACK_GUARD:
  931. case X86::AVX1_SETALLONES:
  932. case X86::AVX2_SETALLONES:
  933. case X86::AVX512_128_SET0:
  934. case X86::AVX512_256_SET0:
  935. case X86::AVX512_512_SET0:
  936. case X86::AVX512_512_SETALLONES:
  937. case X86::AVX512_FsFLD0SD:
  938. case X86::AVX512_FsFLD0SH:
  939. case X86::AVX512_FsFLD0SS:
  940. case X86::AVX512_FsFLD0F128:
  941. case X86::AVX_SET0:
  942. case X86::FsFLD0SD:
  943. case X86::FsFLD0SS:
  944. case X86::FsFLD0F128:
  945. case X86::KSET0D:
  946. case X86::KSET0Q:
  947. case X86::KSET0W:
  948. case X86::KSET1D:
  949. case X86::KSET1Q:
  950. case X86::KSET1W:
  951. case X86::MMX_SET0:
  952. case X86::MOV32ImmSExti8:
  953. case X86::MOV32r0:
  954. case X86::MOV32r1:
  955. case X86::MOV32r_1:
  956. case X86::MOV32ri64:
  957. case X86::MOV64ImmSExti8:
  958. case X86::V_SET0:
  959. case X86::V_SETALLONES:
  960. case X86::MOV16ri:
  961. case X86::MOV32ri:
  962. case X86::MOV64ri:
  963. case X86::MOV64ri32:
  964. case X86::MOV8ri:
  965. case X86::PTILEZEROV:
  966. return true;
  967. case X86::MOV8rm:
  968. case X86::MOV8rm_NOREX:
  969. case X86::MOV16rm:
  970. case X86::MOV32rm:
  971. case X86::MOV64rm:
  972. case X86::MOVSSrm:
  973. case X86::MOVSSrm_alt:
  974. case X86::MOVSDrm:
  975. case X86::MOVSDrm_alt:
  976. case X86::MOVAPSrm:
  977. case X86::MOVUPSrm:
  978. case X86::MOVAPDrm:
  979. case X86::MOVUPDrm:
  980. case X86::MOVDQArm:
  981. case X86::MOVDQUrm:
  982. case X86::VMOVSSrm:
  983. case X86::VMOVSSrm_alt:
  984. case X86::VMOVSDrm:
  985. case X86::VMOVSDrm_alt:
  986. case X86::VMOVAPSrm:
  987. case X86::VMOVUPSrm:
  988. case X86::VMOVAPDrm:
  989. case X86::VMOVUPDrm:
  990. case X86::VMOVDQArm:
  991. case X86::VMOVDQUrm:
  992. case X86::VMOVAPSYrm:
  993. case X86::VMOVUPSYrm:
  994. case X86::VMOVAPDYrm:
  995. case X86::VMOVUPDYrm:
  996. case X86::VMOVDQAYrm:
  997. case X86::VMOVDQUYrm:
  998. case X86::MMX_MOVD64rm:
  999. case X86::MMX_MOVQ64rm:
  1000. // AVX-512
  1001. case X86::VMOVSSZrm:
  1002. case X86::VMOVSSZrm_alt:
  1003. case X86::VMOVSDZrm:
  1004. case X86::VMOVSDZrm_alt:
  1005. case X86::VMOVSHZrm:
  1006. case X86::VMOVSHZrm_alt:
  1007. case X86::VMOVAPDZ128rm:
  1008. case X86::VMOVAPDZ256rm:
  1009. case X86::VMOVAPDZrm:
  1010. case X86::VMOVAPSZ128rm:
  1011. case X86::VMOVAPSZ256rm:
  1012. case X86::VMOVAPSZ128rm_NOVLX:
  1013. case X86::VMOVAPSZ256rm_NOVLX:
  1014. case X86::VMOVAPSZrm:
  1015. case X86::VMOVDQA32Z128rm:
  1016. case X86::VMOVDQA32Z256rm:
  1017. case X86::VMOVDQA32Zrm:
  1018. case X86::VMOVDQA64Z128rm:
  1019. case X86::VMOVDQA64Z256rm:
  1020. case X86::VMOVDQA64Zrm:
  1021. case X86::VMOVDQU16Z128rm:
  1022. case X86::VMOVDQU16Z256rm:
  1023. case X86::VMOVDQU16Zrm:
  1024. case X86::VMOVDQU32Z128rm:
  1025. case X86::VMOVDQU32Z256rm:
  1026. case X86::VMOVDQU32Zrm:
  1027. case X86::VMOVDQU64Z128rm:
  1028. case X86::VMOVDQU64Z256rm:
  1029. case X86::VMOVDQU64Zrm:
  1030. case X86::VMOVDQU8Z128rm:
  1031. case X86::VMOVDQU8Z256rm:
  1032. case X86::VMOVDQU8Zrm:
  1033. case X86::VMOVUPDZ128rm:
  1034. case X86::VMOVUPDZ256rm:
  1035. case X86::VMOVUPDZrm:
  1036. case X86::VMOVUPSZ128rm:
  1037. case X86::VMOVUPSZ256rm:
  1038. case X86::VMOVUPSZ128rm_NOVLX:
  1039. case X86::VMOVUPSZ256rm_NOVLX:
  1040. case X86::VMOVUPSZrm: {
  1041. // Loads from constant pools are trivially rematerializable.
  1042. if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
  1043. MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
  1044. MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
  1045. MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
  1046. MI.isDereferenceableInvariantLoad(AA)) {
  1047. Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
  1048. if (BaseReg == 0 || BaseReg == X86::RIP)
  1049. return true;
  1050. // Allow re-materialization of PIC load.
  1051. if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
  1052. return false;
  1053. const MachineFunction &MF = *MI.getParent()->getParent();
  1054. const MachineRegisterInfo &MRI = MF.getRegInfo();
  1055. return regIsPICBase(BaseReg, MRI);
  1056. }
  1057. return false;
  1058. }
  1059. case X86::LEA32r:
  1060. case X86::LEA64r: {
  1061. if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
  1062. MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
  1063. MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
  1064. !MI.getOperand(1 + X86::AddrDisp).isReg()) {
  1065. // lea fi#, lea GV, etc. are all rematerializable.
  1066. if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
  1067. return true;
  1068. Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
  1069. if (BaseReg == 0)
  1070. return true;
  1071. // Allow re-materialization of lea PICBase + x.
  1072. const MachineFunction &MF = *MI.getParent()->getParent();
  1073. const MachineRegisterInfo &MRI = MF.getRegInfo();
  1074. return regIsPICBase(BaseReg, MRI);
  1075. }
  1076. return false;
  1077. }
  1078. }
  1079. }
  1080. void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
  1081. MachineBasicBlock::iterator I,
  1082. Register DestReg, unsigned SubIdx,
  1083. const MachineInstr &Orig,
  1084. const TargetRegisterInfo &TRI) const {
  1085. bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
  1086. if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) !=
  1087. MachineBasicBlock::LQR_Dead) {
  1088. // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
  1089. // effects.
  1090. int Value;
  1091. switch (Orig.getOpcode()) {
  1092. case X86::MOV32r0: Value = 0; break;
  1093. case X86::MOV32r1: Value = 1; break;
  1094. case X86::MOV32r_1: Value = -1; break;
  1095. default:
  1096. llvm_unreachable("Unexpected instruction!");
  1097. }
  1098. const DebugLoc &DL = Orig.getDebugLoc();
  1099. BuildMI(MBB, I, DL, get(X86::MOV32ri))
  1100. .add(Orig.getOperand(0))
  1101. .addImm(Value);
  1102. } else {
  1103. MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
  1104. MBB.insert(I, MI);
  1105. }
  1106. MachineInstr &NewMI = *std::prev(I);
  1107. NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
  1108. }
  1109. /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
  1110. bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
  1111. for (const MachineOperand &MO : MI.operands()) {
  1112. if (MO.isReg() && MO.isDef() &&
  1113. MO.getReg() == X86::EFLAGS && !MO.isDead()) {
  1114. return true;
  1115. }
  1116. }
  1117. return false;
  1118. }
  1119. /// Check whether the shift count for a machine operand is non-zero.
  1120. inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
  1121. unsigned ShiftAmtOperandIdx) {
  1122. // The shift count is six bits with the REX.W prefix and five bits without.
  1123. unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
  1124. unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
  1125. return Imm & ShiftCountMask;
  1126. }
  1127. /// Check whether the given shift count is appropriate
  1128. /// can be represented by a LEA instruction.
  1129. inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
  1130. // Left shift instructions can be transformed into load-effective-address
  1131. // instructions if we can encode them appropriately.
  1132. // A LEA instruction utilizes a SIB byte to encode its scale factor.
  1133. // The SIB.scale field is two bits wide which means that we can encode any
  1134. // shift amount less than 4.
  1135. return ShAmt < 4 && ShAmt > 0;
  1136. }
  1137. bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
  1138. unsigned Opc, bool AllowSP, Register &NewSrc,
  1139. bool &isKill, MachineOperand &ImplicitOp,
  1140. LiveVariables *LV, LiveIntervals *LIS) const {
  1141. MachineFunction &MF = *MI.getParent()->getParent();
  1142. const TargetRegisterClass *RC;
  1143. if (AllowSP) {
  1144. RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
  1145. } else {
  1146. RC = Opc != X86::LEA32r ?
  1147. &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
  1148. }
  1149. Register SrcReg = Src.getReg();
  1150. isKill = MI.killsRegister(SrcReg);
  1151. // For both LEA64 and LEA32 the register already has essentially the right
  1152. // type (32-bit or 64-bit) we may just need to forbid SP.
  1153. if (Opc != X86::LEA64_32r) {
  1154. NewSrc = SrcReg;
  1155. assert(!Src.isUndef() && "Undef op doesn't need optimization");
  1156. if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC))
  1157. return false;
  1158. return true;
  1159. }
  1160. // This is for an LEA64_32r and incoming registers are 32-bit. One way or
  1161. // another we need to add 64-bit registers to the final MI.
  1162. if (SrcReg.isPhysical()) {
  1163. ImplicitOp = Src;
  1164. ImplicitOp.setImplicit();
  1165. NewSrc = getX86SubSuperRegister(SrcReg, 64);
  1166. assert(!Src.isUndef() && "Undef op doesn't need optimization");
  1167. } else {
  1168. // Virtual register of the wrong class, we have to create a temporary 64-bit
  1169. // vreg to feed into the LEA.
  1170. NewSrc = MF.getRegInfo().createVirtualRegister(RC);
  1171. MachineInstr *Copy =
  1172. BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
  1173. .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
  1174. .addReg(SrcReg, getKillRegState(isKill));
  1175. // Which is obviously going to be dead after we're done with it.
  1176. isKill = true;
  1177. if (LV)
  1178. LV->replaceKillInstruction(SrcReg, MI, *Copy);
  1179. if (LIS) {
  1180. SlotIndex CopyIdx = LIS->InsertMachineInstrInMaps(*Copy);
  1181. SlotIndex Idx = LIS->getInstructionIndex(MI);
  1182. LiveInterval &LI = LIS->getInterval(SrcReg);
  1183. LiveRange::Segment *S = LI.getSegmentContaining(Idx);
  1184. if (S->end.getBaseIndex() == Idx)
  1185. S->end = CopyIdx.getRegSlot();
  1186. }
  1187. }
  1188. // We've set all the parameters without issue.
  1189. return true;
  1190. }
  1191. MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
  1192. MachineInstr &MI,
  1193. LiveVariables *LV,
  1194. LiveIntervals *LIS,
  1195. bool Is8BitOp) const {
  1196. // We handle 8-bit adds and various 16-bit opcodes in the switch below.
  1197. MachineBasicBlock &MBB = *MI.getParent();
  1198. MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
  1199. assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits(
  1200. *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
  1201. "Unexpected type for LEA transform");
  1202. // TODO: For a 32-bit target, we need to adjust the LEA variables with
  1203. // something like this:
  1204. // Opcode = X86::LEA32r;
  1205. // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
  1206. // OutRegLEA =
  1207. // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
  1208. // : RegInfo.createVirtualRegister(&X86::GR32RegClass);
  1209. if (!Subtarget.is64Bit())
  1210. return nullptr;
  1211. unsigned Opcode = X86::LEA64_32r;
  1212. Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
  1213. Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
  1214. Register InRegLEA2;
  1215. // Build and insert into an implicit UNDEF value. This is OK because
  1216. // we will be shifting and then extracting the lower 8/16-bits.
  1217. // This has the potential to cause partial register stall. e.g.
  1218. // movw (%rbp,%rcx,2), %dx
  1219. // leal -65(%rdx), %esi
  1220. // But testing has shown this *does* help performance in 64-bit mode (at
  1221. // least on modern x86 machines).
  1222. MachineBasicBlock::iterator MBBI = MI.getIterator();
  1223. Register Dest = MI.getOperand(0).getReg();
  1224. Register Src = MI.getOperand(1).getReg();
  1225. Register Src2;
  1226. bool IsDead = MI.getOperand(0).isDead();
  1227. bool IsKill = MI.getOperand(1).isKill();
  1228. unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
  1229. assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
  1230. MachineInstr *ImpDef =
  1231. BuildMI(MBB, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
  1232. MachineInstr *InsMI =
  1233. BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
  1234. .addReg(InRegLEA, RegState::Define, SubReg)
  1235. .addReg(Src, getKillRegState(IsKill));
  1236. MachineInstr *ImpDef2 = nullptr;
  1237. MachineInstr *InsMI2 = nullptr;
  1238. MachineInstrBuilder MIB =
  1239. BuildMI(MBB, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
  1240. switch (MIOpc) {
  1241. default: llvm_unreachable("Unreachable!");
  1242. case X86::SHL8ri:
  1243. case X86::SHL16ri: {
  1244. unsigned ShAmt = MI.getOperand(2).getImm();
  1245. MIB.addReg(0).addImm(1ULL << ShAmt)
  1246. .addReg(InRegLEA, RegState::Kill).addImm(0).addReg(0);
  1247. break;
  1248. }
  1249. case X86::INC8r:
  1250. case X86::INC16r:
  1251. addRegOffset(MIB, InRegLEA, true, 1);
  1252. break;
  1253. case X86::DEC8r:
  1254. case X86::DEC16r:
  1255. addRegOffset(MIB, InRegLEA, true, -1);
  1256. break;
  1257. case X86::ADD8ri:
  1258. case X86::ADD8ri_DB:
  1259. case X86::ADD16ri:
  1260. case X86::ADD16ri8:
  1261. case X86::ADD16ri_DB:
  1262. case X86::ADD16ri8_DB:
  1263. addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
  1264. break;
  1265. case X86::ADD8rr:
  1266. case X86::ADD8rr_DB:
  1267. case X86::ADD16rr:
  1268. case X86::ADD16rr_DB: {
  1269. Src2 = MI.getOperand(2).getReg();
  1270. bool IsKill2 = MI.getOperand(2).isKill();
  1271. assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
  1272. if (Src == Src2) {
  1273. // ADD8rr/ADD16rr killed %reg1028, %reg1028
  1274. // just a single insert_subreg.
  1275. addRegReg(MIB, InRegLEA, true, InRegLEA, false);
  1276. } else {
  1277. if (Subtarget.is64Bit())
  1278. InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
  1279. else
  1280. InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
  1281. // Build and insert into an implicit UNDEF value. This is OK because
  1282. // we will be shifting and then extracting the lower 8/16-bits.
  1283. ImpDef2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF),
  1284. InRegLEA2);
  1285. InsMI2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
  1286. .addReg(InRegLEA2, RegState::Define, SubReg)
  1287. .addReg(Src2, getKillRegState(IsKill2));
  1288. addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
  1289. }
  1290. if (LV && IsKill2 && InsMI2)
  1291. LV->replaceKillInstruction(Src2, MI, *InsMI2);
  1292. break;
  1293. }
  1294. }
  1295. MachineInstr *NewMI = MIB;
  1296. MachineInstr *ExtMI =
  1297. BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
  1298. .addReg(Dest, RegState::Define | getDeadRegState(IsDead))
  1299. .addReg(OutRegLEA, RegState::Kill, SubReg);
  1300. if (LV) {
  1301. // Update live variables.
  1302. LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
  1303. LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
  1304. if (IsKill)
  1305. LV->replaceKillInstruction(Src, MI, *InsMI);
  1306. if (IsDead)
  1307. LV->replaceKillInstruction(Dest, MI, *ExtMI);
  1308. }
  1309. if (LIS) {
  1310. LIS->InsertMachineInstrInMaps(*ImpDef);
  1311. SlotIndex InsIdx = LIS->InsertMachineInstrInMaps(*InsMI);
  1312. if (ImpDef2)
  1313. LIS->InsertMachineInstrInMaps(*ImpDef2);
  1314. SlotIndex Ins2Idx;
  1315. if (InsMI2)
  1316. Ins2Idx = LIS->InsertMachineInstrInMaps(*InsMI2);
  1317. SlotIndex NewIdx = LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
  1318. SlotIndex ExtIdx = LIS->InsertMachineInstrInMaps(*ExtMI);
  1319. LIS->getInterval(InRegLEA);
  1320. LIS->getInterval(OutRegLEA);
  1321. if (InRegLEA2)
  1322. LIS->getInterval(InRegLEA2);
  1323. // Move the use of Src up to InsMI.
  1324. LiveInterval &SrcLI = LIS->getInterval(Src);
  1325. LiveRange::Segment *SrcSeg = SrcLI.getSegmentContaining(NewIdx);
  1326. if (SrcSeg->end == NewIdx.getRegSlot())
  1327. SrcSeg->end = InsIdx.getRegSlot();
  1328. if (InsMI2) {
  1329. // Move the use of Src2 up to InsMI2.
  1330. LiveInterval &Src2LI = LIS->getInterval(Src2);
  1331. LiveRange::Segment *Src2Seg = Src2LI.getSegmentContaining(NewIdx);
  1332. if (Src2Seg->end == NewIdx.getRegSlot())
  1333. Src2Seg->end = Ins2Idx.getRegSlot();
  1334. }
  1335. // Move the definition of Dest down to ExtMI.
  1336. LiveInterval &DestLI = LIS->getInterval(Dest);
  1337. LiveRange::Segment *DestSeg =
  1338. DestLI.getSegmentContaining(NewIdx.getRegSlot());
  1339. assert(DestSeg->start == NewIdx.getRegSlot() &&
  1340. DestSeg->valno->def == NewIdx.getRegSlot());
  1341. DestSeg->start = ExtIdx.getRegSlot();
  1342. DestSeg->valno->def = ExtIdx.getRegSlot();
  1343. }
  1344. return ExtMI;
  1345. }
  1346. /// This method must be implemented by targets that
  1347. /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
  1348. /// may be able to convert a two-address instruction into a true
  1349. /// three-address instruction on demand. This allows the X86 target (for
  1350. /// example) to convert ADD and SHL instructions into LEA instructions if they
  1351. /// would require register copies due to two-addressness.
  1352. ///
  1353. /// This method returns a null pointer if the transformation cannot be
  1354. /// performed, otherwise it returns the new instruction.
  1355. ///
  1356. MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr &MI,
  1357. LiveVariables *LV,
  1358. LiveIntervals *LIS) const {
  1359. // The following opcodes also sets the condition code register(s). Only
  1360. // convert them to equivalent lea if the condition code register def's
  1361. // are dead!
  1362. if (hasLiveCondCodeDef(MI))
  1363. return nullptr;
  1364. MachineFunction &MF = *MI.getParent()->getParent();
  1365. // All instructions input are two-addr instructions. Get the known operands.
  1366. const MachineOperand &Dest = MI.getOperand(0);
  1367. const MachineOperand &Src = MI.getOperand(1);
  1368. // Ideally, operations with undef should be folded before we get here, but we
  1369. // can't guarantee it. Bail out because optimizing undefs is a waste of time.
  1370. // Without this, we have to forward undef state to new register operands to
  1371. // avoid machine verifier errors.
  1372. if (Src.isUndef())
  1373. return nullptr;
  1374. if (MI.getNumOperands() > 2)
  1375. if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
  1376. return nullptr;
  1377. MachineInstr *NewMI = nullptr;
  1378. Register SrcReg, SrcReg2;
  1379. bool Is64Bit = Subtarget.is64Bit();
  1380. bool Is8BitOp = false;
  1381. unsigned MIOpc = MI.getOpcode();
  1382. switch (MIOpc) {
  1383. default: llvm_unreachable("Unreachable!");
  1384. case X86::SHL64ri: {
  1385. assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
  1386. unsigned ShAmt = getTruncatedShiftCount(MI, 2);
  1387. if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
  1388. // LEA can't handle RSP.
  1389. if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass(
  1390. Src.getReg(), &X86::GR64_NOSPRegClass))
  1391. return nullptr;
  1392. NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
  1393. .add(Dest)
  1394. .addReg(0)
  1395. .addImm(1ULL << ShAmt)
  1396. .add(Src)
  1397. .addImm(0)
  1398. .addReg(0);
  1399. break;
  1400. }
  1401. case X86::SHL32ri: {
  1402. assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
  1403. unsigned ShAmt = getTruncatedShiftCount(MI, 2);
  1404. if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
  1405. unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
  1406. // LEA can't handle ESP.
  1407. bool isKill;
  1408. MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
  1409. if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
  1410. ImplicitOp, LV, LIS))
  1411. return nullptr;
  1412. MachineInstrBuilder MIB =
  1413. BuildMI(MF, MI.getDebugLoc(), get(Opc))
  1414. .add(Dest)
  1415. .addReg(0)
  1416. .addImm(1ULL << ShAmt)
  1417. .addReg(SrcReg, getKillRegState(isKill))
  1418. .addImm(0)
  1419. .addReg(0);
  1420. if (ImplicitOp.getReg() != 0)
  1421. MIB.add(ImplicitOp);
  1422. NewMI = MIB;
  1423. break;
  1424. }
  1425. case X86::SHL8ri:
  1426. Is8BitOp = true;
  1427. LLVM_FALLTHROUGH;
  1428. case X86::SHL16ri: {
  1429. assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
  1430. unsigned ShAmt = getTruncatedShiftCount(MI, 2);
  1431. if (!isTruncatedShiftCountForLEA(ShAmt))
  1432. return nullptr;
  1433. return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
  1434. }
  1435. case X86::INC64r:
  1436. case X86::INC32r: {
  1437. assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
  1438. unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r :
  1439. (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
  1440. bool isKill;
  1441. MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
  1442. if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
  1443. ImplicitOp, LV, LIS))
  1444. return nullptr;
  1445. MachineInstrBuilder MIB =
  1446. BuildMI(MF, MI.getDebugLoc(), get(Opc))
  1447. .add(Dest)
  1448. .addReg(SrcReg, getKillRegState(isKill));
  1449. if (ImplicitOp.getReg() != 0)
  1450. MIB.add(ImplicitOp);
  1451. NewMI = addOffset(MIB, 1);
  1452. break;
  1453. }
  1454. case X86::DEC64r:
  1455. case X86::DEC32r: {
  1456. assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
  1457. unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
  1458. : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
  1459. bool isKill;
  1460. MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
  1461. if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
  1462. ImplicitOp, LV, LIS))
  1463. return nullptr;
  1464. MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
  1465. .add(Dest)
  1466. .addReg(SrcReg, getKillRegState(isKill));
  1467. if (ImplicitOp.getReg() != 0)
  1468. MIB.add(ImplicitOp);
  1469. NewMI = addOffset(MIB, -1);
  1470. break;
  1471. }
  1472. case X86::DEC8r:
  1473. case X86::INC8r:
  1474. Is8BitOp = true;
  1475. LLVM_FALLTHROUGH;
  1476. case X86::DEC16r:
  1477. case X86::INC16r:
  1478. return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
  1479. case X86::ADD64rr:
  1480. case X86::ADD64rr_DB:
  1481. case X86::ADD32rr:
  1482. case X86::ADD32rr_DB: {
  1483. assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
  1484. unsigned Opc;
  1485. if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
  1486. Opc = X86::LEA64r;
  1487. else
  1488. Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
  1489. const MachineOperand &Src2 = MI.getOperand(2);
  1490. bool isKill2;
  1491. MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
  1492. if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/false, SrcReg2, isKill2,
  1493. ImplicitOp2, LV, LIS))
  1494. return nullptr;
  1495. bool isKill;
  1496. MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
  1497. if (Src.getReg() == Src2.getReg()) {
  1498. // Don't call classify LEAReg a second time on the same register, in case
  1499. // the first call inserted a COPY from Src2 and marked it as killed.
  1500. isKill = isKill2;
  1501. SrcReg = SrcReg2;
  1502. } else {
  1503. if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
  1504. ImplicitOp, LV, LIS))
  1505. return nullptr;
  1506. }
  1507. MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
  1508. if (ImplicitOp.getReg() != 0)
  1509. MIB.add(ImplicitOp);
  1510. if (ImplicitOp2.getReg() != 0)
  1511. MIB.add(ImplicitOp2);
  1512. NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
  1513. if (LV && Src2.isKill())
  1514. LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
  1515. break;
  1516. }
  1517. case X86::ADD8rr:
  1518. case X86::ADD8rr_DB:
  1519. Is8BitOp = true;
  1520. LLVM_FALLTHROUGH;
  1521. case X86::ADD16rr:
  1522. case X86::ADD16rr_DB:
  1523. return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
  1524. case X86::ADD64ri32:
  1525. case X86::ADD64ri8:
  1526. case X86::ADD64ri32_DB:
  1527. case X86::ADD64ri8_DB:
  1528. assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
  1529. NewMI = addOffset(
  1530. BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
  1531. MI.getOperand(2));
  1532. break;
  1533. case X86::ADD32ri:
  1534. case X86::ADD32ri8:
  1535. case X86::ADD32ri_DB:
  1536. case X86::ADD32ri8_DB: {
  1537. assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
  1538. unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
  1539. bool isKill;
  1540. MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
  1541. if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
  1542. ImplicitOp, LV, LIS))
  1543. return nullptr;
  1544. MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
  1545. .add(Dest)
  1546. .addReg(SrcReg, getKillRegState(isKill));
  1547. if (ImplicitOp.getReg() != 0)
  1548. MIB.add(ImplicitOp);
  1549. NewMI = addOffset(MIB, MI.getOperand(2));
  1550. break;
  1551. }
  1552. case X86::ADD8ri:
  1553. case X86::ADD8ri_DB:
  1554. Is8BitOp = true;
  1555. LLVM_FALLTHROUGH;
  1556. case X86::ADD16ri:
  1557. case X86::ADD16ri8:
  1558. case X86::ADD16ri_DB:
  1559. case X86::ADD16ri8_DB:
  1560. return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
  1561. case X86::SUB8ri:
  1562. case X86::SUB16ri8:
  1563. case X86::SUB16ri:
  1564. /// FIXME: Support these similar to ADD8ri/ADD16ri*.
  1565. return nullptr;
  1566. case X86::SUB32ri8:
  1567. case X86::SUB32ri: {
  1568. if (!MI.getOperand(2).isImm())
  1569. return nullptr;
  1570. int64_t Imm = MI.getOperand(2).getImm();
  1571. if (!isInt<32>(-Imm))
  1572. return nullptr;
  1573. assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
  1574. unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
  1575. bool isKill;
  1576. MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
  1577. if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
  1578. ImplicitOp, LV, LIS))
  1579. return nullptr;
  1580. MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
  1581. .add(Dest)
  1582. .addReg(SrcReg, getKillRegState(isKill));
  1583. if (ImplicitOp.getReg() != 0)
  1584. MIB.add(ImplicitOp);
  1585. NewMI = addOffset(MIB, -Imm);
  1586. break;
  1587. }
  1588. case X86::SUB64ri8:
  1589. case X86::SUB64ri32: {
  1590. if (!MI.getOperand(2).isImm())
  1591. return nullptr;
  1592. int64_t Imm = MI.getOperand(2).getImm();
  1593. if (!isInt<32>(-Imm))
  1594. return nullptr;
  1595. assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
  1596. MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(),
  1597. get(X86::LEA64r)).add(Dest).add(Src);
  1598. NewMI = addOffset(MIB, -Imm);
  1599. break;
  1600. }
  1601. case X86::VMOVDQU8Z128rmk:
  1602. case X86::VMOVDQU8Z256rmk:
  1603. case X86::VMOVDQU8Zrmk:
  1604. case X86::VMOVDQU16Z128rmk:
  1605. case X86::VMOVDQU16Z256rmk:
  1606. case X86::VMOVDQU16Zrmk:
  1607. case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
  1608. case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
  1609. case X86::VMOVDQU32Zrmk: case X86::VMOVDQA32Zrmk:
  1610. case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
  1611. case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
  1612. case X86::VMOVDQU64Zrmk: case X86::VMOVDQA64Zrmk:
  1613. case X86::VMOVUPDZ128rmk: case X86::VMOVAPDZ128rmk:
  1614. case X86::VMOVUPDZ256rmk: case X86::VMOVAPDZ256rmk:
  1615. case X86::VMOVUPDZrmk: case X86::VMOVAPDZrmk:
  1616. case X86::VMOVUPSZ128rmk: case X86::VMOVAPSZ128rmk:
  1617. case X86::VMOVUPSZ256rmk: case X86::VMOVAPSZ256rmk:
  1618. case X86::VMOVUPSZrmk: case X86::VMOVAPSZrmk:
  1619. case X86::VBROADCASTSDZ256rmk:
  1620. case X86::VBROADCASTSDZrmk:
  1621. case X86::VBROADCASTSSZ128rmk:
  1622. case X86::VBROADCASTSSZ256rmk:
  1623. case X86::VBROADCASTSSZrmk:
  1624. case X86::VPBROADCASTDZ128rmk:
  1625. case X86::VPBROADCASTDZ256rmk:
  1626. case X86::VPBROADCASTDZrmk:
  1627. case X86::VPBROADCASTQZ128rmk:
  1628. case X86::VPBROADCASTQZ256rmk:
  1629. case X86::VPBROADCASTQZrmk: {
  1630. unsigned Opc;
  1631. switch (MIOpc) {
  1632. default: llvm_unreachable("Unreachable!");
  1633. case X86::VMOVDQU8Z128rmk: Opc = X86::VPBLENDMBZ128rmk; break;
  1634. case X86::VMOVDQU8Z256rmk: Opc = X86::VPBLENDMBZ256rmk; break;
  1635. case X86::VMOVDQU8Zrmk: Opc = X86::VPBLENDMBZrmk; break;
  1636. case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break;
  1637. case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break;
  1638. case X86::VMOVDQU16Zrmk: Opc = X86::VPBLENDMWZrmk; break;
  1639. case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
  1640. case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
  1641. case X86::VMOVDQU32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
  1642. case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
  1643. case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
  1644. case X86::VMOVDQU64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
  1645. case X86::VMOVUPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
  1646. case X86::VMOVUPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
  1647. case X86::VMOVUPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
  1648. case X86::VMOVUPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
  1649. case X86::VMOVUPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
  1650. case X86::VMOVUPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
  1651. case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
  1652. case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
  1653. case X86::VMOVDQA32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
  1654. case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
  1655. case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
  1656. case X86::VMOVDQA64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
  1657. case X86::VMOVAPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
  1658. case X86::VMOVAPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
  1659. case X86::VMOVAPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
  1660. case X86::VMOVAPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
  1661. case X86::VMOVAPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
  1662. case X86::VMOVAPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
  1663. case X86::VBROADCASTSDZ256rmk: Opc = X86::VBLENDMPDZ256rmbk; break;
  1664. case X86::VBROADCASTSDZrmk: Opc = X86::VBLENDMPDZrmbk; break;
  1665. case X86::VBROADCASTSSZ128rmk: Opc = X86::VBLENDMPSZ128rmbk; break;
  1666. case X86::VBROADCASTSSZ256rmk: Opc = X86::VBLENDMPSZ256rmbk; break;
  1667. case X86::VBROADCASTSSZrmk: Opc = X86::VBLENDMPSZrmbk; break;
  1668. case X86::VPBROADCASTDZ128rmk: Opc = X86::VPBLENDMDZ128rmbk; break;
  1669. case X86::VPBROADCASTDZ256rmk: Opc = X86::VPBLENDMDZ256rmbk; break;
  1670. case X86::VPBROADCASTDZrmk: Opc = X86::VPBLENDMDZrmbk; break;
  1671. case X86::VPBROADCASTQZ128rmk: Opc = X86::VPBLENDMQZ128rmbk; break;
  1672. case X86::VPBROADCASTQZ256rmk: Opc = X86::VPBLENDMQZ256rmbk; break;
  1673. case X86::VPBROADCASTQZrmk: Opc = X86::VPBLENDMQZrmbk; break;
  1674. }
  1675. NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
  1676. .add(Dest)
  1677. .add(MI.getOperand(2))
  1678. .add(Src)
  1679. .add(MI.getOperand(3))
  1680. .add(MI.getOperand(4))
  1681. .add(MI.getOperand(5))
  1682. .add(MI.getOperand(6))
  1683. .add(MI.getOperand(7));
  1684. break;
  1685. }
  1686. case X86::VMOVDQU8Z128rrk:
  1687. case X86::VMOVDQU8Z256rrk:
  1688. case X86::VMOVDQU8Zrrk:
  1689. case X86::VMOVDQU16Z128rrk:
  1690. case X86::VMOVDQU16Z256rrk:
  1691. case X86::VMOVDQU16Zrrk:
  1692. case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
  1693. case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
  1694. case X86::VMOVDQU32Zrrk: case X86::VMOVDQA32Zrrk:
  1695. case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
  1696. case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
  1697. case X86::VMOVDQU64Zrrk: case X86::VMOVDQA64Zrrk:
  1698. case X86::VMOVUPDZ128rrk: case X86::VMOVAPDZ128rrk:
  1699. case X86::VMOVUPDZ256rrk: case X86::VMOVAPDZ256rrk:
  1700. case X86::VMOVUPDZrrk: case X86::VMOVAPDZrrk:
  1701. case X86::VMOVUPSZ128rrk: case X86::VMOVAPSZ128rrk:
  1702. case X86::VMOVUPSZ256rrk: case X86::VMOVAPSZ256rrk:
  1703. case X86::VMOVUPSZrrk: case X86::VMOVAPSZrrk: {
  1704. unsigned Opc;
  1705. switch (MIOpc) {
  1706. default: llvm_unreachable("Unreachable!");
  1707. case X86::VMOVDQU8Z128rrk: Opc = X86::VPBLENDMBZ128rrk; break;
  1708. case X86::VMOVDQU8Z256rrk: Opc = X86::VPBLENDMBZ256rrk; break;
  1709. case X86::VMOVDQU8Zrrk: Opc = X86::VPBLENDMBZrrk; break;
  1710. case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
  1711. case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
  1712. case X86::VMOVDQU16Zrrk: Opc = X86::VPBLENDMWZrrk; break;
  1713. case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
  1714. case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
  1715. case X86::VMOVDQU32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
  1716. case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
  1717. case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
  1718. case X86::VMOVDQU64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
  1719. case X86::VMOVUPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
  1720. case X86::VMOVUPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
  1721. case X86::VMOVUPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
  1722. case X86::VMOVUPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
  1723. case X86::VMOVUPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
  1724. case X86::VMOVUPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
  1725. case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
  1726. case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
  1727. case X86::VMOVDQA32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
  1728. case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
  1729. case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
  1730. case X86::VMOVDQA64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
  1731. case X86::VMOVAPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
  1732. case X86::VMOVAPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
  1733. case X86::VMOVAPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
  1734. case X86::VMOVAPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
  1735. case X86::VMOVAPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
  1736. case X86::VMOVAPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
  1737. }
  1738. NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
  1739. .add(Dest)
  1740. .add(MI.getOperand(2))
  1741. .add(Src)
  1742. .add(MI.getOperand(3));
  1743. break;
  1744. }
  1745. }
  1746. if (!NewMI) return nullptr;
  1747. if (LV) { // Update live variables
  1748. if (Src.isKill())
  1749. LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
  1750. if (Dest.isDead())
  1751. LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
  1752. }
  1753. MachineBasicBlock &MBB = *MI.getParent();
  1754. MBB.insert(MI.getIterator(), NewMI); // Insert the new inst
  1755. if (LIS) {
  1756. LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
  1757. if (SrcReg)
  1758. LIS->getInterval(SrcReg);
  1759. if (SrcReg2)
  1760. LIS->getInterval(SrcReg2);
  1761. }
  1762. return NewMI;
  1763. }
  1764. /// This determines which of three possible cases of a three source commute
  1765. /// the source indexes correspond to taking into account any mask operands.
  1766. /// All prevents commuting a passthru operand. Returns -1 if the commute isn't
  1767. /// possible.
  1768. /// Case 0 - Possible to commute the first and second operands.
  1769. /// Case 1 - Possible to commute the first and third operands.
  1770. /// Case 2 - Possible to commute the second and third operands.
  1771. static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
  1772. unsigned SrcOpIdx2) {
  1773. // Put the lowest index to SrcOpIdx1 to simplify the checks below.
  1774. if (SrcOpIdx1 > SrcOpIdx2)
  1775. std::swap(SrcOpIdx1, SrcOpIdx2);
  1776. unsigned Op1 = 1, Op2 = 2, Op3 = 3;
  1777. if (X86II::isKMasked(TSFlags)) {
  1778. Op2++;
  1779. Op3++;
  1780. }
  1781. if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
  1782. return 0;
  1783. if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
  1784. return 1;
  1785. if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
  1786. return 2;
  1787. llvm_unreachable("Unknown three src commute case.");
  1788. }
  1789. unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
  1790. const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
  1791. const X86InstrFMA3Group &FMA3Group) const {
  1792. unsigned Opc = MI.getOpcode();
  1793. // TODO: Commuting the 1st operand of FMA*_Int requires some additional
  1794. // analysis. The commute optimization is legal only if all users of FMA*_Int
  1795. // use only the lowest element of the FMA*_Int instruction. Such analysis are
  1796. // not implemented yet. So, just return 0 in that case.
  1797. // When such analysis are available this place will be the right place for
  1798. // calling it.
  1799. assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
  1800. "Intrinsic instructions can't commute operand 1");
  1801. // Determine which case this commute is or if it can't be done.
  1802. unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
  1803. SrcOpIdx2);
  1804. assert(Case < 3 && "Unexpected case number!");
  1805. // Define the FMA forms mapping array that helps to map input FMA form
  1806. // to output FMA form to preserve the operation semantics after
  1807. // commuting the operands.
  1808. const unsigned Form132Index = 0;
  1809. const unsigned Form213Index = 1;
  1810. const unsigned Form231Index = 2;
  1811. static const unsigned FormMapping[][3] = {
  1812. // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
  1813. // FMA132 A, C, b; ==> FMA231 C, A, b;
  1814. // FMA213 B, A, c; ==> FMA213 A, B, c;
  1815. // FMA231 C, A, b; ==> FMA132 A, C, b;
  1816. { Form231Index, Form213Index, Form132Index },
  1817. // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
  1818. // FMA132 A, c, B; ==> FMA132 B, c, A;
  1819. // FMA213 B, a, C; ==> FMA231 C, a, B;
  1820. // FMA231 C, a, B; ==> FMA213 B, a, C;
  1821. { Form132Index, Form231Index, Form213Index },
  1822. // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
  1823. // FMA132 a, C, B; ==> FMA213 a, B, C;
  1824. // FMA213 b, A, C; ==> FMA132 b, C, A;
  1825. // FMA231 c, A, B; ==> FMA231 c, B, A;
  1826. { Form213Index, Form132Index, Form231Index }
  1827. };
  1828. unsigned FMAForms[3];
  1829. FMAForms[0] = FMA3Group.get132Opcode();
  1830. FMAForms[1] = FMA3Group.get213Opcode();
  1831. FMAForms[2] = FMA3Group.get231Opcode();
  1832. unsigned FormIndex;
  1833. for (FormIndex = 0; FormIndex < 3; FormIndex++)
  1834. if (Opc == FMAForms[FormIndex])
  1835. break;
  1836. // Everything is ready, just adjust the FMA opcode and return it.
  1837. FormIndex = FormMapping[Case][FormIndex];
  1838. return FMAForms[FormIndex];
  1839. }
  1840. static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
  1841. unsigned SrcOpIdx2) {
  1842. // Determine which case this commute is or if it can't be done.
  1843. unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
  1844. SrcOpIdx2);
  1845. assert(Case < 3 && "Unexpected case value!");
  1846. // For each case we need to swap two pairs of bits in the final immediate.
  1847. static const uint8_t SwapMasks[3][4] = {
  1848. { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
  1849. { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
  1850. { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
  1851. };
  1852. uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
  1853. // Clear out the bits we are swapping.
  1854. uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
  1855. SwapMasks[Case][2] | SwapMasks[Case][3]);
  1856. // If the immediate had a bit of the pair set, then set the opposite bit.
  1857. if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
  1858. if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
  1859. if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
  1860. if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
  1861. MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
  1862. }
  1863. // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
  1864. // commuted.
  1865. static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
  1866. #define VPERM_CASES(Suffix) \
  1867. case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \
  1868. case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \
  1869. case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \
  1870. case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \
  1871. case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \
  1872. case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \
  1873. case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \
  1874. case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \
  1875. case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \
  1876. case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \
  1877. case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \
  1878. case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz:
  1879. #define VPERM_CASES_BROADCAST(Suffix) \
  1880. VPERM_CASES(Suffix) \
  1881. case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \
  1882. case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \
  1883. case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \
  1884. case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
  1885. case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
  1886. case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz:
  1887. switch (Opcode) {
  1888. default: return false;
  1889. VPERM_CASES(B)
  1890. VPERM_CASES_BROADCAST(D)
  1891. VPERM_CASES_BROADCAST(PD)
  1892. VPERM_CASES_BROADCAST(PS)
  1893. VPERM_CASES_BROADCAST(Q)
  1894. VPERM_CASES(W)
  1895. return true;
  1896. }
  1897. #undef VPERM_CASES_BROADCAST
  1898. #undef VPERM_CASES
  1899. }
  1900. // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
  1901. // from the I opcode to the T opcode and vice versa.
  1902. static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
  1903. #define VPERM_CASES(Orig, New) \
  1904. case X86::Orig##128rr: return X86::New##128rr; \
  1905. case X86::Orig##128rrkz: return X86::New##128rrkz; \
  1906. case X86::Orig##128rm: return X86::New##128rm; \
  1907. case X86::Orig##128rmkz: return X86::New##128rmkz; \
  1908. case X86::Orig##256rr: return X86::New##256rr; \
  1909. case X86::Orig##256rrkz: return X86::New##256rrkz; \
  1910. case X86::Orig##256rm: return X86::New##256rm; \
  1911. case X86::Orig##256rmkz: return X86::New##256rmkz; \
  1912. case X86::Orig##rr: return X86::New##rr; \
  1913. case X86::Orig##rrkz: return X86::New##rrkz; \
  1914. case X86::Orig##rm: return X86::New##rm; \
  1915. case X86::Orig##rmkz: return X86::New##rmkz;
  1916. #define VPERM_CASES_BROADCAST(Orig, New) \
  1917. VPERM_CASES(Orig, New) \
  1918. case X86::Orig##128rmb: return X86::New##128rmb; \
  1919. case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
  1920. case X86::Orig##256rmb: return X86::New##256rmb; \
  1921. case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
  1922. case X86::Orig##rmb: return X86::New##rmb; \
  1923. case X86::Orig##rmbkz: return X86::New##rmbkz;
  1924. switch (Opcode) {
  1925. VPERM_CASES(VPERMI2B, VPERMT2B)
  1926. VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D)
  1927. VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
  1928. VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
  1929. VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q)
  1930. VPERM_CASES(VPERMI2W, VPERMT2W)
  1931. VPERM_CASES(VPERMT2B, VPERMI2B)
  1932. VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D)
  1933. VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
  1934. VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
  1935. VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q)
  1936. VPERM_CASES(VPERMT2W, VPERMI2W)
  1937. }
  1938. llvm_unreachable("Unreachable!");
  1939. #undef VPERM_CASES_BROADCAST
  1940. #undef VPERM_CASES
  1941. }
  1942. MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
  1943. unsigned OpIdx1,
  1944. unsigned OpIdx2) const {
  1945. auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
  1946. if (NewMI)
  1947. return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
  1948. return MI;
  1949. };
  1950. switch (MI.getOpcode()) {
  1951. case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
  1952. case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
  1953. case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
  1954. case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
  1955. case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
  1956. case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
  1957. unsigned Opc;
  1958. unsigned Size;
  1959. switch (MI.getOpcode()) {
  1960. default: llvm_unreachable("Unreachable!");
  1961. case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
  1962. case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
  1963. case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
  1964. case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
  1965. case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
  1966. case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
  1967. }
  1968. unsigned Amt = MI.getOperand(3).getImm();
  1969. auto &WorkingMI = cloneIfNew(MI);
  1970. WorkingMI.setDesc(get(Opc));
  1971. WorkingMI.getOperand(3).setImm(Size - Amt);
  1972. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  1973. OpIdx1, OpIdx2);
  1974. }
  1975. case X86::PFSUBrr:
  1976. case X86::PFSUBRrr: {
  1977. // PFSUB x, y: x = x - y
  1978. // PFSUBR x, y: x = y - x
  1979. unsigned Opc =
  1980. (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
  1981. auto &WorkingMI = cloneIfNew(MI);
  1982. WorkingMI.setDesc(get(Opc));
  1983. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  1984. OpIdx1, OpIdx2);
  1985. }
  1986. case X86::BLENDPDrri:
  1987. case X86::BLENDPSrri:
  1988. case X86::VBLENDPDrri:
  1989. case X86::VBLENDPSrri:
  1990. // If we're optimizing for size, try to use MOVSD/MOVSS.
  1991. if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
  1992. unsigned Mask, Opc;
  1993. switch (MI.getOpcode()) {
  1994. default: llvm_unreachable("Unreachable!");
  1995. case X86::BLENDPDrri: Opc = X86::MOVSDrr; Mask = 0x03; break;
  1996. case X86::BLENDPSrri: Opc = X86::MOVSSrr; Mask = 0x0F; break;
  1997. case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
  1998. case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
  1999. }
  2000. if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
  2001. auto &WorkingMI = cloneIfNew(MI);
  2002. WorkingMI.setDesc(get(Opc));
  2003. WorkingMI.RemoveOperand(3);
  2004. return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
  2005. /*NewMI=*/false,
  2006. OpIdx1, OpIdx2);
  2007. }
  2008. }
  2009. LLVM_FALLTHROUGH;
  2010. case X86::PBLENDWrri:
  2011. case X86::VBLENDPDYrri:
  2012. case X86::VBLENDPSYrri:
  2013. case X86::VPBLENDDrri:
  2014. case X86::VPBLENDWrri:
  2015. case X86::VPBLENDDYrri:
  2016. case X86::VPBLENDWYrri:{
  2017. int8_t Mask;
  2018. switch (MI.getOpcode()) {
  2019. default: llvm_unreachable("Unreachable!");
  2020. case X86::BLENDPDrri: Mask = (int8_t)0x03; break;
  2021. case X86::BLENDPSrri: Mask = (int8_t)0x0F; break;
  2022. case X86::PBLENDWrri: Mask = (int8_t)0xFF; break;
  2023. case X86::VBLENDPDrri: Mask = (int8_t)0x03; break;
  2024. case X86::VBLENDPSrri: Mask = (int8_t)0x0F; break;
  2025. case X86::VBLENDPDYrri: Mask = (int8_t)0x0F; break;
  2026. case X86::VBLENDPSYrri: Mask = (int8_t)0xFF; break;
  2027. case X86::VPBLENDDrri: Mask = (int8_t)0x0F; break;
  2028. case X86::VPBLENDWrri: Mask = (int8_t)0xFF; break;
  2029. case X86::VPBLENDDYrri: Mask = (int8_t)0xFF; break;
  2030. case X86::VPBLENDWYrri: Mask = (int8_t)0xFF; break;
  2031. }
  2032. // Only the least significant bits of Imm are used.
  2033. // Using int8_t to ensure it will be sign extended to the int64_t that
  2034. // setImm takes in order to match isel behavior.
  2035. int8_t Imm = MI.getOperand(3).getImm() & Mask;
  2036. auto &WorkingMI = cloneIfNew(MI);
  2037. WorkingMI.getOperand(3).setImm(Mask ^ Imm);
  2038. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2039. OpIdx1, OpIdx2);
  2040. }
  2041. case X86::INSERTPSrr:
  2042. case X86::VINSERTPSrr:
  2043. case X86::VINSERTPSZrr: {
  2044. unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
  2045. unsigned ZMask = Imm & 15;
  2046. unsigned DstIdx = (Imm >> 4) & 3;
  2047. unsigned SrcIdx = (Imm >> 6) & 3;
  2048. // We can commute insertps if we zero 2 of the elements, the insertion is
  2049. // "inline" and we don't override the insertion with a zero.
  2050. if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
  2051. countPopulation(ZMask) == 2) {
  2052. unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15);
  2053. assert(AltIdx < 4 && "Illegal insertion index");
  2054. unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
  2055. auto &WorkingMI = cloneIfNew(MI);
  2056. WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm);
  2057. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2058. OpIdx1, OpIdx2);
  2059. }
  2060. return nullptr;
  2061. }
  2062. case X86::MOVSDrr:
  2063. case X86::MOVSSrr:
  2064. case X86::VMOVSDrr:
  2065. case X86::VMOVSSrr:{
  2066. // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
  2067. if (Subtarget.hasSSE41()) {
  2068. unsigned Mask, Opc;
  2069. switch (MI.getOpcode()) {
  2070. default: llvm_unreachable("Unreachable!");
  2071. case X86::MOVSDrr: Opc = X86::BLENDPDrri; Mask = 0x02; break;
  2072. case X86::MOVSSrr: Opc = X86::BLENDPSrri; Mask = 0x0E; break;
  2073. case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
  2074. case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
  2075. }
  2076. auto &WorkingMI = cloneIfNew(MI);
  2077. WorkingMI.setDesc(get(Opc));
  2078. WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
  2079. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2080. OpIdx1, OpIdx2);
  2081. }
  2082. // Convert to SHUFPD.
  2083. assert(MI.getOpcode() == X86::MOVSDrr &&
  2084. "Can only commute MOVSDrr without SSE4.1");
  2085. auto &WorkingMI = cloneIfNew(MI);
  2086. WorkingMI.setDesc(get(X86::SHUFPDrri));
  2087. WorkingMI.addOperand(MachineOperand::CreateImm(0x02));
  2088. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2089. OpIdx1, OpIdx2);
  2090. }
  2091. case X86::SHUFPDrri: {
  2092. // Commute to MOVSD.
  2093. assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
  2094. auto &WorkingMI = cloneIfNew(MI);
  2095. WorkingMI.setDesc(get(X86::MOVSDrr));
  2096. WorkingMI.RemoveOperand(3);
  2097. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2098. OpIdx1, OpIdx2);
  2099. }
  2100. case X86::PCLMULQDQrr:
  2101. case X86::VPCLMULQDQrr:
  2102. case X86::VPCLMULQDQYrr:
  2103. case X86::VPCLMULQDQZrr:
  2104. case X86::VPCLMULQDQZ128rr:
  2105. case X86::VPCLMULQDQZ256rr: {
  2106. // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
  2107. // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
  2108. unsigned Imm = MI.getOperand(3).getImm();
  2109. unsigned Src1Hi = Imm & 0x01;
  2110. unsigned Src2Hi = Imm & 0x10;
  2111. auto &WorkingMI = cloneIfNew(MI);
  2112. WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
  2113. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2114. OpIdx1, OpIdx2);
  2115. }
  2116. case X86::VPCMPBZ128rri: case X86::VPCMPUBZ128rri:
  2117. case X86::VPCMPBZ256rri: case X86::VPCMPUBZ256rri:
  2118. case X86::VPCMPBZrri: case X86::VPCMPUBZrri:
  2119. case X86::VPCMPDZ128rri: case X86::VPCMPUDZ128rri:
  2120. case X86::VPCMPDZ256rri: case X86::VPCMPUDZ256rri:
  2121. case X86::VPCMPDZrri: case X86::VPCMPUDZrri:
  2122. case X86::VPCMPQZ128rri: case X86::VPCMPUQZ128rri:
  2123. case X86::VPCMPQZ256rri: case X86::VPCMPUQZ256rri:
  2124. case X86::VPCMPQZrri: case X86::VPCMPUQZrri:
  2125. case X86::VPCMPWZ128rri: case X86::VPCMPUWZ128rri:
  2126. case X86::VPCMPWZ256rri: case X86::VPCMPUWZ256rri:
  2127. case X86::VPCMPWZrri: case X86::VPCMPUWZrri:
  2128. case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
  2129. case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
  2130. case X86::VPCMPBZrrik: case X86::VPCMPUBZrrik:
  2131. case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
  2132. case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
  2133. case X86::VPCMPDZrrik: case X86::VPCMPUDZrrik:
  2134. case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
  2135. case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
  2136. case X86::VPCMPQZrrik: case X86::VPCMPUQZrrik:
  2137. case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
  2138. case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
  2139. case X86::VPCMPWZrrik: case X86::VPCMPUWZrrik: {
  2140. // Flip comparison mode immediate (if necessary).
  2141. unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
  2142. Imm = X86::getSwappedVPCMPImm(Imm);
  2143. auto &WorkingMI = cloneIfNew(MI);
  2144. WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
  2145. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2146. OpIdx1, OpIdx2);
  2147. }
  2148. case X86::VPCOMBri: case X86::VPCOMUBri:
  2149. case X86::VPCOMDri: case X86::VPCOMUDri:
  2150. case X86::VPCOMQri: case X86::VPCOMUQri:
  2151. case X86::VPCOMWri: case X86::VPCOMUWri: {
  2152. // Flip comparison mode immediate (if necessary).
  2153. unsigned Imm = MI.getOperand(3).getImm() & 0x7;
  2154. Imm = X86::getSwappedVPCOMImm(Imm);
  2155. auto &WorkingMI = cloneIfNew(MI);
  2156. WorkingMI.getOperand(3).setImm(Imm);
  2157. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2158. OpIdx1, OpIdx2);
  2159. }
  2160. case X86::VCMPSDZrr:
  2161. case X86::VCMPSSZrr:
  2162. case X86::VCMPPDZrri:
  2163. case X86::VCMPPSZrri:
  2164. case X86::VCMPSHZrr:
  2165. case X86::VCMPPHZrri:
  2166. case X86::VCMPPHZ128rri:
  2167. case X86::VCMPPHZ256rri:
  2168. case X86::VCMPPDZ128rri:
  2169. case X86::VCMPPSZ128rri:
  2170. case X86::VCMPPDZ256rri:
  2171. case X86::VCMPPSZ256rri:
  2172. case X86::VCMPPDZrrik:
  2173. case X86::VCMPPSZrrik:
  2174. case X86::VCMPPDZ128rrik:
  2175. case X86::VCMPPSZ128rrik:
  2176. case X86::VCMPPDZ256rrik:
  2177. case X86::VCMPPSZ256rrik: {
  2178. unsigned Imm =
  2179. MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f;
  2180. Imm = X86::getSwappedVCMPImm(Imm);
  2181. auto &WorkingMI = cloneIfNew(MI);
  2182. WorkingMI.getOperand(MI.getNumExplicitOperands() - 1).setImm(Imm);
  2183. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2184. OpIdx1, OpIdx2);
  2185. }
  2186. case X86::VPERM2F128rr:
  2187. case X86::VPERM2I128rr: {
  2188. // Flip permute source immediate.
  2189. // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
  2190. // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
  2191. int8_t Imm = MI.getOperand(3).getImm() & 0xFF;
  2192. auto &WorkingMI = cloneIfNew(MI);
  2193. WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
  2194. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2195. OpIdx1, OpIdx2);
  2196. }
  2197. case X86::MOVHLPSrr:
  2198. case X86::UNPCKHPDrr:
  2199. case X86::VMOVHLPSrr:
  2200. case X86::VUNPCKHPDrr:
  2201. case X86::VMOVHLPSZrr:
  2202. case X86::VUNPCKHPDZ128rr: {
  2203. assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
  2204. unsigned Opc = MI.getOpcode();
  2205. switch (Opc) {
  2206. default: llvm_unreachable("Unreachable!");
  2207. case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break;
  2208. case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break;
  2209. case X86::VMOVHLPSrr: Opc = X86::VUNPCKHPDrr; break;
  2210. case X86::VUNPCKHPDrr: Opc = X86::VMOVHLPSrr; break;
  2211. case X86::VMOVHLPSZrr: Opc = X86::VUNPCKHPDZ128rr; break;
  2212. case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr; break;
  2213. }
  2214. auto &WorkingMI = cloneIfNew(MI);
  2215. WorkingMI.setDesc(get(Opc));
  2216. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2217. OpIdx1, OpIdx2);
  2218. }
  2219. case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr: {
  2220. auto &WorkingMI = cloneIfNew(MI);
  2221. unsigned OpNo = MI.getDesc().getNumOperands() - 1;
  2222. X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
  2223. WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
  2224. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2225. OpIdx1, OpIdx2);
  2226. }
  2227. case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
  2228. case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
  2229. case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
  2230. case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
  2231. case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
  2232. case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
  2233. case X86::VPTERNLOGDZrrik:
  2234. case X86::VPTERNLOGDZ128rrik:
  2235. case X86::VPTERNLOGDZ256rrik:
  2236. case X86::VPTERNLOGQZrrik:
  2237. case X86::VPTERNLOGQZ128rrik:
  2238. case X86::VPTERNLOGQZ256rrik:
  2239. case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
  2240. case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
  2241. case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
  2242. case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
  2243. case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
  2244. case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
  2245. case X86::VPTERNLOGDZ128rmbi:
  2246. case X86::VPTERNLOGDZ256rmbi:
  2247. case X86::VPTERNLOGDZrmbi:
  2248. case X86::VPTERNLOGQZ128rmbi:
  2249. case X86::VPTERNLOGQZ256rmbi:
  2250. case X86::VPTERNLOGQZrmbi:
  2251. case X86::VPTERNLOGDZ128rmbikz:
  2252. case X86::VPTERNLOGDZ256rmbikz:
  2253. case X86::VPTERNLOGDZrmbikz:
  2254. case X86::VPTERNLOGQZ128rmbikz:
  2255. case X86::VPTERNLOGQZ256rmbikz:
  2256. case X86::VPTERNLOGQZrmbikz: {
  2257. auto &WorkingMI = cloneIfNew(MI);
  2258. commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
  2259. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2260. OpIdx1, OpIdx2);
  2261. }
  2262. default: {
  2263. if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
  2264. unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
  2265. auto &WorkingMI = cloneIfNew(MI);
  2266. WorkingMI.setDesc(get(Opc));
  2267. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2268. OpIdx1, OpIdx2);
  2269. }
  2270. const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
  2271. MI.getDesc().TSFlags);
  2272. if (FMA3Group) {
  2273. unsigned Opc =
  2274. getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
  2275. auto &WorkingMI = cloneIfNew(MI);
  2276. WorkingMI.setDesc(get(Opc));
  2277. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2278. OpIdx1, OpIdx2);
  2279. }
  2280. return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
  2281. }
  2282. }
  2283. }
  2284. bool
  2285. X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
  2286. unsigned &SrcOpIdx1,
  2287. unsigned &SrcOpIdx2,
  2288. bool IsIntrinsic) const {
  2289. uint64_t TSFlags = MI.getDesc().TSFlags;
  2290. unsigned FirstCommutableVecOp = 1;
  2291. unsigned LastCommutableVecOp = 3;
  2292. unsigned KMaskOp = -1U;
  2293. if (X86II::isKMasked(TSFlags)) {
  2294. // For k-zero-masked operations it is Ok to commute the first vector
  2295. // operand. Unless this is an intrinsic instruction.
  2296. // For regular k-masked operations a conservative choice is done as the
  2297. // elements of the first vector operand, for which the corresponding bit
  2298. // in the k-mask operand is set to 0, are copied to the result of the
  2299. // instruction.
  2300. // TODO/FIXME: The commute still may be legal if it is known that the
  2301. // k-mask operand is set to either all ones or all zeroes.
  2302. // It is also Ok to commute the 1st operand if all users of MI use only
  2303. // the elements enabled by the k-mask operand. For example,
  2304. // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
  2305. // : v1[i];
  2306. // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
  2307. // // Ok, to commute v1 in FMADD213PSZrk.
  2308. // The k-mask operand has index = 2 for masked and zero-masked operations.
  2309. KMaskOp = 2;
  2310. // The operand with index = 1 is used as a source for those elements for
  2311. // which the corresponding bit in the k-mask is set to 0.
  2312. if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic)
  2313. FirstCommutableVecOp = 3;
  2314. LastCommutableVecOp++;
  2315. } else if (IsIntrinsic) {
  2316. // Commuting the first operand of an intrinsic instruction isn't possible
  2317. // unless we can prove that only the lowest element of the result is used.
  2318. FirstCommutableVecOp = 2;
  2319. }
  2320. if (isMem(MI, LastCommutableVecOp))
  2321. LastCommutableVecOp--;
  2322. // Only the first RegOpsNum operands are commutable.
  2323. // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
  2324. // that the operand is not specified/fixed.
  2325. if (SrcOpIdx1 != CommuteAnyOperandIndex &&
  2326. (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
  2327. SrcOpIdx1 == KMaskOp))
  2328. return false;
  2329. if (SrcOpIdx2 != CommuteAnyOperandIndex &&
  2330. (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
  2331. SrcOpIdx2 == KMaskOp))
  2332. return false;
  2333. // Look for two different register operands assumed to be commutable
  2334. // regardless of the FMA opcode. The FMA opcode is adjusted later.
  2335. if (SrcOpIdx1 == CommuteAnyOperandIndex ||
  2336. SrcOpIdx2 == CommuteAnyOperandIndex) {
  2337. unsigned CommutableOpIdx2 = SrcOpIdx2;
  2338. // At least one of operands to be commuted is not specified and
  2339. // this method is free to choose appropriate commutable operands.
  2340. if (SrcOpIdx1 == SrcOpIdx2)
  2341. // Both of operands are not fixed. By default set one of commutable
  2342. // operands to the last register operand of the instruction.
  2343. CommutableOpIdx2 = LastCommutableVecOp;
  2344. else if (SrcOpIdx2 == CommuteAnyOperandIndex)
  2345. // Only one of operands is not fixed.
  2346. CommutableOpIdx2 = SrcOpIdx1;
  2347. // CommutableOpIdx2 is well defined now. Let's choose another commutable
  2348. // operand and assign its index to CommutableOpIdx1.
  2349. Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
  2350. unsigned CommutableOpIdx1;
  2351. for (CommutableOpIdx1 = LastCommutableVecOp;
  2352. CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
  2353. // Just ignore and skip the k-mask operand.
  2354. if (CommutableOpIdx1 == KMaskOp)
  2355. continue;
  2356. // The commuted operands must have different registers.
  2357. // Otherwise, the commute transformation does not change anything and
  2358. // is useless then.
  2359. if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
  2360. break;
  2361. }
  2362. // No appropriate commutable operands were found.
  2363. if (CommutableOpIdx1 < FirstCommutableVecOp)
  2364. return false;
  2365. // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
  2366. // to return those values.
  2367. if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
  2368. CommutableOpIdx1, CommutableOpIdx2))
  2369. return false;
  2370. }
  2371. return true;
  2372. }
  2373. bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI,
  2374. unsigned &SrcOpIdx1,
  2375. unsigned &SrcOpIdx2) const {
  2376. const MCInstrDesc &Desc = MI.getDesc();
  2377. if (!Desc.isCommutable())
  2378. return false;
  2379. switch (MI.getOpcode()) {
  2380. case X86::CMPSDrr:
  2381. case X86::CMPSSrr:
  2382. case X86::CMPPDrri:
  2383. case X86::CMPPSrri:
  2384. case X86::VCMPSDrr:
  2385. case X86::VCMPSSrr:
  2386. case X86::VCMPPDrri:
  2387. case X86::VCMPPSrri:
  2388. case X86::VCMPPDYrri:
  2389. case X86::VCMPPSYrri:
  2390. case X86::VCMPSDZrr:
  2391. case X86::VCMPSSZrr:
  2392. case X86::VCMPPDZrri:
  2393. case X86::VCMPPSZrri:
  2394. case X86::VCMPSHZrr:
  2395. case X86::VCMPPHZrri:
  2396. case X86::VCMPPHZ128rri:
  2397. case X86::VCMPPHZ256rri:
  2398. case X86::VCMPPDZ128rri:
  2399. case X86::VCMPPSZ128rri:
  2400. case X86::VCMPPDZ256rri:
  2401. case X86::VCMPPSZ256rri:
  2402. case X86::VCMPPDZrrik:
  2403. case X86::VCMPPSZrrik:
  2404. case X86::VCMPPDZ128rrik:
  2405. case X86::VCMPPSZ128rrik:
  2406. case X86::VCMPPDZ256rrik:
  2407. case X86::VCMPPSZ256rrik: {
  2408. unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
  2409. // Float comparison can be safely commuted for
  2410. // Ordered/Unordered/Equal/NotEqual tests
  2411. unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
  2412. switch (Imm) {
  2413. default:
  2414. // EVEX versions can be commuted.
  2415. if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
  2416. break;
  2417. return false;
  2418. case 0x00: // EQUAL
  2419. case 0x03: // UNORDERED
  2420. case 0x04: // NOT EQUAL
  2421. case 0x07: // ORDERED
  2422. break;
  2423. }
  2424. // The indices of the commutable operands are 1 and 2 (or 2 and 3
  2425. // when masked).
  2426. // Assign them to the returned operand indices here.
  2427. return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
  2428. 2 + OpOffset);
  2429. }
  2430. case X86::MOVSSrr:
  2431. // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
  2432. // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
  2433. // AVX implies sse4.1.
  2434. if (Subtarget.hasSSE41())
  2435. return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
  2436. return false;
  2437. case X86::SHUFPDrri:
  2438. // We can commute this to MOVSD.
  2439. if (MI.getOperand(3).getImm() == 0x02)
  2440. return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
  2441. return false;
  2442. case X86::MOVHLPSrr:
  2443. case X86::UNPCKHPDrr:
  2444. case X86::VMOVHLPSrr:
  2445. case X86::VUNPCKHPDrr:
  2446. case X86::VMOVHLPSZrr:
  2447. case X86::VUNPCKHPDZ128rr:
  2448. if (Subtarget.hasSSE2())
  2449. return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
  2450. return false;
  2451. case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
  2452. case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
  2453. case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
  2454. case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
  2455. case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
  2456. case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
  2457. case X86::VPTERNLOGDZrrik:
  2458. case X86::VPTERNLOGDZ128rrik:
  2459. case X86::VPTERNLOGDZ256rrik:
  2460. case X86::VPTERNLOGQZrrik:
  2461. case X86::VPTERNLOGQZ128rrik:
  2462. case X86::VPTERNLOGQZ256rrik:
  2463. case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
  2464. case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
  2465. case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
  2466. case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
  2467. case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
  2468. case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
  2469. case X86::VPTERNLOGDZ128rmbi:
  2470. case X86::VPTERNLOGDZ256rmbi:
  2471. case X86::VPTERNLOGDZrmbi:
  2472. case X86::VPTERNLOGQZ128rmbi:
  2473. case X86::VPTERNLOGQZ256rmbi:
  2474. case X86::VPTERNLOGQZrmbi:
  2475. case X86::VPTERNLOGDZ128rmbikz:
  2476. case X86::VPTERNLOGDZ256rmbikz:
  2477. case X86::VPTERNLOGDZrmbikz:
  2478. case X86::VPTERNLOGQZ128rmbikz:
  2479. case X86::VPTERNLOGQZ256rmbikz:
  2480. case X86::VPTERNLOGQZrmbikz:
  2481. return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
  2482. case X86::VPDPWSSDYrr:
  2483. case X86::VPDPWSSDrr:
  2484. case X86::VPDPWSSDSYrr:
  2485. case X86::VPDPWSSDSrr:
  2486. case X86::VPDPWSSDZ128r:
  2487. case X86::VPDPWSSDZ128rk:
  2488. case X86::VPDPWSSDZ128rkz:
  2489. case X86::VPDPWSSDZ256r:
  2490. case X86::VPDPWSSDZ256rk:
  2491. case X86::VPDPWSSDZ256rkz:
  2492. case X86::VPDPWSSDZr:
  2493. case X86::VPDPWSSDZrk:
  2494. case X86::VPDPWSSDZrkz:
  2495. case X86::VPDPWSSDSZ128r:
  2496. case X86::VPDPWSSDSZ128rk:
  2497. case X86::VPDPWSSDSZ128rkz:
  2498. case X86::VPDPWSSDSZ256r:
  2499. case X86::VPDPWSSDSZ256rk:
  2500. case X86::VPDPWSSDSZ256rkz:
  2501. case X86::VPDPWSSDSZr:
  2502. case X86::VPDPWSSDSZrk:
  2503. case X86::VPDPWSSDSZrkz:
  2504. case X86::VPMADD52HUQZ128r:
  2505. case X86::VPMADD52HUQZ128rk:
  2506. case X86::VPMADD52HUQZ128rkz:
  2507. case X86::VPMADD52HUQZ256r:
  2508. case X86::VPMADD52HUQZ256rk:
  2509. case X86::VPMADD52HUQZ256rkz:
  2510. case X86::VPMADD52HUQZr:
  2511. case X86::VPMADD52HUQZrk:
  2512. case X86::VPMADD52HUQZrkz:
  2513. case X86::VPMADD52LUQZ128r:
  2514. case X86::VPMADD52LUQZ128rk:
  2515. case X86::VPMADD52LUQZ128rkz:
  2516. case X86::VPMADD52LUQZ256r:
  2517. case X86::VPMADD52LUQZ256rk:
  2518. case X86::VPMADD52LUQZ256rkz:
  2519. case X86::VPMADD52LUQZr:
  2520. case X86::VPMADD52LUQZrk:
  2521. case X86::VPMADD52LUQZrkz:
  2522. case X86::VFMADDCPHZr:
  2523. case X86::VFMADDCPHZrk:
  2524. case X86::VFMADDCPHZrkz:
  2525. case X86::VFMADDCPHZ128r:
  2526. case X86::VFMADDCPHZ128rk:
  2527. case X86::VFMADDCPHZ128rkz:
  2528. case X86::VFMADDCPHZ256r:
  2529. case X86::VFMADDCPHZ256rk:
  2530. case X86::VFMADDCPHZ256rkz:
  2531. case X86::VFMADDCSHZr:
  2532. case X86::VFMADDCSHZrk:
  2533. case X86::VFMADDCSHZrkz: {
  2534. unsigned CommutableOpIdx1 = 2;
  2535. unsigned CommutableOpIdx2 = 3;
  2536. if (X86II::isKMasked(Desc.TSFlags)) {
  2537. // Skip the mask register.
  2538. ++CommutableOpIdx1;
  2539. ++CommutableOpIdx2;
  2540. }
  2541. if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
  2542. CommutableOpIdx1, CommutableOpIdx2))
  2543. return false;
  2544. if (!MI.getOperand(SrcOpIdx1).isReg() ||
  2545. !MI.getOperand(SrcOpIdx2).isReg())
  2546. // No idea.
  2547. return false;
  2548. return true;
  2549. }
  2550. default:
  2551. const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
  2552. MI.getDesc().TSFlags);
  2553. if (FMA3Group)
  2554. return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
  2555. FMA3Group->isIntrinsic());
  2556. // Handled masked instructions since we need to skip over the mask input
  2557. // and the preserved input.
  2558. if (X86II::isKMasked(Desc.TSFlags)) {
  2559. // First assume that the first input is the mask operand and skip past it.
  2560. unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
  2561. unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
  2562. // Check if the first input is tied. If there isn't one then we only
  2563. // need to skip the mask operand which we did above.
  2564. if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
  2565. MCOI::TIED_TO) != -1)) {
  2566. // If this is zero masking instruction with a tied operand, we need to
  2567. // move the first index back to the first input since this must
  2568. // be a 3 input instruction and we want the first two non-mask inputs.
  2569. // Otherwise this is a 2 input instruction with a preserved input and
  2570. // mask, so we need to move the indices to skip one more input.
  2571. if (X86II::isKMergeMasked(Desc.TSFlags)) {
  2572. ++CommutableOpIdx1;
  2573. ++CommutableOpIdx2;
  2574. } else {
  2575. --CommutableOpIdx1;
  2576. }
  2577. }
  2578. if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
  2579. CommutableOpIdx1, CommutableOpIdx2))
  2580. return false;
  2581. if (!MI.getOperand(SrcOpIdx1).isReg() ||
  2582. !MI.getOperand(SrcOpIdx2).isReg())
  2583. // No idea.
  2584. return false;
  2585. return true;
  2586. }
  2587. return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
  2588. }
  2589. return false;
  2590. }
  2591. static bool isConvertibleLEA(MachineInstr *MI) {
  2592. unsigned Opcode = MI->getOpcode();
  2593. if (Opcode != X86::LEA32r && Opcode != X86::LEA64r &&
  2594. Opcode != X86::LEA64_32r)
  2595. return false;
  2596. const MachineOperand &Scale = MI->getOperand(1 + X86::AddrScaleAmt);
  2597. const MachineOperand &Disp = MI->getOperand(1 + X86::AddrDisp);
  2598. const MachineOperand &Segment = MI->getOperand(1 + X86::AddrSegmentReg);
  2599. if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 ||
  2600. Scale.getImm() > 1)
  2601. return false;
  2602. return true;
  2603. }
  2604. bool X86InstrInfo::hasCommutePreference(MachineInstr &MI, bool &Commute) const {
  2605. // Currently we're interested in following sequence only.
  2606. // r3 = lea r1, r2
  2607. // r5 = add r3, r4
  2608. // Both r3 and r4 are killed in add, we hope the add instruction has the
  2609. // operand order
  2610. // r5 = add r4, r3
  2611. // So later in X86FixupLEAs the lea instruction can be rewritten as add.
  2612. unsigned Opcode = MI.getOpcode();
  2613. if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr)
  2614. return false;
  2615. const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
  2616. Register Reg1 = MI.getOperand(1).getReg();
  2617. Register Reg2 = MI.getOperand(2).getReg();
  2618. // Check if Reg1 comes from LEA in the same MBB.
  2619. if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg1)) {
  2620. if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
  2621. Commute = true;
  2622. return true;
  2623. }
  2624. }
  2625. // Check if Reg2 comes from LEA in the same MBB.
  2626. if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg2)) {
  2627. if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
  2628. Commute = false;
  2629. return true;
  2630. }
  2631. }
  2632. return false;
  2633. }
  2634. X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
  2635. switch (MI.getOpcode()) {
  2636. default: return X86::COND_INVALID;
  2637. case X86::JCC_1:
  2638. return static_cast<X86::CondCode>(
  2639. MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
  2640. }
  2641. }
  2642. /// Return condition code of a SETCC opcode.
  2643. X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
  2644. switch (MI.getOpcode()) {
  2645. default: return X86::COND_INVALID;
  2646. case X86::SETCCr: case X86::SETCCm:
  2647. return static_cast<X86::CondCode>(
  2648. MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
  2649. }
  2650. }
  2651. /// Return condition code of a CMov opcode.
  2652. X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
  2653. switch (MI.getOpcode()) {
  2654. default: return X86::COND_INVALID;
  2655. case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr:
  2656. case X86::CMOV16rm: case X86::CMOV32rm: case X86::CMOV64rm:
  2657. return static_cast<X86::CondCode>(
  2658. MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
  2659. }
  2660. }
  2661. /// Return the inverse of the specified condition,
  2662. /// e.g. turning COND_E to COND_NE.
  2663. X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
  2664. switch (CC) {
  2665. default: llvm_unreachable("Illegal condition code!");
  2666. case X86::COND_E: return X86::COND_NE;
  2667. case X86::COND_NE: return X86::COND_E;
  2668. case X86::COND_L: return X86::COND_GE;
  2669. case X86::COND_LE: return X86::COND_G;
  2670. case X86::COND_G: return X86::COND_LE;
  2671. case X86::COND_GE: return X86::COND_L;
  2672. case X86::COND_B: return X86::COND_AE;
  2673. case X86::COND_BE: return X86::COND_A;
  2674. case X86::COND_A: return X86::COND_BE;
  2675. case X86::COND_AE: return X86::COND_B;
  2676. case X86::COND_S: return X86::COND_NS;
  2677. case X86::COND_NS: return X86::COND_S;
  2678. case X86::COND_P: return X86::COND_NP;
  2679. case X86::COND_NP: return X86::COND_P;
  2680. case X86::COND_O: return X86::COND_NO;
  2681. case X86::COND_NO: return X86::COND_O;
  2682. case X86::COND_NE_OR_P: return X86::COND_E_AND_NP;
  2683. case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
  2684. }
  2685. }
  2686. /// Assuming the flags are set by MI(a,b), return the condition code if we
  2687. /// modify the instructions such that flags are set by MI(b,a).
  2688. static X86::CondCode getSwappedCondition(X86::CondCode CC) {
  2689. switch (CC) {
  2690. default: return X86::COND_INVALID;
  2691. case X86::COND_E: return X86::COND_E;
  2692. case X86::COND_NE: return X86::COND_NE;
  2693. case X86::COND_L: return X86::COND_G;
  2694. case X86::COND_LE: return X86::COND_GE;
  2695. case X86::COND_G: return X86::COND_L;
  2696. case X86::COND_GE: return X86::COND_LE;
  2697. case X86::COND_B: return X86::COND_A;
  2698. case X86::COND_BE: return X86::COND_AE;
  2699. case X86::COND_A: return X86::COND_B;
  2700. case X86::COND_AE: return X86::COND_BE;
  2701. }
  2702. }
  2703. std::pair<X86::CondCode, bool>
  2704. X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
  2705. X86::CondCode CC = X86::COND_INVALID;
  2706. bool NeedSwap = false;
  2707. switch (Predicate) {
  2708. default: break;
  2709. // Floating-point Predicates
  2710. case CmpInst::FCMP_UEQ: CC = X86::COND_E; break;
  2711. case CmpInst::FCMP_OLT: NeedSwap = true; LLVM_FALLTHROUGH;
  2712. case CmpInst::FCMP_OGT: CC = X86::COND_A; break;
  2713. case CmpInst::FCMP_OLE: NeedSwap = true; LLVM_FALLTHROUGH;
  2714. case CmpInst::FCMP_OGE: CC = X86::COND_AE; break;
  2715. case CmpInst::FCMP_UGT: NeedSwap = true; LLVM_FALLTHROUGH;
  2716. case CmpInst::FCMP_ULT: CC = X86::COND_B; break;
  2717. case CmpInst::FCMP_UGE: NeedSwap = true; LLVM_FALLTHROUGH;
  2718. case CmpInst::FCMP_ULE: CC = X86::COND_BE; break;
  2719. case CmpInst::FCMP_ONE: CC = X86::COND_NE; break;
  2720. case CmpInst::FCMP_UNO: CC = X86::COND_P; break;
  2721. case CmpInst::FCMP_ORD: CC = X86::COND_NP; break;
  2722. case CmpInst::FCMP_OEQ: LLVM_FALLTHROUGH;
  2723. case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
  2724. // Integer Predicates
  2725. case CmpInst::ICMP_EQ: CC = X86::COND_E; break;
  2726. case CmpInst::ICMP_NE: CC = X86::COND_NE; break;
  2727. case CmpInst::ICMP_UGT: CC = X86::COND_A; break;
  2728. case CmpInst::ICMP_UGE: CC = X86::COND_AE; break;
  2729. case CmpInst::ICMP_ULT: CC = X86::COND_B; break;
  2730. case CmpInst::ICMP_ULE: CC = X86::COND_BE; break;
  2731. case CmpInst::ICMP_SGT: CC = X86::COND_G; break;
  2732. case CmpInst::ICMP_SGE: CC = X86::COND_GE; break;
  2733. case CmpInst::ICMP_SLT: CC = X86::COND_L; break;
  2734. case CmpInst::ICMP_SLE: CC = X86::COND_LE; break;
  2735. }
  2736. return std::make_pair(CC, NeedSwap);
  2737. }
  2738. /// Return a cmov opcode for the given register size in bytes, and operand type.
  2739. unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
  2740. switch(RegBytes) {
  2741. default: llvm_unreachable("Illegal register size!");
  2742. case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
  2743. case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
  2744. case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr;
  2745. }
  2746. }
  2747. /// Get the VPCMP immediate for the given condition.
  2748. unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
  2749. switch (CC) {
  2750. default: llvm_unreachable("Unexpected SETCC condition");
  2751. case ISD::SETNE: return 4;
  2752. case ISD::SETEQ: return 0;
  2753. case ISD::SETULT:
  2754. case ISD::SETLT: return 1;
  2755. case ISD::SETUGT:
  2756. case ISD::SETGT: return 6;
  2757. case ISD::SETUGE:
  2758. case ISD::SETGE: return 5;
  2759. case ISD::SETULE:
  2760. case ISD::SETLE: return 2;
  2761. }
  2762. }
  2763. /// Get the VPCMP immediate if the operands are swapped.
  2764. unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
  2765. switch (Imm) {
  2766. default: llvm_unreachable("Unreachable!");
  2767. case 0x01: Imm = 0x06; break; // LT -> NLE
  2768. case 0x02: Imm = 0x05; break; // LE -> NLT
  2769. case 0x05: Imm = 0x02; break; // NLT -> LE
  2770. case 0x06: Imm = 0x01; break; // NLE -> LT
  2771. case 0x00: // EQ
  2772. case 0x03: // FALSE
  2773. case 0x04: // NE
  2774. case 0x07: // TRUE
  2775. break;
  2776. }
  2777. return Imm;
  2778. }
  2779. /// Get the VPCOM immediate if the operands are swapped.
  2780. unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
  2781. switch (Imm) {
  2782. default: llvm_unreachable("Unreachable!");
  2783. case 0x00: Imm = 0x02; break; // LT -> GT
  2784. case 0x01: Imm = 0x03; break; // LE -> GE
  2785. case 0x02: Imm = 0x00; break; // GT -> LT
  2786. case 0x03: Imm = 0x01; break; // GE -> LE
  2787. case 0x04: // EQ
  2788. case 0x05: // NE
  2789. case 0x06: // FALSE
  2790. case 0x07: // TRUE
  2791. break;
  2792. }
  2793. return Imm;
  2794. }
  2795. /// Get the VCMP immediate if the operands are swapped.
  2796. unsigned X86::getSwappedVCMPImm(unsigned Imm) {
  2797. // Only need the lower 2 bits to distinquish.
  2798. switch (Imm & 0x3) {
  2799. default: llvm_unreachable("Unreachable!");
  2800. case 0x00: case 0x03:
  2801. // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
  2802. break;
  2803. case 0x01: case 0x02:
  2804. // Need to toggle bits 3:0. Bit 4 stays the same.
  2805. Imm ^= 0xf;
  2806. break;
  2807. }
  2808. return Imm;
  2809. }
  2810. /// Return true if the Reg is X87 register.
  2811. static bool isX87Reg(unsigned Reg) {
  2812. return (Reg == X86::FPCW || Reg == X86::FPSW ||
  2813. (Reg >= X86::ST0 && Reg <= X86::ST7));
  2814. }
  2815. /// check if the instruction is X87 instruction
  2816. bool X86::isX87Instruction(MachineInstr &MI) {
  2817. for (const MachineOperand &MO : MI.operands()) {
  2818. if (!MO.isReg())
  2819. continue;
  2820. if (isX87Reg(MO.getReg()))
  2821. return true;
  2822. }
  2823. return false;
  2824. }
  2825. bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
  2826. switch (MI.getOpcode()) {
  2827. case X86::TCRETURNdi:
  2828. case X86::TCRETURNri:
  2829. case X86::TCRETURNmi:
  2830. case X86::TCRETURNdi64:
  2831. case X86::TCRETURNri64:
  2832. case X86::TCRETURNmi64:
  2833. return true;
  2834. default:
  2835. return false;
  2836. }
  2837. }
  2838. bool X86InstrInfo::canMakeTailCallConditional(
  2839. SmallVectorImpl<MachineOperand> &BranchCond,
  2840. const MachineInstr &TailCall) const {
  2841. if (TailCall.getOpcode() != X86::TCRETURNdi &&
  2842. TailCall.getOpcode() != X86::TCRETURNdi64) {
  2843. // Only direct calls can be done with a conditional branch.
  2844. return false;
  2845. }
  2846. const MachineFunction *MF = TailCall.getParent()->getParent();
  2847. if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
  2848. // Conditional tail calls confuse the Win64 unwinder.
  2849. return false;
  2850. }
  2851. assert(BranchCond.size() == 1);
  2852. if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
  2853. // Can't make a conditional tail call with this condition.
  2854. return false;
  2855. }
  2856. const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
  2857. if (X86FI->getTCReturnAddrDelta() != 0 ||
  2858. TailCall.getOperand(1).getImm() != 0) {
  2859. // A conditional tail call cannot do any stack adjustment.
  2860. return false;
  2861. }
  2862. return true;
  2863. }
  2864. void X86InstrInfo::replaceBranchWithTailCall(
  2865. MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
  2866. const MachineInstr &TailCall) const {
  2867. assert(canMakeTailCallConditional(BranchCond, TailCall));
  2868. MachineBasicBlock::iterator I = MBB.end();
  2869. while (I != MBB.begin()) {
  2870. --I;
  2871. if (I->isDebugInstr())
  2872. continue;
  2873. if (!I->isBranch())
  2874. assert(0 && "Can't find the branch to replace!");
  2875. X86::CondCode CC = X86::getCondFromBranch(*I);
  2876. assert(BranchCond.size() == 1);
  2877. if (CC != BranchCond[0].getImm())
  2878. continue;
  2879. break;
  2880. }
  2881. unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
  2882. : X86::TCRETURNdi64cc;
  2883. auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
  2884. MIB->addOperand(TailCall.getOperand(0)); // Destination.
  2885. MIB.addImm(0); // Stack offset (not used).
  2886. MIB->addOperand(BranchCond[0]); // Condition.
  2887. MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
  2888. // Add implicit uses and defs of all live regs potentially clobbered by the
  2889. // call. This way they still appear live across the call.
  2890. LivePhysRegs LiveRegs(getRegisterInfo());
  2891. LiveRegs.addLiveOuts(MBB);
  2892. SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
  2893. LiveRegs.stepForward(*MIB, Clobbers);
  2894. for (const auto &C : Clobbers) {
  2895. MIB.addReg(C.first, RegState::Implicit);
  2896. MIB.addReg(C.first, RegState::Implicit | RegState::Define);
  2897. }
  2898. I->eraseFromParent();
  2899. }
  2900. // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
  2901. // not be a fallthrough MBB now due to layout changes). Return nullptr if the
  2902. // fallthrough MBB cannot be identified.
  2903. static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
  2904. MachineBasicBlock *TBB) {
  2905. // Look for non-EHPad successors other than TBB. If we find exactly one, it
  2906. // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
  2907. // and fallthrough MBB. If we find more than one, we cannot identify the
  2908. // fallthrough MBB and should return nullptr.
  2909. MachineBasicBlock *FallthroughBB = nullptr;
  2910. for (MachineBasicBlock *Succ : MBB->successors()) {
  2911. if (Succ->isEHPad() || (Succ == TBB && FallthroughBB))
  2912. continue;
  2913. // Return a nullptr if we found more than one fallthrough successor.
  2914. if (FallthroughBB && FallthroughBB != TBB)
  2915. return nullptr;
  2916. FallthroughBB = Succ;
  2917. }
  2918. return FallthroughBB;
  2919. }
  2920. bool X86InstrInfo::AnalyzeBranchImpl(
  2921. MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
  2922. SmallVectorImpl<MachineOperand> &Cond,
  2923. SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
  2924. // Start from the bottom of the block and work up, examining the
  2925. // terminator instructions.
  2926. MachineBasicBlock::iterator I = MBB.end();
  2927. MachineBasicBlock::iterator UnCondBrIter = MBB.end();
  2928. while (I != MBB.begin()) {
  2929. --I;
  2930. if (I->isDebugInstr())
  2931. continue;
  2932. // Working from the bottom, when we see a non-terminator instruction, we're
  2933. // done.
  2934. if (!isUnpredicatedTerminator(*I))
  2935. break;
  2936. // A terminator that isn't a branch can't easily be handled by this
  2937. // analysis.
  2938. if (!I->isBranch())
  2939. return true;
  2940. // Handle unconditional branches.
  2941. if (I->getOpcode() == X86::JMP_1) {
  2942. UnCondBrIter = I;
  2943. if (!AllowModify) {
  2944. TBB = I->getOperand(0).getMBB();
  2945. continue;
  2946. }
  2947. // If the block has any instructions after a JMP, delete them.
  2948. while (std::next(I) != MBB.end())
  2949. std::next(I)->eraseFromParent();
  2950. Cond.clear();
  2951. FBB = nullptr;
  2952. // Delete the JMP if it's equivalent to a fall-through.
  2953. if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
  2954. TBB = nullptr;
  2955. I->eraseFromParent();
  2956. I = MBB.end();
  2957. UnCondBrIter = MBB.end();
  2958. continue;
  2959. }
  2960. // TBB is used to indicate the unconditional destination.
  2961. TBB = I->getOperand(0).getMBB();
  2962. continue;
  2963. }
  2964. // Handle conditional branches.
  2965. X86::CondCode BranchCode = X86::getCondFromBranch(*I);
  2966. if (BranchCode == X86::COND_INVALID)
  2967. return true; // Can't handle indirect branch.
  2968. // In practice we should never have an undef eflags operand, if we do
  2969. // abort here as we are not prepared to preserve the flag.
  2970. if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
  2971. return true;
  2972. // Working from the bottom, handle the first conditional branch.
  2973. if (Cond.empty()) {
  2974. MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
  2975. if (AllowModify && UnCondBrIter != MBB.end() &&
  2976. MBB.isLayoutSuccessor(TargetBB)) {
  2977. // If we can modify the code and it ends in something like:
  2978. //
  2979. // jCC L1
  2980. // jmp L2
  2981. // L1:
  2982. // ...
  2983. // L2:
  2984. //
  2985. // Then we can change this to:
  2986. //
  2987. // jnCC L2
  2988. // L1:
  2989. // ...
  2990. // L2:
  2991. //
  2992. // Which is a bit more efficient.
  2993. // We conditionally jump to the fall-through block.
  2994. BranchCode = GetOppositeBranchCondition(BranchCode);
  2995. MachineBasicBlock::iterator OldInst = I;
  2996. BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JCC_1))
  2997. .addMBB(UnCondBrIter->getOperand(0).getMBB())
  2998. .addImm(BranchCode);
  2999. BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
  3000. .addMBB(TargetBB);
  3001. OldInst->eraseFromParent();
  3002. UnCondBrIter->eraseFromParent();
  3003. // Restart the analysis.
  3004. UnCondBrIter = MBB.end();
  3005. I = MBB.end();
  3006. continue;
  3007. }
  3008. FBB = TBB;
  3009. TBB = I->getOperand(0).getMBB();
  3010. Cond.push_back(MachineOperand::CreateImm(BranchCode));
  3011. CondBranches.push_back(&*I);
  3012. continue;
  3013. }
  3014. // Handle subsequent conditional branches. Only handle the case where all
  3015. // conditional branches branch to the same destination and their condition
  3016. // opcodes fit one of the special multi-branch idioms.
  3017. assert(Cond.size() == 1);
  3018. assert(TBB);
  3019. // If the conditions are the same, we can leave them alone.
  3020. X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
  3021. auto NewTBB = I->getOperand(0).getMBB();
  3022. if (OldBranchCode == BranchCode && TBB == NewTBB)
  3023. continue;
  3024. // If they differ, see if they fit one of the known patterns. Theoretically,
  3025. // we could handle more patterns here, but we shouldn't expect to see them
  3026. // if instruction selection has done a reasonable job.
  3027. if (TBB == NewTBB &&
  3028. ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
  3029. (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
  3030. BranchCode = X86::COND_NE_OR_P;
  3031. } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
  3032. (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
  3033. if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
  3034. return true;
  3035. // X86::COND_E_AND_NP usually has two different branch destinations.
  3036. //
  3037. // JP B1
  3038. // JE B2
  3039. // JMP B1
  3040. // B1:
  3041. // B2:
  3042. //
  3043. // Here this condition branches to B2 only if NP && E. It has another
  3044. // equivalent form:
  3045. //
  3046. // JNE B1
  3047. // JNP B2
  3048. // JMP B1
  3049. // B1:
  3050. // B2:
  3051. //
  3052. // Similarly it branches to B2 only if E && NP. That is why this condition
  3053. // is named with COND_E_AND_NP.
  3054. BranchCode = X86::COND_E_AND_NP;
  3055. } else
  3056. return true;
  3057. // Update the MachineOperand.
  3058. Cond[0].setImm(BranchCode);
  3059. CondBranches.push_back(&*I);
  3060. }
  3061. return false;
  3062. }
  3063. bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
  3064. MachineBasicBlock *&TBB,
  3065. MachineBasicBlock *&FBB,
  3066. SmallVectorImpl<MachineOperand> &Cond,
  3067. bool AllowModify) const {
  3068. SmallVector<MachineInstr *, 4> CondBranches;
  3069. return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
  3070. }
  3071. bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
  3072. MachineBranchPredicate &MBP,
  3073. bool AllowModify) const {
  3074. using namespace std::placeholders;
  3075. SmallVector<MachineOperand, 4> Cond;
  3076. SmallVector<MachineInstr *, 4> CondBranches;
  3077. if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
  3078. AllowModify))
  3079. return true;
  3080. if (Cond.size() != 1)
  3081. return true;
  3082. assert(MBP.TrueDest && "expected!");
  3083. if (!MBP.FalseDest)
  3084. MBP.FalseDest = MBB.getNextNode();
  3085. const TargetRegisterInfo *TRI = &getRegisterInfo();
  3086. MachineInstr *ConditionDef = nullptr;
  3087. bool SingleUseCondition = true;
  3088. for (MachineInstr &MI : llvm::drop_begin(llvm::reverse(MBB))) {
  3089. if (MI.modifiesRegister(X86::EFLAGS, TRI)) {
  3090. ConditionDef = &MI;
  3091. break;
  3092. }
  3093. if (MI.readsRegister(X86::EFLAGS, TRI))
  3094. SingleUseCondition = false;
  3095. }
  3096. if (!ConditionDef)
  3097. return true;
  3098. if (SingleUseCondition) {
  3099. for (auto *Succ : MBB.successors())
  3100. if (Succ->isLiveIn(X86::EFLAGS))
  3101. SingleUseCondition = false;
  3102. }
  3103. MBP.ConditionDef = ConditionDef;
  3104. MBP.SingleUseCondition = SingleUseCondition;
  3105. // Currently we only recognize the simple pattern:
  3106. //
  3107. // test %reg, %reg
  3108. // je %label
  3109. //
  3110. const unsigned TestOpcode =
  3111. Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
  3112. if (ConditionDef->getOpcode() == TestOpcode &&
  3113. ConditionDef->getNumOperands() == 3 &&
  3114. ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
  3115. (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
  3116. MBP.LHS = ConditionDef->getOperand(0);
  3117. MBP.RHS = MachineOperand::CreateImm(0);
  3118. MBP.Predicate = Cond[0].getImm() == X86::COND_NE
  3119. ? MachineBranchPredicate::PRED_NE
  3120. : MachineBranchPredicate::PRED_EQ;
  3121. return false;
  3122. }
  3123. return true;
  3124. }
  3125. unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
  3126. int *BytesRemoved) const {
  3127. assert(!BytesRemoved && "code size not handled");
  3128. MachineBasicBlock::iterator I = MBB.end();
  3129. unsigned Count = 0;
  3130. while (I != MBB.begin()) {
  3131. --I;
  3132. if (I->isDebugInstr())
  3133. continue;
  3134. if (I->getOpcode() != X86::JMP_1 &&
  3135. X86::getCondFromBranch(*I) == X86::COND_INVALID)
  3136. break;
  3137. // Remove the branch.
  3138. I->eraseFromParent();
  3139. I = MBB.end();
  3140. ++Count;
  3141. }
  3142. return Count;
  3143. }
  3144. unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
  3145. MachineBasicBlock *TBB,
  3146. MachineBasicBlock *FBB,
  3147. ArrayRef<MachineOperand> Cond,
  3148. const DebugLoc &DL,
  3149. int *BytesAdded) const {
  3150. // Shouldn't be a fall through.
  3151. assert(TBB && "insertBranch must not be told to insert a fallthrough");
  3152. assert((Cond.size() == 1 || Cond.size() == 0) &&
  3153. "X86 branch conditions have one component!");
  3154. assert(!BytesAdded && "code size not handled");
  3155. if (Cond.empty()) {
  3156. // Unconditional branch?
  3157. assert(!FBB && "Unconditional branch with multiple successors!");
  3158. BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
  3159. return 1;
  3160. }
  3161. // If FBB is null, it is implied to be a fall-through block.
  3162. bool FallThru = FBB == nullptr;
  3163. // Conditional branch.
  3164. unsigned Count = 0;
  3165. X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
  3166. switch (CC) {
  3167. case X86::COND_NE_OR_P:
  3168. // Synthesize NE_OR_P with two branches.
  3169. BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
  3170. ++Count;
  3171. BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
  3172. ++Count;
  3173. break;
  3174. case X86::COND_E_AND_NP:
  3175. // Use the next block of MBB as FBB if it is null.
  3176. if (FBB == nullptr) {
  3177. FBB = getFallThroughMBB(&MBB, TBB);
  3178. assert(FBB && "MBB cannot be the last block in function when the false "
  3179. "body is a fall-through.");
  3180. }
  3181. // Synthesize COND_E_AND_NP with two branches.
  3182. BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
  3183. ++Count;
  3184. BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
  3185. ++Count;
  3186. break;
  3187. default: {
  3188. BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
  3189. ++Count;
  3190. }
  3191. }
  3192. if (!FallThru) {
  3193. // Two-way Conditional branch. Insert the second branch.
  3194. BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
  3195. ++Count;
  3196. }
  3197. return Count;
  3198. }
  3199. bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
  3200. ArrayRef<MachineOperand> Cond,
  3201. Register DstReg, Register TrueReg,
  3202. Register FalseReg, int &CondCycles,
  3203. int &TrueCycles, int &FalseCycles) const {
  3204. // Not all subtargets have cmov instructions.
  3205. if (!Subtarget.hasCMov())
  3206. return false;
  3207. if (Cond.size() != 1)
  3208. return false;
  3209. // We cannot do the composite conditions, at least not in SSA form.
  3210. if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
  3211. return false;
  3212. // Check register classes.
  3213. const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
  3214. const TargetRegisterClass *RC =
  3215. RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
  3216. if (!RC)
  3217. return false;
  3218. // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
  3219. if (X86::GR16RegClass.hasSubClassEq(RC) ||
  3220. X86::GR32RegClass.hasSubClassEq(RC) ||
  3221. X86::GR64RegClass.hasSubClassEq(RC)) {
  3222. // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
  3223. // Bridge. Probably Ivy Bridge as well.
  3224. CondCycles = 2;
  3225. TrueCycles = 2;
  3226. FalseCycles = 2;
  3227. return true;
  3228. }
  3229. // Can't do vectors.
  3230. return false;
  3231. }
  3232. void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
  3233. MachineBasicBlock::iterator I,
  3234. const DebugLoc &DL, Register DstReg,
  3235. ArrayRef<MachineOperand> Cond, Register TrueReg,
  3236. Register FalseReg) const {
  3237. MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
  3238. const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
  3239. const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
  3240. assert(Cond.size() == 1 && "Invalid Cond array");
  3241. unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
  3242. false /*HasMemoryOperand*/);
  3243. BuildMI(MBB, I, DL, get(Opc), DstReg)
  3244. .addReg(FalseReg)
  3245. .addReg(TrueReg)
  3246. .addImm(Cond[0].getImm());
  3247. }
  3248. /// Test if the given register is a physical h register.
  3249. static bool isHReg(unsigned Reg) {
  3250. return X86::GR8_ABCD_HRegClass.contains(Reg);
  3251. }
  3252. // Try and copy between VR128/VR64 and GR64 registers.
  3253. static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
  3254. const X86Subtarget &Subtarget) {
  3255. bool HasAVX = Subtarget.hasAVX();
  3256. bool HasAVX512 = Subtarget.hasAVX512();
  3257. // SrcReg(MaskReg) -> DestReg(GR64)
  3258. // SrcReg(MaskReg) -> DestReg(GR32)
  3259. // All KMASK RegClasses hold the same k registers, can be tested against anyone.
  3260. if (X86::VK16RegClass.contains(SrcReg)) {
  3261. if (X86::GR64RegClass.contains(DestReg)) {
  3262. assert(Subtarget.hasBWI());
  3263. return X86::KMOVQrk;
  3264. }
  3265. if (X86::GR32RegClass.contains(DestReg))
  3266. return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
  3267. }
  3268. // SrcReg(GR64) -> DestReg(MaskReg)
  3269. // SrcReg(GR32) -> DestReg(MaskReg)
  3270. // All KMASK RegClasses hold the same k registers, can be tested against anyone.
  3271. if (X86::VK16RegClass.contains(DestReg)) {
  3272. if (X86::GR64RegClass.contains(SrcReg)) {
  3273. assert(Subtarget.hasBWI());
  3274. return X86::KMOVQkr;
  3275. }
  3276. if (X86::GR32RegClass.contains(SrcReg))
  3277. return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
  3278. }
  3279. // SrcReg(VR128) -> DestReg(GR64)
  3280. // SrcReg(VR64) -> DestReg(GR64)
  3281. // SrcReg(GR64) -> DestReg(VR128)
  3282. // SrcReg(GR64) -> DestReg(VR64)
  3283. if (X86::GR64RegClass.contains(DestReg)) {
  3284. if (X86::VR128XRegClass.contains(SrcReg))
  3285. // Copy from a VR128 register to a GR64 register.
  3286. return HasAVX512 ? X86::VMOVPQIto64Zrr :
  3287. HasAVX ? X86::VMOVPQIto64rr :
  3288. X86::MOVPQIto64rr;
  3289. if (X86::VR64RegClass.contains(SrcReg))
  3290. // Copy from a VR64 register to a GR64 register.
  3291. return X86::MMX_MOVD64from64rr;
  3292. } else if (X86::GR64RegClass.contains(SrcReg)) {
  3293. // Copy from a GR64 register to a VR128 register.
  3294. if (X86::VR128XRegClass.contains(DestReg))
  3295. return HasAVX512 ? X86::VMOV64toPQIZrr :
  3296. HasAVX ? X86::VMOV64toPQIrr :
  3297. X86::MOV64toPQIrr;
  3298. // Copy from a GR64 register to a VR64 register.
  3299. if (X86::VR64RegClass.contains(DestReg))
  3300. return X86::MMX_MOVD64to64rr;
  3301. }
  3302. // SrcReg(VR128) -> DestReg(GR32)
  3303. // SrcReg(GR32) -> DestReg(VR128)
  3304. if (X86::GR32RegClass.contains(DestReg) &&
  3305. X86::VR128XRegClass.contains(SrcReg))
  3306. // Copy from a VR128 register to a GR32 register.
  3307. return HasAVX512 ? X86::VMOVPDI2DIZrr :
  3308. HasAVX ? X86::VMOVPDI2DIrr :
  3309. X86::MOVPDI2DIrr;
  3310. if (X86::VR128XRegClass.contains(DestReg) &&
  3311. X86::GR32RegClass.contains(SrcReg))
  3312. // Copy from a VR128 register to a VR128 register.
  3313. return HasAVX512 ? X86::VMOVDI2PDIZrr :
  3314. HasAVX ? X86::VMOVDI2PDIrr :
  3315. X86::MOVDI2PDIrr;
  3316. return 0;
  3317. }
  3318. void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
  3319. MachineBasicBlock::iterator MI,
  3320. const DebugLoc &DL, MCRegister DestReg,
  3321. MCRegister SrcReg, bool KillSrc) const {
  3322. // First deal with the normal symmetric copies.
  3323. bool HasAVX = Subtarget.hasAVX();
  3324. bool HasVLX = Subtarget.hasVLX();
  3325. unsigned Opc = 0;
  3326. if (X86::GR64RegClass.contains(DestReg, SrcReg))
  3327. Opc = X86::MOV64rr;
  3328. else if (X86::GR32RegClass.contains(DestReg, SrcReg))
  3329. Opc = X86::MOV32rr;
  3330. else if (X86::GR16RegClass.contains(DestReg, SrcReg))
  3331. Opc = X86::MOV16rr;
  3332. else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
  3333. // Copying to or from a physical H register on x86-64 requires a NOREX
  3334. // move. Otherwise use a normal move.
  3335. if ((isHReg(DestReg) || isHReg(SrcReg)) &&
  3336. Subtarget.is64Bit()) {
  3337. Opc = X86::MOV8rr_NOREX;
  3338. // Both operands must be encodable without an REX prefix.
  3339. assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
  3340. "8-bit H register can not be copied outside GR8_NOREX");
  3341. } else
  3342. Opc = X86::MOV8rr;
  3343. }
  3344. else if (X86::VR64RegClass.contains(DestReg, SrcReg))
  3345. Opc = X86::MMX_MOVQ64rr;
  3346. else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
  3347. if (HasVLX)
  3348. Opc = X86::VMOVAPSZ128rr;
  3349. else if (X86::VR128RegClass.contains(DestReg, SrcReg))
  3350. Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
  3351. else {
  3352. // If this an extended register and we don't have VLX we need to use a
  3353. // 512-bit move.
  3354. Opc = X86::VMOVAPSZrr;
  3355. const TargetRegisterInfo *TRI = &getRegisterInfo();
  3356. DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
  3357. &X86::VR512RegClass);
  3358. SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
  3359. &X86::VR512RegClass);
  3360. }
  3361. } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
  3362. if (HasVLX)
  3363. Opc = X86::VMOVAPSZ256rr;
  3364. else if (X86::VR256RegClass.contains(DestReg, SrcReg))
  3365. Opc = X86::VMOVAPSYrr;
  3366. else {
  3367. // If this an extended register and we don't have VLX we need to use a
  3368. // 512-bit move.
  3369. Opc = X86::VMOVAPSZrr;
  3370. const TargetRegisterInfo *TRI = &getRegisterInfo();
  3371. DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
  3372. &X86::VR512RegClass);
  3373. SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
  3374. &X86::VR512RegClass);
  3375. }
  3376. } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
  3377. Opc = X86::VMOVAPSZrr;
  3378. // All KMASK RegClasses hold the same k registers, can be tested against anyone.
  3379. else if (X86::VK16RegClass.contains(DestReg, SrcReg))
  3380. Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
  3381. if (!Opc)
  3382. Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
  3383. if (Opc) {
  3384. BuildMI(MBB, MI, DL, get(Opc), DestReg)
  3385. .addReg(SrcReg, getKillRegState(KillSrc));
  3386. return;
  3387. }
  3388. if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
  3389. // FIXME: We use a fatal error here because historically LLVM has tried
  3390. // lower some of these physreg copies and we want to ensure we get
  3391. // reasonable bug reports if someone encounters a case no other testing
  3392. // found. This path should be removed after the LLVM 7 release.
  3393. report_fatal_error("Unable to copy EFLAGS physical register!");
  3394. }
  3395. LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
  3396. << RI.getName(DestReg) << '\n');
  3397. report_fatal_error("Cannot emit physreg copy instruction");
  3398. }
  3399. Optional<DestSourcePair>
  3400. X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
  3401. if (MI.isMoveReg())
  3402. return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
  3403. return None;
  3404. }
  3405. static unsigned getLoadStoreRegOpcode(Register Reg,
  3406. const TargetRegisterClass *RC,
  3407. bool IsStackAligned,
  3408. const X86Subtarget &STI, bool load) {
  3409. bool HasAVX = STI.hasAVX();
  3410. bool HasAVX512 = STI.hasAVX512();
  3411. bool HasVLX = STI.hasVLX();
  3412. switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
  3413. default:
  3414. llvm_unreachable("Unknown spill size");
  3415. case 1:
  3416. assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
  3417. if (STI.is64Bit())
  3418. // Copying to or from a physical H register on x86-64 requires a NOREX
  3419. // move. Otherwise use a normal move.
  3420. if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
  3421. return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
  3422. return load ? X86::MOV8rm : X86::MOV8mr;
  3423. case 2:
  3424. if (X86::VK16RegClass.hasSubClassEq(RC))
  3425. return load ? X86::KMOVWkm : X86::KMOVWmk;
  3426. if (X86::FR16XRegClass.hasSubClassEq(RC)) {
  3427. assert(STI.hasFP16());
  3428. return load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr;
  3429. }
  3430. assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
  3431. return load ? X86::MOV16rm : X86::MOV16mr;
  3432. case 4:
  3433. if (X86::GR32RegClass.hasSubClassEq(RC))
  3434. return load ? X86::MOV32rm : X86::MOV32mr;
  3435. if (X86::FR32XRegClass.hasSubClassEq(RC))
  3436. return load ?
  3437. (HasAVX512 ? X86::VMOVSSZrm_alt :
  3438. HasAVX ? X86::VMOVSSrm_alt :
  3439. X86::MOVSSrm_alt) :
  3440. (HasAVX512 ? X86::VMOVSSZmr :
  3441. HasAVX ? X86::VMOVSSmr :
  3442. X86::MOVSSmr);
  3443. if (X86::RFP32RegClass.hasSubClassEq(RC))
  3444. return load ? X86::LD_Fp32m : X86::ST_Fp32m;
  3445. if (X86::VK32RegClass.hasSubClassEq(RC)) {
  3446. assert(STI.hasBWI() && "KMOVD requires BWI");
  3447. return load ? X86::KMOVDkm : X86::KMOVDmk;
  3448. }
  3449. // All of these mask pair classes have the same spill size, the same kind
  3450. // of kmov instructions can be used with all of them.
  3451. if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
  3452. X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
  3453. X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
  3454. X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
  3455. X86::VK16PAIRRegClass.hasSubClassEq(RC))
  3456. return load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
  3457. llvm_unreachable("Unknown 4-byte regclass");
  3458. case 8:
  3459. if (X86::GR64RegClass.hasSubClassEq(RC))
  3460. return load ? X86::MOV64rm : X86::MOV64mr;
  3461. if (X86::FR64XRegClass.hasSubClassEq(RC))
  3462. return load ?
  3463. (HasAVX512 ? X86::VMOVSDZrm_alt :
  3464. HasAVX ? X86::VMOVSDrm_alt :
  3465. X86::MOVSDrm_alt) :
  3466. (HasAVX512 ? X86::VMOVSDZmr :
  3467. HasAVX ? X86::VMOVSDmr :
  3468. X86::MOVSDmr);
  3469. if (X86::VR64RegClass.hasSubClassEq(RC))
  3470. return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
  3471. if (X86::RFP64RegClass.hasSubClassEq(RC))
  3472. return load ? X86::LD_Fp64m : X86::ST_Fp64m;
  3473. if (X86::VK64RegClass.hasSubClassEq(RC)) {
  3474. assert(STI.hasBWI() && "KMOVQ requires BWI");
  3475. return load ? X86::KMOVQkm : X86::KMOVQmk;
  3476. }
  3477. llvm_unreachable("Unknown 8-byte regclass");
  3478. case 10:
  3479. assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
  3480. return load ? X86::LD_Fp80m : X86::ST_FpP80m;
  3481. case 16: {
  3482. if (X86::VR128XRegClass.hasSubClassEq(RC)) {
  3483. // If stack is realigned we can use aligned stores.
  3484. if (IsStackAligned)
  3485. return load ?
  3486. (HasVLX ? X86::VMOVAPSZ128rm :
  3487. HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
  3488. HasAVX ? X86::VMOVAPSrm :
  3489. X86::MOVAPSrm):
  3490. (HasVLX ? X86::VMOVAPSZ128mr :
  3491. HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
  3492. HasAVX ? X86::VMOVAPSmr :
  3493. X86::MOVAPSmr);
  3494. else
  3495. return load ?
  3496. (HasVLX ? X86::VMOVUPSZ128rm :
  3497. HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
  3498. HasAVX ? X86::VMOVUPSrm :
  3499. X86::MOVUPSrm):
  3500. (HasVLX ? X86::VMOVUPSZ128mr :
  3501. HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
  3502. HasAVX ? X86::VMOVUPSmr :
  3503. X86::MOVUPSmr);
  3504. }
  3505. llvm_unreachable("Unknown 16-byte regclass");
  3506. }
  3507. case 32:
  3508. assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
  3509. // If stack is realigned we can use aligned stores.
  3510. if (IsStackAligned)
  3511. return load ?
  3512. (HasVLX ? X86::VMOVAPSZ256rm :
  3513. HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
  3514. X86::VMOVAPSYrm) :
  3515. (HasVLX ? X86::VMOVAPSZ256mr :
  3516. HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
  3517. X86::VMOVAPSYmr);
  3518. else
  3519. return load ?
  3520. (HasVLX ? X86::VMOVUPSZ256rm :
  3521. HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
  3522. X86::VMOVUPSYrm) :
  3523. (HasVLX ? X86::VMOVUPSZ256mr :
  3524. HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
  3525. X86::VMOVUPSYmr);
  3526. case 64:
  3527. assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
  3528. assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
  3529. if (IsStackAligned)
  3530. return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
  3531. else
  3532. return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
  3533. }
  3534. }
  3535. Optional<ExtAddrMode>
  3536. X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI,
  3537. const TargetRegisterInfo *TRI) const {
  3538. const MCInstrDesc &Desc = MemI.getDesc();
  3539. int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
  3540. if (MemRefBegin < 0)
  3541. return None;
  3542. MemRefBegin += X86II::getOperandBias(Desc);
  3543. auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg);
  3544. if (!BaseOp.isReg()) // Can be an MO_FrameIndex
  3545. return None;
  3546. const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp);
  3547. // Displacement can be symbolic
  3548. if (!DispMO.isImm())
  3549. return None;
  3550. ExtAddrMode AM;
  3551. AM.BaseReg = BaseOp.getReg();
  3552. AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg();
  3553. AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm();
  3554. AM.Displacement = DispMO.getImm();
  3555. return AM;
  3556. }
  3557. bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI,
  3558. const Register Reg,
  3559. int64_t &ImmVal) const {
  3560. if (MI.getOpcode() != X86::MOV32ri && MI.getOpcode() != X86::MOV64ri)
  3561. return false;
  3562. // Mov Src can be a global address.
  3563. if (!MI.getOperand(1).isImm() || MI.getOperand(0).getReg() != Reg)
  3564. return false;
  3565. ImmVal = MI.getOperand(1).getImm();
  3566. return true;
  3567. }
  3568. bool X86InstrInfo::preservesZeroValueInReg(
  3569. const MachineInstr *MI, const Register NullValueReg,
  3570. const TargetRegisterInfo *TRI) const {
  3571. if (!MI->modifiesRegister(NullValueReg, TRI))
  3572. return true;
  3573. switch (MI->getOpcode()) {
  3574. // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax
  3575. // X.
  3576. case X86::SHR64ri:
  3577. case X86::SHR32ri:
  3578. case X86::SHL64ri:
  3579. case X86::SHL32ri:
  3580. assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() &&
  3581. "expected for shift opcode!");
  3582. return MI->getOperand(0).getReg() == NullValueReg &&
  3583. MI->getOperand(1).getReg() == NullValueReg;
  3584. // Zero extend of a sub-reg of NullValueReg into itself does not change the
  3585. // null value.
  3586. case X86::MOV32rr:
  3587. return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) {
  3588. return TRI->isSubRegisterEq(NullValueReg, MO.getReg());
  3589. });
  3590. default:
  3591. return false;
  3592. }
  3593. llvm_unreachable("Should be handled above!");
  3594. }
  3595. bool X86InstrInfo::getMemOperandsWithOffsetWidth(
  3596. const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps,
  3597. int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
  3598. const TargetRegisterInfo *TRI) const {
  3599. const MCInstrDesc &Desc = MemOp.getDesc();
  3600. int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
  3601. if (MemRefBegin < 0)
  3602. return false;
  3603. MemRefBegin += X86II::getOperandBias(Desc);
  3604. const MachineOperand *BaseOp =
  3605. &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
  3606. if (!BaseOp->isReg()) // Can be an MO_FrameIndex
  3607. return false;
  3608. if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
  3609. return false;
  3610. if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
  3611. X86::NoRegister)
  3612. return false;
  3613. const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
  3614. // Displacement can be symbolic
  3615. if (!DispMO.isImm())
  3616. return false;
  3617. Offset = DispMO.getImm();
  3618. if (!BaseOp->isReg())
  3619. return false;
  3620. OffsetIsScalable = false;
  3621. // FIXME: Relying on memoperands() may not be right thing to do here. Check
  3622. // with X86 maintainers, and fix it accordingly. For now, it is ok, since
  3623. // there is no use of `Width` for X86 back-end at the moment.
  3624. Width =
  3625. !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0;
  3626. BaseOps.push_back(BaseOp);
  3627. return true;
  3628. }
  3629. static unsigned getStoreRegOpcode(Register SrcReg,
  3630. const TargetRegisterClass *RC,
  3631. bool IsStackAligned,
  3632. const X86Subtarget &STI) {
  3633. return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false);
  3634. }
  3635. static unsigned getLoadRegOpcode(Register DestReg,
  3636. const TargetRegisterClass *RC,
  3637. bool IsStackAligned, const X86Subtarget &STI) {
  3638. return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true);
  3639. }
  3640. void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
  3641. MachineBasicBlock::iterator MI,
  3642. Register SrcReg, bool isKill, int FrameIdx,
  3643. const TargetRegisterClass *RC,
  3644. const TargetRegisterInfo *TRI) const {
  3645. const MachineFunction &MF = *MBB.getParent();
  3646. const MachineFrameInfo &MFI = MF.getFrameInfo();
  3647. assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
  3648. "Stack slot too small for store");
  3649. if (RC->getID() == X86::TILERegClassID) {
  3650. unsigned Opc = X86::TILESTORED;
  3651. // tilestored %tmm, (%sp, %idx)
  3652. MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
  3653. Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
  3654. BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
  3655. MachineInstr *NewMI =
  3656. addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
  3657. .addReg(SrcReg, getKillRegState(isKill));
  3658. MachineOperand &MO = NewMI->getOperand(2);
  3659. MO.setReg(VirtReg);
  3660. MO.setIsKill(true);
  3661. } else {
  3662. unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
  3663. bool isAligned =
  3664. (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
  3665. (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
  3666. unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
  3667. addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
  3668. .addReg(SrcReg, getKillRegState(isKill));
  3669. }
  3670. }
  3671. void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
  3672. MachineBasicBlock::iterator MI,
  3673. Register DestReg, int FrameIdx,
  3674. const TargetRegisterClass *RC,
  3675. const TargetRegisterInfo *TRI) const {
  3676. if (RC->getID() == X86::TILERegClassID) {
  3677. unsigned Opc = X86::TILELOADD;
  3678. // tileloadd (%sp, %idx), %tmm
  3679. MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
  3680. Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
  3681. MachineInstr *NewMI =
  3682. BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
  3683. NewMI = addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
  3684. FrameIdx);
  3685. MachineOperand &MO = NewMI->getOperand(3);
  3686. MO.setReg(VirtReg);
  3687. MO.setIsKill(true);
  3688. } else {
  3689. const MachineFunction &MF = *MBB.getParent();
  3690. const MachineFrameInfo &MFI = MF.getFrameInfo();
  3691. unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
  3692. bool isAligned =
  3693. (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
  3694. (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
  3695. unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
  3696. addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
  3697. FrameIdx);
  3698. }
  3699. }
  3700. bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
  3701. Register &SrcReg2, int64_t &CmpMask,
  3702. int64_t &CmpValue) const {
  3703. switch (MI.getOpcode()) {
  3704. default: break;
  3705. case X86::CMP64ri32:
  3706. case X86::CMP64ri8:
  3707. case X86::CMP32ri:
  3708. case X86::CMP32ri8:
  3709. case X86::CMP16ri:
  3710. case X86::CMP16ri8:
  3711. case X86::CMP8ri:
  3712. SrcReg = MI.getOperand(0).getReg();
  3713. SrcReg2 = 0;
  3714. if (MI.getOperand(1).isImm()) {
  3715. CmpMask = ~0;
  3716. CmpValue = MI.getOperand(1).getImm();
  3717. } else {
  3718. CmpMask = CmpValue = 0;
  3719. }
  3720. return true;
  3721. // A SUB can be used to perform comparison.
  3722. case X86::SUB64rm:
  3723. case X86::SUB32rm:
  3724. case X86::SUB16rm:
  3725. case X86::SUB8rm:
  3726. SrcReg = MI.getOperand(1).getReg();
  3727. SrcReg2 = 0;
  3728. CmpMask = 0;
  3729. CmpValue = 0;
  3730. return true;
  3731. case X86::SUB64rr:
  3732. case X86::SUB32rr:
  3733. case X86::SUB16rr:
  3734. case X86::SUB8rr:
  3735. SrcReg = MI.getOperand(1).getReg();
  3736. SrcReg2 = MI.getOperand(2).getReg();
  3737. CmpMask = 0;
  3738. CmpValue = 0;
  3739. return true;
  3740. case X86::SUB64ri32:
  3741. case X86::SUB64ri8:
  3742. case X86::SUB32ri:
  3743. case X86::SUB32ri8:
  3744. case X86::SUB16ri:
  3745. case X86::SUB16ri8:
  3746. case X86::SUB8ri:
  3747. SrcReg = MI.getOperand(1).getReg();
  3748. SrcReg2 = 0;
  3749. if (MI.getOperand(2).isImm()) {
  3750. CmpMask = ~0;
  3751. CmpValue = MI.getOperand(2).getImm();
  3752. } else {
  3753. CmpMask = CmpValue = 0;
  3754. }
  3755. return true;
  3756. case X86::CMP64rr:
  3757. case X86::CMP32rr:
  3758. case X86::CMP16rr:
  3759. case X86::CMP8rr:
  3760. SrcReg = MI.getOperand(0).getReg();
  3761. SrcReg2 = MI.getOperand(1).getReg();
  3762. CmpMask = 0;
  3763. CmpValue = 0;
  3764. return true;
  3765. case X86::TEST8rr:
  3766. case X86::TEST16rr:
  3767. case X86::TEST32rr:
  3768. case X86::TEST64rr:
  3769. SrcReg = MI.getOperand(0).getReg();
  3770. if (MI.getOperand(1).getReg() != SrcReg)
  3771. return false;
  3772. // Compare against zero.
  3773. SrcReg2 = 0;
  3774. CmpMask = ~0;
  3775. CmpValue = 0;
  3776. return true;
  3777. }
  3778. return false;
  3779. }
  3780. bool X86InstrInfo::isRedundantFlagInstr(const MachineInstr &FlagI,
  3781. Register SrcReg, Register SrcReg2,
  3782. int64_t ImmMask, int64_t ImmValue,
  3783. const MachineInstr &OI, bool *IsSwapped,
  3784. int64_t *ImmDelta) const {
  3785. switch (OI.getOpcode()) {
  3786. case X86::CMP64rr:
  3787. case X86::CMP32rr:
  3788. case X86::CMP16rr:
  3789. case X86::CMP8rr:
  3790. case X86::SUB64rr:
  3791. case X86::SUB32rr:
  3792. case X86::SUB16rr:
  3793. case X86::SUB8rr: {
  3794. Register OISrcReg;
  3795. Register OISrcReg2;
  3796. int64_t OIMask;
  3797. int64_t OIValue;
  3798. if (!analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) ||
  3799. OIMask != ImmMask || OIValue != ImmValue)
  3800. return false;
  3801. if (SrcReg == OISrcReg && SrcReg2 == OISrcReg2) {
  3802. *IsSwapped = false;
  3803. return true;
  3804. }
  3805. if (SrcReg == OISrcReg2 && SrcReg2 == OISrcReg) {
  3806. *IsSwapped = true;
  3807. return true;
  3808. }
  3809. return false;
  3810. }
  3811. case X86::CMP64ri32:
  3812. case X86::CMP64ri8:
  3813. case X86::CMP32ri:
  3814. case X86::CMP32ri8:
  3815. case X86::CMP16ri:
  3816. case X86::CMP16ri8:
  3817. case X86::CMP8ri:
  3818. case X86::SUB64ri32:
  3819. case X86::SUB64ri8:
  3820. case X86::SUB32ri:
  3821. case X86::SUB32ri8:
  3822. case X86::SUB16ri:
  3823. case X86::SUB16ri8:
  3824. case X86::SUB8ri:
  3825. case X86::TEST64rr:
  3826. case X86::TEST32rr:
  3827. case X86::TEST16rr:
  3828. case X86::TEST8rr: {
  3829. if (ImmMask != 0) {
  3830. Register OISrcReg;
  3831. Register OISrcReg2;
  3832. int64_t OIMask;
  3833. int64_t OIValue;
  3834. if (analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) &&
  3835. SrcReg == OISrcReg && ImmMask == OIMask) {
  3836. if (OIValue == ImmValue) {
  3837. *ImmDelta = 0;
  3838. return true;
  3839. } else if (static_cast<uint64_t>(ImmValue) ==
  3840. static_cast<uint64_t>(OIValue) - 1) {
  3841. *ImmDelta = -1;
  3842. return true;
  3843. } else if (static_cast<uint64_t>(ImmValue) ==
  3844. static_cast<uint64_t>(OIValue) + 1) {
  3845. *ImmDelta = 1;
  3846. return true;
  3847. } else {
  3848. return false;
  3849. }
  3850. }
  3851. }
  3852. return FlagI.isIdenticalTo(OI);
  3853. }
  3854. default:
  3855. return false;
  3856. }
  3857. }
  3858. /// Check whether the definition can be converted
  3859. /// to remove a comparison against zero.
  3860. inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag,
  3861. bool &ClearsOverflowFlag) {
  3862. NoSignFlag = false;
  3863. ClearsOverflowFlag = false;
  3864. switch (MI.getOpcode()) {
  3865. default: return false;
  3866. // The shift instructions only modify ZF if their shift count is non-zero.
  3867. // N.B.: The processor truncates the shift count depending on the encoding.
  3868. case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri:
  3869. case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri:
  3870. return getTruncatedShiftCount(MI, 2) != 0;
  3871. // Some left shift instructions can be turned into LEA instructions but only
  3872. // if their flags aren't used. Avoid transforming such instructions.
  3873. case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{
  3874. unsigned ShAmt = getTruncatedShiftCount(MI, 2);
  3875. if (isTruncatedShiftCountForLEA(ShAmt)) return false;
  3876. return ShAmt != 0;
  3877. }
  3878. case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
  3879. case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
  3880. return getTruncatedShiftCount(MI, 3) != 0;
  3881. case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
  3882. case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8:
  3883. case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr:
  3884. case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
  3885. case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
  3886. case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r:
  3887. case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
  3888. case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8:
  3889. case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
  3890. case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
  3891. case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
  3892. case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r:
  3893. case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
  3894. case X86::ADC32ri8: case X86::ADC16ri: case X86::ADC16ri8:
  3895. case X86::ADC8ri: case X86::ADC64rr: case X86::ADC32rr:
  3896. case X86::ADC16rr: case X86::ADC8rr: case X86::ADC64rm:
  3897. case X86::ADC32rm: case X86::ADC16rm: case X86::ADC8rm:
  3898. case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
  3899. case X86::SBB32ri8: case X86::SBB16ri: case X86::SBB16ri8:
  3900. case X86::SBB8ri: case X86::SBB64rr: case X86::SBB32rr:
  3901. case X86::SBB16rr: case X86::SBB8rr: case X86::SBB64rm:
  3902. case X86::SBB32rm: case X86::SBB16rm: case X86::SBB8rm:
  3903. case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
  3904. case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1:
  3905. case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1:
  3906. case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1:
  3907. case X86::LZCNT16rr: case X86::LZCNT16rm:
  3908. case X86::LZCNT32rr: case X86::LZCNT32rm:
  3909. case X86::LZCNT64rr: case X86::LZCNT64rm:
  3910. case X86::POPCNT16rr:case X86::POPCNT16rm:
  3911. case X86::POPCNT32rr:case X86::POPCNT32rm:
  3912. case X86::POPCNT64rr:case X86::POPCNT64rm:
  3913. case X86::TZCNT16rr: case X86::TZCNT16rm:
  3914. case X86::TZCNT32rr: case X86::TZCNT32rm:
  3915. case X86::TZCNT64rr: case X86::TZCNT64rm:
  3916. return true;
  3917. case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
  3918. case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8:
  3919. case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
  3920. case X86::AND16rr: case X86::AND8rr: case X86::AND64rm:
  3921. case X86::AND32rm: case X86::AND16rm: case X86::AND8rm:
  3922. case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
  3923. case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8:
  3924. case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr:
  3925. case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm:
  3926. case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm:
  3927. case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri:
  3928. case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8:
  3929. case X86::OR8ri: case X86::OR64rr: case X86::OR32rr:
  3930. case X86::OR16rr: case X86::OR8rr: case X86::OR64rm:
  3931. case X86::OR32rm: case X86::OR16rm: case X86::OR8rm:
  3932. case X86::ANDN32rr: case X86::ANDN32rm:
  3933. case X86::ANDN64rr: case X86::ANDN64rm:
  3934. case X86::BLSI32rr: case X86::BLSI32rm:
  3935. case X86::BLSI64rr: case X86::BLSI64rm:
  3936. case X86::BLSMSK32rr: case X86::BLSMSK32rm:
  3937. case X86::BLSMSK64rr: case X86::BLSMSK64rm:
  3938. case X86::BLSR32rr: case X86::BLSR32rm:
  3939. case X86::BLSR64rr: case X86::BLSR64rm:
  3940. case X86::BLCFILL32rr: case X86::BLCFILL32rm:
  3941. case X86::BLCFILL64rr: case X86::BLCFILL64rm:
  3942. case X86::BLCI32rr: case X86::BLCI32rm:
  3943. case X86::BLCI64rr: case X86::BLCI64rm:
  3944. case X86::BLCIC32rr: case X86::BLCIC32rm:
  3945. case X86::BLCIC64rr: case X86::BLCIC64rm:
  3946. case X86::BLCMSK32rr: case X86::BLCMSK32rm:
  3947. case X86::BLCMSK64rr: case X86::BLCMSK64rm:
  3948. case X86::BLCS32rr: case X86::BLCS32rm:
  3949. case X86::BLCS64rr: case X86::BLCS64rm:
  3950. case X86::BLSFILL32rr: case X86::BLSFILL32rm:
  3951. case X86::BLSFILL64rr: case X86::BLSFILL64rm:
  3952. case X86::BLSIC32rr: case X86::BLSIC32rm:
  3953. case X86::BLSIC64rr: case X86::BLSIC64rm:
  3954. case X86::BZHI32rr: case X86::BZHI32rm:
  3955. case X86::BZHI64rr: case X86::BZHI64rm:
  3956. case X86::T1MSKC32rr: case X86::T1MSKC32rm:
  3957. case X86::T1MSKC64rr: case X86::T1MSKC64rm:
  3958. case X86::TZMSK32rr: case X86::TZMSK32rm:
  3959. case X86::TZMSK64rr: case X86::TZMSK64rm:
  3960. // These instructions clear the overflow flag just like TEST.
  3961. // FIXME: These are not the only instructions in this switch that clear the
  3962. // overflow flag.
  3963. ClearsOverflowFlag = true;
  3964. return true;
  3965. case X86::BEXTR32rr: case X86::BEXTR64rr:
  3966. case X86::BEXTR32rm: case X86::BEXTR64rm:
  3967. case X86::BEXTRI32ri: case X86::BEXTRI32mi:
  3968. case X86::BEXTRI64ri: case X86::BEXTRI64mi:
  3969. // BEXTR doesn't update the sign flag so we can't use it. It does clear
  3970. // the overflow flag, but that's not useful without the sign flag.
  3971. NoSignFlag = true;
  3972. return true;
  3973. }
  3974. }
  3975. /// Check whether the use can be converted to remove a comparison against zero.
  3976. static X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
  3977. switch (MI.getOpcode()) {
  3978. default: return X86::COND_INVALID;
  3979. case X86::NEG8r:
  3980. case X86::NEG16r:
  3981. case X86::NEG32r:
  3982. case X86::NEG64r:
  3983. return X86::COND_AE;
  3984. case X86::LZCNT16rr:
  3985. case X86::LZCNT32rr:
  3986. case X86::LZCNT64rr:
  3987. return X86::COND_B;
  3988. case X86::POPCNT16rr:
  3989. case X86::POPCNT32rr:
  3990. case X86::POPCNT64rr:
  3991. return X86::COND_E;
  3992. case X86::TZCNT16rr:
  3993. case X86::TZCNT32rr:
  3994. case X86::TZCNT64rr:
  3995. return X86::COND_B;
  3996. case X86::BSF16rr:
  3997. case X86::BSF32rr:
  3998. case X86::BSF64rr:
  3999. case X86::BSR16rr:
  4000. case X86::BSR32rr:
  4001. case X86::BSR64rr:
  4002. return X86::COND_E;
  4003. case X86::BLSI32rr:
  4004. case X86::BLSI64rr:
  4005. return X86::COND_AE;
  4006. case X86::BLSR32rr:
  4007. case X86::BLSR64rr:
  4008. case X86::BLSMSK32rr:
  4009. case X86::BLSMSK64rr:
  4010. return X86::COND_B;
  4011. // TODO: TBM instructions.
  4012. }
  4013. }
  4014. /// Check if there exists an earlier instruction that
  4015. /// operates on the same source operands and sets flags in the same way as
  4016. /// Compare; remove Compare if possible.
  4017. bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
  4018. Register SrcReg2, int64_t CmpMask,
  4019. int64_t CmpValue,
  4020. const MachineRegisterInfo *MRI) const {
  4021. // Check whether we can replace SUB with CMP.
  4022. switch (CmpInstr.getOpcode()) {
  4023. default: break;
  4024. case X86::SUB64ri32:
  4025. case X86::SUB64ri8:
  4026. case X86::SUB32ri:
  4027. case X86::SUB32ri8:
  4028. case X86::SUB16ri:
  4029. case X86::SUB16ri8:
  4030. case X86::SUB8ri:
  4031. case X86::SUB64rm:
  4032. case X86::SUB32rm:
  4033. case X86::SUB16rm:
  4034. case X86::SUB8rm:
  4035. case X86::SUB64rr:
  4036. case X86::SUB32rr:
  4037. case X86::SUB16rr:
  4038. case X86::SUB8rr: {
  4039. if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
  4040. return false;
  4041. // There is no use of the destination register, we can replace SUB with CMP.
  4042. unsigned NewOpcode = 0;
  4043. switch (CmpInstr.getOpcode()) {
  4044. default: llvm_unreachable("Unreachable!");
  4045. case X86::SUB64rm: NewOpcode = X86::CMP64rm; break;
  4046. case X86::SUB32rm: NewOpcode = X86::CMP32rm; break;
  4047. case X86::SUB16rm: NewOpcode = X86::CMP16rm; break;
  4048. case X86::SUB8rm: NewOpcode = X86::CMP8rm; break;
  4049. case X86::SUB64rr: NewOpcode = X86::CMP64rr; break;
  4050. case X86::SUB32rr: NewOpcode = X86::CMP32rr; break;
  4051. case X86::SUB16rr: NewOpcode = X86::CMP16rr; break;
  4052. case X86::SUB8rr: NewOpcode = X86::CMP8rr; break;
  4053. case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
  4054. case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break;
  4055. case X86::SUB32ri: NewOpcode = X86::CMP32ri; break;
  4056. case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break;
  4057. case X86::SUB16ri: NewOpcode = X86::CMP16ri; break;
  4058. case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break;
  4059. case X86::SUB8ri: NewOpcode = X86::CMP8ri; break;
  4060. }
  4061. CmpInstr.setDesc(get(NewOpcode));
  4062. CmpInstr.RemoveOperand(0);
  4063. // Mutating this instruction invalidates any debug data associated with it.
  4064. CmpInstr.dropDebugNumber();
  4065. // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
  4066. if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
  4067. NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
  4068. return false;
  4069. }
  4070. }
  4071. // The following code tries to remove the comparison by re-using EFLAGS
  4072. // from earlier instructions.
  4073. bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
  4074. // Transformation currently requires SSA values.
  4075. if (SrcReg2.isPhysical())
  4076. return false;
  4077. MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
  4078. assert(SrcRegDef && "Must have a definition (SSA)");
  4079. MachineInstr *MI = nullptr;
  4080. MachineInstr *Sub = nullptr;
  4081. MachineInstr *Movr0Inst = nullptr;
  4082. bool NoSignFlag = false;
  4083. bool ClearsOverflowFlag = false;
  4084. bool ShouldUpdateCC = false;
  4085. bool IsSwapped = false;
  4086. X86::CondCode NewCC = X86::COND_INVALID;
  4087. int64_t ImmDelta = 0;
  4088. // Search backward from CmpInstr for the next instruction defining EFLAGS.
  4089. const TargetRegisterInfo *TRI = &getRegisterInfo();
  4090. MachineBasicBlock &CmpMBB = *CmpInstr.getParent();
  4091. MachineBasicBlock::reverse_iterator From =
  4092. std::next(MachineBasicBlock::reverse_iterator(CmpInstr));
  4093. for (MachineBasicBlock *MBB = &CmpMBB;;) {
  4094. for (MachineInstr &Inst : make_range(From, MBB->rend())) {
  4095. // Try to use EFLAGS from the instruction defining %SrcReg. Example:
  4096. // %eax = addl ...
  4097. // ... // EFLAGS not changed
  4098. // testl %eax, %eax // <-- can be removed
  4099. if (&Inst == SrcRegDef) {
  4100. if (IsCmpZero &&
  4101. isDefConvertible(Inst, NoSignFlag, ClearsOverflowFlag)) {
  4102. MI = &Inst;
  4103. break;
  4104. }
  4105. // Cannot find other candidates before definition of SrcReg.
  4106. return false;
  4107. }
  4108. if (Inst.modifiesRegister(X86::EFLAGS, TRI)) {
  4109. // Try to use EFLAGS produced by an instruction reading %SrcReg.
  4110. // Example:
  4111. // %eax = ...
  4112. // ...
  4113. // popcntl %eax
  4114. // ... // EFLAGS not changed
  4115. // testl %eax, %eax // <-- can be removed
  4116. if (IsCmpZero) {
  4117. NewCC = isUseDefConvertible(Inst);
  4118. if (NewCC != X86::COND_INVALID && Inst.getOperand(1).isReg() &&
  4119. Inst.getOperand(1).getReg() == SrcReg) {
  4120. ShouldUpdateCC = true;
  4121. MI = &Inst;
  4122. break;
  4123. }
  4124. }
  4125. // Try to use EFLAGS from an instruction with similar flag results.
  4126. // Example:
  4127. // sub x, y or cmp x, y
  4128. // ... // EFLAGS not changed
  4129. // cmp x, y // <-- can be removed
  4130. if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, CmpValue,
  4131. Inst, &IsSwapped, &ImmDelta)) {
  4132. Sub = &Inst;
  4133. break;
  4134. }
  4135. // MOV32r0 is implemented with xor which clobbers condition code. It is
  4136. // safe to move up, if the definition to EFLAGS is dead and earlier
  4137. // instructions do not read or write EFLAGS.
  4138. if (!Movr0Inst && Inst.getOpcode() == X86::MOV32r0 &&
  4139. Inst.registerDefIsDead(X86::EFLAGS, TRI)) {
  4140. Movr0Inst = &Inst;
  4141. continue;
  4142. }
  4143. // Cannot do anything for any other EFLAG changes.
  4144. return false;
  4145. }
  4146. }
  4147. if (MI || Sub)
  4148. break;
  4149. // Reached begin of basic block. Continue in predecessor if there is
  4150. // exactly one.
  4151. if (MBB->pred_size() != 1)
  4152. return false;
  4153. MBB = *MBB->pred_begin();
  4154. From = MBB->rbegin();
  4155. }
  4156. // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
  4157. // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
  4158. // If we are done with the basic block, we need to check whether EFLAGS is
  4159. // live-out.
  4160. bool FlagsMayLiveOut = true;
  4161. SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate;
  4162. MachineBasicBlock::iterator AfterCmpInstr =
  4163. std::next(MachineBasicBlock::iterator(CmpInstr));
  4164. for (MachineInstr &Instr : make_range(AfterCmpInstr, CmpMBB.end())) {
  4165. bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
  4166. bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
  4167. // We should check the usage if this instruction uses and updates EFLAGS.
  4168. if (!UseEFLAGS && ModifyEFLAGS) {
  4169. // It is safe to remove CmpInstr if EFLAGS is updated again.
  4170. FlagsMayLiveOut = false;
  4171. break;
  4172. }
  4173. if (!UseEFLAGS && !ModifyEFLAGS)
  4174. continue;
  4175. // EFLAGS is used by this instruction.
  4176. X86::CondCode OldCC = X86::COND_INVALID;
  4177. if (MI || IsSwapped || ImmDelta != 0) {
  4178. // We decode the condition code from opcode.
  4179. if (Instr.isBranch())
  4180. OldCC = X86::getCondFromBranch(Instr);
  4181. else {
  4182. OldCC = X86::getCondFromSETCC(Instr);
  4183. if (OldCC == X86::COND_INVALID)
  4184. OldCC = X86::getCondFromCMov(Instr);
  4185. }
  4186. if (OldCC == X86::COND_INVALID) return false;
  4187. }
  4188. X86::CondCode ReplacementCC = X86::COND_INVALID;
  4189. if (MI) {
  4190. switch (OldCC) {
  4191. default: break;
  4192. case X86::COND_A: case X86::COND_AE:
  4193. case X86::COND_B: case X86::COND_BE:
  4194. // CF is used, we can't perform this optimization.
  4195. return false;
  4196. case X86::COND_G: case X86::COND_GE:
  4197. case X86::COND_L: case X86::COND_LE:
  4198. case X86::COND_O: case X86::COND_NO:
  4199. // If OF is used, the instruction needs to clear it like CmpZero does.
  4200. if (!ClearsOverflowFlag)
  4201. return false;
  4202. break;
  4203. case X86::COND_S: case X86::COND_NS:
  4204. // If SF is used, but the instruction doesn't update the SF, then we
  4205. // can't do the optimization.
  4206. if (NoSignFlag)
  4207. return false;
  4208. break;
  4209. }
  4210. // If we're updating the condition code check if we have to reverse the
  4211. // condition.
  4212. if (ShouldUpdateCC)
  4213. switch (OldCC) {
  4214. default:
  4215. return false;
  4216. case X86::COND_E:
  4217. ReplacementCC = NewCC;
  4218. break;
  4219. case X86::COND_NE:
  4220. ReplacementCC = GetOppositeBranchCondition(NewCC);
  4221. break;
  4222. }
  4223. } else if (IsSwapped) {
  4224. // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
  4225. // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
  4226. // We swap the condition code and synthesize the new opcode.
  4227. ReplacementCC = getSwappedCondition(OldCC);
  4228. if (ReplacementCC == X86::COND_INVALID)
  4229. return false;
  4230. ShouldUpdateCC = true;
  4231. } else if (ImmDelta != 0) {
  4232. unsigned BitWidth = TRI->getRegSizeInBits(*MRI->getRegClass(SrcReg));
  4233. // Shift amount for min/max constants to adjust for 8/16/32 instruction
  4234. // sizes.
  4235. switch (OldCC) {
  4236. case X86::COND_L: // x <s (C + 1) --> x <=s C
  4237. if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
  4238. return false;
  4239. ReplacementCC = X86::COND_LE;
  4240. break;
  4241. case X86::COND_B: // x <u (C + 1) --> x <=u C
  4242. if (ImmDelta != 1 || CmpValue == 0)
  4243. return false;
  4244. ReplacementCC = X86::COND_BE;
  4245. break;
  4246. case X86::COND_GE: // x >=s (C + 1) --> x >s C
  4247. if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
  4248. return false;
  4249. ReplacementCC = X86::COND_G;
  4250. break;
  4251. case X86::COND_AE: // x >=u (C + 1) --> x >u C
  4252. if (ImmDelta != 1 || CmpValue == 0)
  4253. return false;
  4254. ReplacementCC = X86::COND_A;
  4255. break;
  4256. case X86::COND_G: // x >s (C - 1) --> x >=s C
  4257. if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
  4258. return false;
  4259. ReplacementCC = X86::COND_GE;
  4260. break;
  4261. case X86::COND_A: // x >u (C - 1) --> x >=u C
  4262. if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
  4263. return false;
  4264. ReplacementCC = X86::COND_AE;
  4265. break;
  4266. case X86::COND_LE: // x <=s (C - 1) --> x <s C
  4267. if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
  4268. return false;
  4269. ReplacementCC = X86::COND_L;
  4270. break;
  4271. case X86::COND_BE: // x <=u (C - 1) --> x <u C
  4272. if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
  4273. return false;
  4274. ReplacementCC = X86::COND_B;
  4275. break;
  4276. default:
  4277. return false;
  4278. }
  4279. ShouldUpdateCC = true;
  4280. }
  4281. if (ShouldUpdateCC && ReplacementCC != OldCC) {
  4282. // Push the MachineInstr to OpsToUpdate.
  4283. // If it is safe to remove CmpInstr, the condition code of these
  4284. // instructions will be modified.
  4285. OpsToUpdate.push_back(std::make_pair(&Instr, ReplacementCC));
  4286. }
  4287. if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
  4288. // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
  4289. FlagsMayLiveOut = false;
  4290. break;
  4291. }
  4292. }
  4293. // If we have to update users but EFLAGS is live-out abort, since we cannot
  4294. // easily find all of the users.
  4295. if ((MI != nullptr || ShouldUpdateCC) && FlagsMayLiveOut) {
  4296. for (MachineBasicBlock *Successor : CmpMBB.successors())
  4297. if (Successor->isLiveIn(X86::EFLAGS))
  4298. return false;
  4299. }
  4300. // The instruction to be updated is either Sub or MI.
  4301. assert((MI == nullptr || Sub == nullptr) && "Should not have Sub and MI set");
  4302. Sub = MI != nullptr ? MI : Sub;
  4303. MachineBasicBlock *SubBB = Sub->getParent();
  4304. // Move Movr0Inst to the appropriate place before Sub.
  4305. if (Movr0Inst) {
  4306. // Only move within the same block so we don't accidentally move to a
  4307. // block with higher execution frequency.
  4308. if (&CmpMBB != SubBB)
  4309. return false;
  4310. // Look backwards until we find a def that doesn't use the current EFLAGS.
  4311. MachineBasicBlock::reverse_iterator InsertI = Sub,
  4312. InsertE = Sub->getParent()->rend();
  4313. for (; InsertI != InsertE; ++InsertI) {
  4314. MachineInstr *Instr = &*InsertI;
  4315. if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
  4316. Instr->modifiesRegister(X86::EFLAGS, TRI)) {
  4317. Movr0Inst->getParent()->remove(Movr0Inst);
  4318. Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
  4319. Movr0Inst);
  4320. break;
  4321. }
  4322. }
  4323. if (InsertI == InsertE)
  4324. return false;
  4325. }
  4326. // Make sure Sub instruction defines EFLAGS and mark the def live.
  4327. MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS);
  4328. assert(FlagDef && "Unable to locate a def EFLAGS operand");
  4329. FlagDef->setIsDead(false);
  4330. CmpInstr.eraseFromParent();
  4331. // Modify the condition code of instructions in OpsToUpdate.
  4332. for (auto &Op : OpsToUpdate) {
  4333. Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
  4334. .setImm(Op.second);
  4335. }
  4336. // Add EFLAGS to block live-ins between CmpBB and block of flags producer.
  4337. for (MachineBasicBlock *MBB = &CmpMBB; MBB != SubBB;
  4338. MBB = *MBB->pred_begin()) {
  4339. assert(MBB->pred_size() == 1 && "Expected exactly one predecessor");
  4340. if (!MBB->isLiveIn(X86::EFLAGS))
  4341. MBB->addLiveIn(X86::EFLAGS);
  4342. }
  4343. return true;
  4344. }
  4345. /// Try to remove the load by folding it to a register
  4346. /// operand at the use. We fold the load instructions if load defines a virtual
  4347. /// register, the virtual register is used once in the same BB, and the
  4348. /// instructions in-between do not load or store, and have no side effects.
  4349. MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
  4350. const MachineRegisterInfo *MRI,
  4351. Register &FoldAsLoadDefReg,
  4352. MachineInstr *&DefMI) const {
  4353. // Check whether we can move DefMI here.
  4354. DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
  4355. assert(DefMI);
  4356. bool SawStore = false;
  4357. if (!DefMI->isSafeToMove(nullptr, SawStore))
  4358. return nullptr;
  4359. // Collect information about virtual register operands of MI.
  4360. SmallVector<unsigned, 1> SrcOperandIds;
  4361. for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
  4362. MachineOperand &MO = MI.getOperand(i);
  4363. if (!MO.isReg())
  4364. continue;
  4365. Register Reg = MO.getReg();
  4366. if (Reg != FoldAsLoadDefReg)
  4367. continue;
  4368. // Do not fold if we have a subreg use or a def.
  4369. if (MO.getSubReg() || MO.isDef())
  4370. return nullptr;
  4371. SrcOperandIds.push_back(i);
  4372. }
  4373. if (SrcOperandIds.empty())
  4374. return nullptr;
  4375. // Check whether we can fold the def into SrcOperandId.
  4376. if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
  4377. FoldAsLoadDefReg = 0;
  4378. return FoldMI;
  4379. }
  4380. return nullptr;
  4381. }
  4382. /// Expand a single-def pseudo instruction to a two-addr
  4383. /// instruction with two undef reads of the register being defined.
  4384. /// This is used for mapping:
  4385. /// %xmm4 = V_SET0
  4386. /// to:
  4387. /// %xmm4 = PXORrr undef %xmm4, undef %xmm4
  4388. ///
  4389. static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
  4390. const MCInstrDesc &Desc) {
  4391. assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
  4392. Register Reg = MIB.getReg(0);
  4393. MIB->setDesc(Desc);
  4394. // MachineInstr::addOperand() will insert explicit operands before any
  4395. // implicit operands.
  4396. MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
  4397. // But we don't trust that.
  4398. assert(MIB.getReg(1) == Reg &&
  4399. MIB.getReg(2) == Reg && "Misplaced operand");
  4400. return true;
  4401. }
  4402. /// Expand a single-def pseudo instruction to a two-addr
  4403. /// instruction with two %k0 reads.
  4404. /// This is used for mapping:
  4405. /// %k4 = K_SET1
  4406. /// to:
  4407. /// %k4 = KXNORrr %k0, %k0
  4408. static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc,
  4409. Register Reg) {
  4410. assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
  4411. MIB->setDesc(Desc);
  4412. MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
  4413. return true;
  4414. }
  4415. static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
  4416. bool MinusOne) {
  4417. MachineBasicBlock &MBB = *MIB->getParent();
  4418. const DebugLoc &DL = MIB->getDebugLoc();
  4419. Register Reg = MIB.getReg(0);
  4420. // Insert the XOR.
  4421. BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
  4422. .addReg(Reg, RegState::Undef)
  4423. .addReg(Reg, RegState::Undef);
  4424. // Turn the pseudo into an INC or DEC.
  4425. MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
  4426. MIB.addReg(Reg);
  4427. return true;
  4428. }
  4429. static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
  4430. const TargetInstrInfo &TII,
  4431. const X86Subtarget &Subtarget) {
  4432. MachineBasicBlock &MBB = *MIB->getParent();
  4433. const DebugLoc &DL = MIB->getDebugLoc();
  4434. int64_t Imm = MIB->getOperand(1).getImm();
  4435. assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
  4436. MachineBasicBlock::iterator I = MIB.getInstr();
  4437. int StackAdjustment;
  4438. if (Subtarget.is64Bit()) {
  4439. assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
  4440. MIB->getOpcode() == X86::MOV32ImmSExti8);
  4441. // Can't use push/pop lowering if the function might write to the red zone.
  4442. X86MachineFunctionInfo *X86FI =
  4443. MBB.getParent()->getInfo<X86MachineFunctionInfo>();
  4444. if (X86FI->getUsesRedZone()) {
  4445. MIB->setDesc(TII.get(MIB->getOpcode() ==
  4446. X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
  4447. return true;
  4448. }
  4449. // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
  4450. // widen the register if necessary.
  4451. StackAdjustment = 8;
  4452. BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
  4453. MIB->setDesc(TII.get(X86::POP64r));
  4454. MIB->getOperand(0)
  4455. .setReg(getX86SubSuperRegister(MIB.getReg(0), 64));
  4456. } else {
  4457. assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
  4458. StackAdjustment = 4;
  4459. BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
  4460. MIB->setDesc(TII.get(X86::POP32r));
  4461. }
  4462. MIB->RemoveOperand(1);
  4463. MIB->addImplicitDefUseOperands(*MBB.getParent());
  4464. // Build CFI if necessary.
  4465. MachineFunction &MF = *MBB.getParent();
  4466. const X86FrameLowering *TFL = Subtarget.getFrameLowering();
  4467. bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
  4468. bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
  4469. bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
  4470. if (EmitCFI) {
  4471. TFL->BuildCFI(MBB, I, DL,
  4472. MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
  4473. TFL->BuildCFI(MBB, std::next(I), DL,
  4474. MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
  4475. }
  4476. return true;
  4477. }
  4478. // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
  4479. // code sequence is needed for other targets.
  4480. static void expandLoadStackGuard(MachineInstrBuilder &MIB,
  4481. const TargetInstrInfo &TII) {
  4482. MachineBasicBlock &MBB = *MIB->getParent();
  4483. const DebugLoc &DL = MIB->getDebugLoc();
  4484. Register Reg = MIB.getReg(0);
  4485. const GlobalValue *GV =
  4486. cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
  4487. auto Flags = MachineMemOperand::MOLoad |
  4488. MachineMemOperand::MODereferenceable |
  4489. MachineMemOperand::MOInvariant;
  4490. MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
  4491. MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8));
  4492. MachineBasicBlock::iterator I = MIB.getInstr();
  4493. BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
  4494. .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
  4495. .addMemOperand(MMO);
  4496. MIB->setDebugLoc(DL);
  4497. MIB->setDesc(TII.get(X86::MOV64rm));
  4498. MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
  4499. }
  4500. static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
  4501. MachineBasicBlock &MBB = *MIB->getParent();
  4502. MachineFunction &MF = *MBB.getParent();
  4503. const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
  4504. const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
  4505. unsigned XorOp =
  4506. MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
  4507. MIB->setDesc(TII.get(XorOp));
  4508. MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
  4509. return true;
  4510. }
  4511. // This is used to handle spills for 128/256-bit registers when we have AVX512,
  4512. // but not VLX. If it uses an extended register we need to use an instruction
  4513. // that loads the lower 128/256-bit, but is available with only AVX512F.
  4514. static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
  4515. const TargetRegisterInfo *TRI,
  4516. const MCInstrDesc &LoadDesc,
  4517. const MCInstrDesc &BroadcastDesc,
  4518. unsigned SubIdx) {
  4519. Register DestReg = MIB.getReg(0);
  4520. // Check if DestReg is XMM16-31 or YMM16-31.
  4521. if (TRI->getEncodingValue(DestReg) < 16) {
  4522. // We can use a normal VEX encoded load.
  4523. MIB->setDesc(LoadDesc);
  4524. } else {
  4525. // Use a 128/256-bit VBROADCAST instruction.
  4526. MIB->setDesc(BroadcastDesc);
  4527. // Change the destination to a 512-bit register.
  4528. DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
  4529. MIB->getOperand(0).setReg(DestReg);
  4530. }
  4531. return true;
  4532. }
  4533. // This is used to handle spills for 128/256-bit registers when we have AVX512,
  4534. // but not VLX. If it uses an extended register we need to use an instruction
  4535. // that stores the lower 128/256-bit, but is available with only AVX512F.
  4536. static bool expandNOVLXStore(MachineInstrBuilder &MIB,
  4537. const TargetRegisterInfo *TRI,
  4538. const MCInstrDesc &StoreDesc,
  4539. const MCInstrDesc &ExtractDesc,
  4540. unsigned SubIdx) {
  4541. Register SrcReg = MIB.getReg(X86::AddrNumOperands);
  4542. // Check if DestReg is XMM16-31 or YMM16-31.
  4543. if (TRI->getEncodingValue(SrcReg) < 16) {
  4544. // We can use a normal VEX encoded store.
  4545. MIB->setDesc(StoreDesc);
  4546. } else {
  4547. // Use a VEXTRACTF instruction.
  4548. MIB->setDesc(ExtractDesc);
  4549. // Change the destination to a 512-bit register.
  4550. SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
  4551. MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
  4552. MIB.addImm(0x0); // Append immediate to extract from the lower bits.
  4553. }
  4554. return true;
  4555. }
  4556. static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
  4557. MIB->setDesc(Desc);
  4558. int64_t ShiftAmt = MIB->getOperand(2).getImm();
  4559. // Temporarily remove the immediate so we can add another source register.
  4560. MIB->RemoveOperand(2);
  4561. // Add the register. Don't copy the kill flag if there is one.
  4562. MIB.addReg(MIB.getReg(1),
  4563. getUndefRegState(MIB->getOperand(1).isUndef()));
  4564. // Add back the immediate.
  4565. MIB.addImm(ShiftAmt);
  4566. return true;
  4567. }
  4568. bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
  4569. bool HasAVX = Subtarget.hasAVX();
  4570. MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
  4571. switch (MI.getOpcode()) {
  4572. case X86::MOV32r0:
  4573. return Expand2AddrUndef(MIB, get(X86::XOR32rr));
  4574. case X86::MOV32r1:
  4575. return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
  4576. case X86::MOV32r_1:
  4577. return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
  4578. case X86::MOV32ImmSExti8:
  4579. case X86::MOV64ImmSExti8:
  4580. return ExpandMOVImmSExti8(MIB, *this, Subtarget);
  4581. case X86::SETB_C32r:
  4582. return Expand2AddrUndef(MIB, get(X86::SBB32rr));
  4583. case X86::SETB_C64r:
  4584. return Expand2AddrUndef(MIB, get(X86::SBB64rr));
  4585. case X86::MMX_SET0:
  4586. return Expand2AddrUndef(MIB, get(X86::MMX_PXORrr));
  4587. case X86::V_SET0:
  4588. case X86::FsFLD0SS:
  4589. case X86::FsFLD0SD:
  4590. case X86::FsFLD0F128:
  4591. return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
  4592. case X86::AVX_SET0: {
  4593. assert(HasAVX && "AVX not supported");
  4594. const TargetRegisterInfo *TRI = &getRegisterInfo();
  4595. Register SrcReg = MIB.getReg(0);
  4596. Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
  4597. MIB->getOperand(0).setReg(XReg);
  4598. Expand2AddrUndef(MIB, get(X86::VXORPSrr));
  4599. MIB.addReg(SrcReg, RegState::ImplicitDefine);
  4600. return true;
  4601. }
  4602. case X86::AVX512_128_SET0:
  4603. case X86::AVX512_FsFLD0SH:
  4604. case X86::AVX512_FsFLD0SS:
  4605. case X86::AVX512_FsFLD0SD:
  4606. case X86::AVX512_FsFLD0F128: {
  4607. bool HasVLX = Subtarget.hasVLX();
  4608. Register SrcReg = MIB.getReg(0);
  4609. const TargetRegisterInfo *TRI = &getRegisterInfo();
  4610. if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
  4611. return Expand2AddrUndef(MIB,
  4612. get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
  4613. // Extended register without VLX. Use a larger XOR.
  4614. SrcReg =
  4615. TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
  4616. MIB->getOperand(0).setReg(SrcReg);
  4617. return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
  4618. }
  4619. case X86::AVX512_256_SET0:
  4620. case X86::AVX512_512_SET0: {
  4621. bool HasVLX = Subtarget.hasVLX();
  4622. Register SrcReg = MIB.getReg(0);
  4623. const TargetRegisterInfo *TRI = &getRegisterInfo();
  4624. if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
  4625. Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
  4626. MIB->getOperand(0).setReg(XReg);
  4627. Expand2AddrUndef(MIB,
  4628. get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
  4629. MIB.addReg(SrcReg, RegState::ImplicitDefine);
  4630. return true;
  4631. }
  4632. if (MI.getOpcode() == X86::AVX512_256_SET0) {
  4633. // No VLX so we must reference a zmm.
  4634. unsigned ZReg =
  4635. TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
  4636. MIB->getOperand(0).setReg(ZReg);
  4637. }
  4638. return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
  4639. }
  4640. case X86::V_SETALLONES:
  4641. return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
  4642. case X86::AVX2_SETALLONES:
  4643. return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
  4644. case X86::AVX1_SETALLONES: {
  4645. Register Reg = MIB.getReg(0);
  4646. // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
  4647. MIB->setDesc(get(X86::VCMPPSYrri));
  4648. MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
  4649. return true;
  4650. }
  4651. case X86::AVX512_512_SETALLONES: {
  4652. Register Reg = MIB.getReg(0);
  4653. MIB->setDesc(get(X86::VPTERNLOGDZrri));
  4654. // VPTERNLOGD needs 3 register inputs and an immediate.
  4655. // 0xff will return 1s for any input.
  4656. MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
  4657. .addReg(Reg, RegState::Undef).addImm(0xff);
  4658. return true;
  4659. }
  4660. case X86::AVX512_512_SEXT_MASK_32:
  4661. case X86::AVX512_512_SEXT_MASK_64: {
  4662. Register Reg = MIB.getReg(0);
  4663. Register MaskReg = MIB.getReg(1);
  4664. unsigned MaskState = getRegState(MIB->getOperand(1));
  4665. unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
  4666. X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
  4667. MI.RemoveOperand(1);
  4668. MIB->setDesc(get(Opc));
  4669. // VPTERNLOG needs 3 register inputs and an immediate.
  4670. // 0xff will return 1s for any input.
  4671. MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
  4672. .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
  4673. return true;
  4674. }
  4675. case X86::VMOVAPSZ128rm_NOVLX:
  4676. return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
  4677. get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
  4678. case X86::VMOVUPSZ128rm_NOVLX:
  4679. return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
  4680. get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
  4681. case X86::VMOVAPSZ256rm_NOVLX:
  4682. return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
  4683. get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
  4684. case X86::VMOVUPSZ256rm_NOVLX:
  4685. return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
  4686. get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
  4687. case X86::VMOVAPSZ128mr_NOVLX:
  4688. return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
  4689. get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
  4690. case X86::VMOVUPSZ128mr_NOVLX:
  4691. return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
  4692. get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
  4693. case X86::VMOVAPSZ256mr_NOVLX:
  4694. return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
  4695. get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
  4696. case X86::VMOVUPSZ256mr_NOVLX:
  4697. return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
  4698. get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
  4699. case X86::MOV32ri64: {
  4700. Register Reg = MIB.getReg(0);
  4701. Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
  4702. MI.setDesc(get(X86::MOV32ri));
  4703. MIB->getOperand(0).setReg(Reg32);
  4704. MIB.addReg(Reg, RegState::ImplicitDefine);
  4705. return true;
  4706. }
  4707. // KNL does not recognize dependency-breaking idioms for mask registers,
  4708. // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
  4709. // Using %k0 as the undef input register is a performance heuristic based
  4710. // on the assumption that %k0 is used less frequently than the other mask
  4711. // registers, since it is not usable as a write mask.
  4712. // FIXME: A more advanced approach would be to choose the best input mask
  4713. // register based on context.
  4714. case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
  4715. case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
  4716. case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
  4717. case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
  4718. case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
  4719. case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
  4720. case TargetOpcode::LOAD_STACK_GUARD:
  4721. expandLoadStackGuard(MIB, *this);
  4722. return true;
  4723. case X86::XOR64_FP:
  4724. case X86::XOR32_FP:
  4725. return expandXorFP(MIB, *this);
  4726. case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8));
  4727. case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8));
  4728. case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8));
  4729. case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8));
  4730. case X86::ADD8rr_DB: MIB->setDesc(get(X86::OR8rr)); break;
  4731. case X86::ADD16rr_DB: MIB->setDesc(get(X86::OR16rr)); break;
  4732. case X86::ADD32rr_DB: MIB->setDesc(get(X86::OR32rr)); break;
  4733. case X86::ADD64rr_DB: MIB->setDesc(get(X86::OR64rr)); break;
  4734. case X86::ADD8ri_DB: MIB->setDesc(get(X86::OR8ri)); break;
  4735. case X86::ADD16ri_DB: MIB->setDesc(get(X86::OR16ri)); break;
  4736. case X86::ADD32ri_DB: MIB->setDesc(get(X86::OR32ri)); break;
  4737. case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break;
  4738. case X86::ADD16ri8_DB: MIB->setDesc(get(X86::OR16ri8)); break;
  4739. case X86::ADD32ri8_DB: MIB->setDesc(get(X86::OR32ri8)); break;
  4740. case X86::ADD64ri8_DB: MIB->setDesc(get(X86::OR64ri8)); break;
  4741. }
  4742. return false;
  4743. }
  4744. /// Return true for all instructions that only update
  4745. /// the first 32 or 64-bits of the destination register and leave the rest
  4746. /// unmodified. This can be used to avoid folding loads if the instructions
  4747. /// only update part of the destination register, and the non-updated part is
  4748. /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
  4749. /// instructions breaks the partial register dependency and it can improve
  4750. /// performance. e.g.:
  4751. ///
  4752. /// movss (%rdi), %xmm0
  4753. /// cvtss2sd %xmm0, %xmm0
  4754. ///
  4755. /// Instead of
  4756. /// cvtss2sd (%rdi), %xmm0
  4757. ///
  4758. /// FIXME: This should be turned into a TSFlags.
  4759. ///
  4760. static bool hasPartialRegUpdate(unsigned Opcode,
  4761. const X86Subtarget &Subtarget,
  4762. bool ForLoadFold = false) {
  4763. switch (Opcode) {
  4764. case X86::CVTSI2SSrr:
  4765. case X86::CVTSI2SSrm:
  4766. case X86::CVTSI642SSrr:
  4767. case X86::CVTSI642SSrm:
  4768. case X86::CVTSI2SDrr:
  4769. case X86::CVTSI2SDrm:
  4770. case X86::CVTSI642SDrr:
  4771. case X86::CVTSI642SDrm:
  4772. // Load folding won't effect the undef register update since the input is
  4773. // a GPR.
  4774. return !ForLoadFold;
  4775. case X86::CVTSD2SSrr:
  4776. case X86::CVTSD2SSrm:
  4777. case X86::CVTSS2SDrr:
  4778. case X86::CVTSS2SDrm:
  4779. case X86::MOVHPDrm:
  4780. case X86::MOVHPSrm:
  4781. case X86::MOVLPDrm:
  4782. case X86::MOVLPSrm:
  4783. case X86::RCPSSr:
  4784. case X86::RCPSSm:
  4785. case X86::RCPSSr_Int:
  4786. case X86::RCPSSm_Int:
  4787. case X86::ROUNDSDr:
  4788. case X86::ROUNDSDm:
  4789. case X86::ROUNDSSr:
  4790. case X86::ROUNDSSm:
  4791. case X86::RSQRTSSr:
  4792. case X86::RSQRTSSm:
  4793. case X86::RSQRTSSr_Int:
  4794. case X86::RSQRTSSm_Int:
  4795. case X86::SQRTSSr:
  4796. case X86::SQRTSSm:
  4797. case X86::SQRTSSr_Int:
  4798. case X86::SQRTSSm_Int:
  4799. case X86::SQRTSDr:
  4800. case X86::SQRTSDm:
  4801. case X86::SQRTSDr_Int:
  4802. case X86::SQRTSDm_Int:
  4803. return true;
  4804. // GPR
  4805. case X86::POPCNT32rm:
  4806. case X86::POPCNT32rr:
  4807. case X86::POPCNT64rm:
  4808. case X86::POPCNT64rr:
  4809. return Subtarget.hasPOPCNTFalseDeps();
  4810. case X86::LZCNT32rm:
  4811. case X86::LZCNT32rr:
  4812. case X86::LZCNT64rm:
  4813. case X86::LZCNT64rr:
  4814. case X86::TZCNT32rm:
  4815. case X86::TZCNT32rr:
  4816. case X86::TZCNT64rm:
  4817. case X86::TZCNT64rr:
  4818. return Subtarget.hasLZCNTFalseDeps();
  4819. }
  4820. return false;
  4821. }
  4822. /// Inform the BreakFalseDeps pass how many idle
  4823. /// instructions we would like before a partial register update.
  4824. unsigned X86InstrInfo::getPartialRegUpdateClearance(
  4825. const MachineInstr &MI, unsigned OpNum,
  4826. const TargetRegisterInfo *TRI) const {
  4827. if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
  4828. return 0;
  4829. // If MI is marked as reading Reg, the partial register update is wanted.
  4830. const MachineOperand &MO = MI.getOperand(0);
  4831. Register Reg = MO.getReg();
  4832. if (Reg.isVirtual()) {
  4833. if (MO.readsReg() || MI.readsVirtualRegister(Reg))
  4834. return 0;
  4835. } else {
  4836. if (MI.readsRegister(Reg, TRI))
  4837. return 0;
  4838. }
  4839. // If any instructions in the clearance range are reading Reg, insert a
  4840. // dependency breaking instruction, which is inexpensive and is likely to
  4841. // be hidden in other instruction's cycles.
  4842. return PartialRegUpdateClearance;
  4843. }
  4844. // Return true for any instruction the copies the high bits of the first source
  4845. // operand into the unused high bits of the destination operand.
  4846. // Also returns true for instructions that have two inputs where one may
  4847. // be undef and we want it to use the same register as the other input.
  4848. static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum,
  4849. bool ForLoadFold = false) {
  4850. // Set the OpNum parameter to the first source operand.
  4851. switch (Opcode) {
  4852. case X86::MMX_PUNPCKHBWrr:
  4853. case X86::MMX_PUNPCKHWDrr:
  4854. case X86::MMX_PUNPCKHDQrr:
  4855. case X86::MMX_PUNPCKLBWrr:
  4856. case X86::MMX_PUNPCKLWDrr:
  4857. case X86::MMX_PUNPCKLDQrr:
  4858. case X86::MOVHLPSrr:
  4859. case X86::PACKSSWBrr:
  4860. case X86::PACKUSWBrr:
  4861. case X86::PACKSSDWrr:
  4862. case X86::PACKUSDWrr:
  4863. case X86::PUNPCKHBWrr:
  4864. case X86::PUNPCKLBWrr:
  4865. case X86::PUNPCKHWDrr:
  4866. case X86::PUNPCKLWDrr:
  4867. case X86::PUNPCKHDQrr:
  4868. case X86::PUNPCKLDQrr:
  4869. case X86::PUNPCKHQDQrr:
  4870. case X86::PUNPCKLQDQrr:
  4871. case X86::SHUFPDrri:
  4872. case X86::SHUFPSrri:
  4873. // These instructions are sometimes used with an undef first or second
  4874. // source. Return true here so BreakFalseDeps will assign this source to the
  4875. // same register as the first source to avoid a false dependency.
  4876. // Operand 1 of these instructions is tied so they're separate from their
  4877. // VEX counterparts.
  4878. return OpNum == 2 && !ForLoadFold;
  4879. case X86::VMOVLHPSrr:
  4880. case X86::VMOVLHPSZrr:
  4881. case X86::VPACKSSWBrr:
  4882. case X86::VPACKUSWBrr:
  4883. case X86::VPACKSSDWrr:
  4884. case X86::VPACKUSDWrr:
  4885. case X86::VPACKSSWBZ128rr:
  4886. case X86::VPACKUSWBZ128rr:
  4887. case X86::VPACKSSDWZ128rr:
  4888. case X86::VPACKUSDWZ128rr:
  4889. case X86::VPERM2F128rr:
  4890. case X86::VPERM2I128rr:
  4891. case X86::VSHUFF32X4Z256rri:
  4892. case X86::VSHUFF32X4Zrri:
  4893. case X86::VSHUFF64X2Z256rri:
  4894. case X86::VSHUFF64X2Zrri:
  4895. case X86::VSHUFI32X4Z256rri:
  4896. case X86::VSHUFI32X4Zrri:
  4897. case X86::VSHUFI64X2Z256rri:
  4898. case X86::VSHUFI64X2Zrri:
  4899. case X86::VPUNPCKHBWrr:
  4900. case X86::VPUNPCKLBWrr:
  4901. case X86::VPUNPCKHBWYrr:
  4902. case X86::VPUNPCKLBWYrr:
  4903. case X86::VPUNPCKHBWZ128rr:
  4904. case X86::VPUNPCKLBWZ128rr:
  4905. case X86::VPUNPCKHBWZ256rr:
  4906. case X86::VPUNPCKLBWZ256rr:
  4907. case X86::VPUNPCKHBWZrr:
  4908. case X86::VPUNPCKLBWZrr:
  4909. case X86::VPUNPCKHWDrr:
  4910. case X86::VPUNPCKLWDrr:
  4911. case X86::VPUNPCKHWDYrr:
  4912. case X86::VPUNPCKLWDYrr:
  4913. case X86::VPUNPCKHWDZ128rr:
  4914. case X86::VPUNPCKLWDZ128rr:
  4915. case X86::VPUNPCKHWDZ256rr:
  4916. case X86::VPUNPCKLWDZ256rr:
  4917. case X86::VPUNPCKHWDZrr:
  4918. case X86::VPUNPCKLWDZrr:
  4919. case X86::VPUNPCKHDQrr:
  4920. case X86::VPUNPCKLDQrr:
  4921. case X86::VPUNPCKHDQYrr:
  4922. case X86::VPUNPCKLDQYrr:
  4923. case X86::VPUNPCKHDQZ128rr:
  4924. case X86::VPUNPCKLDQZ128rr:
  4925. case X86::VPUNPCKHDQZ256rr:
  4926. case X86::VPUNPCKLDQZ256rr:
  4927. case X86::VPUNPCKHDQZrr:
  4928. case X86::VPUNPCKLDQZrr:
  4929. case X86::VPUNPCKHQDQrr:
  4930. case X86::VPUNPCKLQDQrr:
  4931. case X86::VPUNPCKHQDQYrr:
  4932. case X86::VPUNPCKLQDQYrr:
  4933. case X86::VPUNPCKHQDQZ128rr:
  4934. case X86::VPUNPCKLQDQZ128rr:
  4935. case X86::VPUNPCKHQDQZ256rr:
  4936. case X86::VPUNPCKLQDQZ256rr:
  4937. case X86::VPUNPCKHQDQZrr:
  4938. case X86::VPUNPCKLQDQZrr:
  4939. // These instructions are sometimes used with an undef first or second
  4940. // source. Return true here so BreakFalseDeps will assign this source to the
  4941. // same register as the first source to avoid a false dependency.
  4942. return (OpNum == 1 || OpNum == 2) && !ForLoadFold;
  4943. case X86::VCVTSI2SSrr:
  4944. case X86::VCVTSI2SSrm:
  4945. case X86::VCVTSI2SSrr_Int:
  4946. case X86::VCVTSI2SSrm_Int:
  4947. case X86::VCVTSI642SSrr:
  4948. case X86::VCVTSI642SSrm:
  4949. case X86::VCVTSI642SSrr_Int:
  4950. case X86::VCVTSI642SSrm_Int:
  4951. case X86::VCVTSI2SDrr:
  4952. case X86::VCVTSI2SDrm:
  4953. case X86::VCVTSI2SDrr_Int:
  4954. case X86::VCVTSI2SDrm_Int:
  4955. case X86::VCVTSI642SDrr:
  4956. case X86::VCVTSI642SDrm:
  4957. case X86::VCVTSI642SDrr_Int:
  4958. case X86::VCVTSI642SDrm_Int:
  4959. // AVX-512
  4960. case X86::VCVTSI2SSZrr:
  4961. case X86::VCVTSI2SSZrm:
  4962. case X86::VCVTSI2SSZrr_Int:
  4963. case X86::VCVTSI2SSZrrb_Int:
  4964. case X86::VCVTSI2SSZrm_Int:
  4965. case X86::VCVTSI642SSZrr:
  4966. case X86::VCVTSI642SSZrm:
  4967. case X86::VCVTSI642SSZrr_Int:
  4968. case X86::VCVTSI642SSZrrb_Int:
  4969. case X86::VCVTSI642SSZrm_Int:
  4970. case X86::VCVTSI2SDZrr:
  4971. case X86::VCVTSI2SDZrm:
  4972. case X86::VCVTSI2SDZrr_Int:
  4973. case X86::VCVTSI2SDZrm_Int:
  4974. case X86::VCVTSI642SDZrr:
  4975. case X86::VCVTSI642SDZrm:
  4976. case X86::VCVTSI642SDZrr_Int:
  4977. case X86::VCVTSI642SDZrrb_Int:
  4978. case X86::VCVTSI642SDZrm_Int:
  4979. case X86::VCVTUSI2SSZrr:
  4980. case X86::VCVTUSI2SSZrm:
  4981. case X86::VCVTUSI2SSZrr_Int:
  4982. case X86::VCVTUSI2SSZrrb_Int:
  4983. case X86::VCVTUSI2SSZrm_Int:
  4984. case X86::VCVTUSI642SSZrr:
  4985. case X86::VCVTUSI642SSZrm:
  4986. case X86::VCVTUSI642SSZrr_Int:
  4987. case X86::VCVTUSI642SSZrrb_Int:
  4988. case X86::VCVTUSI642SSZrm_Int:
  4989. case X86::VCVTUSI2SDZrr:
  4990. case X86::VCVTUSI2SDZrm:
  4991. case X86::VCVTUSI2SDZrr_Int:
  4992. case X86::VCVTUSI2SDZrm_Int:
  4993. case X86::VCVTUSI642SDZrr:
  4994. case X86::VCVTUSI642SDZrm:
  4995. case X86::VCVTUSI642SDZrr_Int:
  4996. case X86::VCVTUSI642SDZrrb_Int:
  4997. case X86::VCVTUSI642SDZrm_Int:
  4998. case X86::VCVTSI2SHZrr:
  4999. case X86::VCVTSI2SHZrm:
  5000. case X86::VCVTSI2SHZrr_Int:
  5001. case X86::VCVTSI2SHZrrb_Int:
  5002. case X86::VCVTSI2SHZrm_Int:
  5003. case X86::VCVTSI642SHZrr:
  5004. case X86::VCVTSI642SHZrm:
  5005. case X86::VCVTSI642SHZrr_Int:
  5006. case X86::VCVTSI642SHZrrb_Int:
  5007. case X86::VCVTSI642SHZrm_Int:
  5008. case X86::VCVTUSI2SHZrr:
  5009. case X86::VCVTUSI2SHZrm:
  5010. case X86::VCVTUSI2SHZrr_Int:
  5011. case X86::VCVTUSI2SHZrrb_Int:
  5012. case X86::VCVTUSI2SHZrm_Int:
  5013. case X86::VCVTUSI642SHZrr:
  5014. case X86::VCVTUSI642SHZrm:
  5015. case X86::VCVTUSI642SHZrr_Int:
  5016. case X86::VCVTUSI642SHZrrb_Int:
  5017. case X86::VCVTUSI642SHZrm_Int:
  5018. // Load folding won't effect the undef register update since the input is
  5019. // a GPR.
  5020. return OpNum == 1 && !ForLoadFold;
  5021. case X86::VCVTSD2SSrr:
  5022. case X86::VCVTSD2SSrm:
  5023. case X86::VCVTSD2SSrr_Int:
  5024. case X86::VCVTSD2SSrm_Int:
  5025. case X86::VCVTSS2SDrr:
  5026. case X86::VCVTSS2SDrm:
  5027. case X86::VCVTSS2SDrr_Int:
  5028. case X86::VCVTSS2SDrm_Int:
  5029. case X86::VRCPSSr:
  5030. case X86::VRCPSSr_Int:
  5031. case X86::VRCPSSm:
  5032. case X86::VRCPSSm_Int:
  5033. case X86::VROUNDSDr:
  5034. case X86::VROUNDSDm:
  5035. case X86::VROUNDSDr_Int:
  5036. case X86::VROUNDSDm_Int:
  5037. case X86::VROUNDSSr:
  5038. case X86::VROUNDSSm:
  5039. case X86::VROUNDSSr_Int:
  5040. case X86::VROUNDSSm_Int:
  5041. case X86::VRSQRTSSr:
  5042. case X86::VRSQRTSSr_Int:
  5043. case X86::VRSQRTSSm:
  5044. case X86::VRSQRTSSm_Int:
  5045. case X86::VSQRTSSr:
  5046. case X86::VSQRTSSr_Int:
  5047. case X86::VSQRTSSm:
  5048. case X86::VSQRTSSm_Int:
  5049. case X86::VSQRTSDr:
  5050. case X86::VSQRTSDr_Int:
  5051. case X86::VSQRTSDm:
  5052. case X86::VSQRTSDm_Int:
  5053. // AVX-512
  5054. case X86::VCVTSD2SSZrr:
  5055. case X86::VCVTSD2SSZrr_Int:
  5056. case X86::VCVTSD2SSZrrb_Int:
  5057. case X86::VCVTSD2SSZrm:
  5058. case X86::VCVTSD2SSZrm_Int:
  5059. case X86::VCVTSS2SDZrr:
  5060. case X86::VCVTSS2SDZrr_Int:
  5061. case X86::VCVTSS2SDZrrb_Int:
  5062. case X86::VCVTSS2SDZrm:
  5063. case X86::VCVTSS2SDZrm_Int:
  5064. case X86::VGETEXPSDZr:
  5065. case X86::VGETEXPSDZrb:
  5066. case X86::VGETEXPSDZm:
  5067. case X86::VGETEXPSSZr:
  5068. case X86::VGETEXPSSZrb:
  5069. case X86::VGETEXPSSZm:
  5070. case X86::VGETMANTSDZrri:
  5071. case X86::VGETMANTSDZrrib:
  5072. case X86::VGETMANTSDZrmi:
  5073. case X86::VGETMANTSSZrri:
  5074. case X86::VGETMANTSSZrrib:
  5075. case X86::VGETMANTSSZrmi:
  5076. case X86::VRNDSCALESDZr:
  5077. case X86::VRNDSCALESDZr_Int:
  5078. case X86::VRNDSCALESDZrb_Int:
  5079. case X86::VRNDSCALESDZm:
  5080. case X86::VRNDSCALESDZm_Int:
  5081. case X86::VRNDSCALESSZr:
  5082. case X86::VRNDSCALESSZr_Int:
  5083. case X86::VRNDSCALESSZrb_Int:
  5084. case X86::VRNDSCALESSZm:
  5085. case X86::VRNDSCALESSZm_Int:
  5086. case X86::VRCP14SDZrr:
  5087. case X86::VRCP14SDZrm:
  5088. case X86::VRCP14SSZrr:
  5089. case X86::VRCP14SSZrm:
  5090. case X86::VRCPSHZrr:
  5091. case X86::VRCPSHZrm:
  5092. case X86::VRSQRTSHZrr:
  5093. case X86::VRSQRTSHZrm:
  5094. case X86::VREDUCESHZrmi:
  5095. case X86::VREDUCESHZrri:
  5096. case X86::VREDUCESHZrrib:
  5097. case X86::VGETEXPSHZr:
  5098. case X86::VGETEXPSHZrb:
  5099. case X86::VGETEXPSHZm:
  5100. case X86::VGETMANTSHZrri:
  5101. case X86::VGETMANTSHZrrib:
  5102. case X86::VGETMANTSHZrmi:
  5103. case X86::VRNDSCALESHZr:
  5104. case X86::VRNDSCALESHZr_Int:
  5105. case X86::VRNDSCALESHZrb_Int:
  5106. case X86::VRNDSCALESHZm:
  5107. case X86::VRNDSCALESHZm_Int:
  5108. case X86::VSQRTSHZr:
  5109. case X86::VSQRTSHZr_Int:
  5110. case X86::VSQRTSHZrb_Int:
  5111. case X86::VSQRTSHZm:
  5112. case X86::VSQRTSHZm_Int:
  5113. case X86::VRCP28SDZr:
  5114. case X86::VRCP28SDZrb:
  5115. case X86::VRCP28SDZm:
  5116. case X86::VRCP28SSZr:
  5117. case X86::VRCP28SSZrb:
  5118. case X86::VRCP28SSZm:
  5119. case X86::VREDUCESSZrmi:
  5120. case X86::VREDUCESSZrri:
  5121. case X86::VREDUCESSZrrib:
  5122. case X86::VRSQRT14SDZrr:
  5123. case X86::VRSQRT14SDZrm:
  5124. case X86::VRSQRT14SSZrr:
  5125. case X86::VRSQRT14SSZrm:
  5126. case X86::VRSQRT28SDZr:
  5127. case X86::VRSQRT28SDZrb:
  5128. case X86::VRSQRT28SDZm:
  5129. case X86::VRSQRT28SSZr:
  5130. case X86::VRSQRT28SSZrb:
  5131. case X86::VRSQRT28SSZm:
  5132. case X86::VSQRTSSZr:
  5133. case X86::VSQRTSSZr_Int:
  5134. case X86::VSQRTSSZrb_Int:
  5135. case X86::VSQRTSSZm:
  5136. case X86::VSQRTSSZm_Int:
  5137. case X86::VSQRTSDZr:
  5138. case X86::VSQRTSDZr_Int:
  5139. case X86::VSQRTSDZrb_Int:
  5140. case X86::VSQRTSDZm:
  5141. case X86::VSQRTSDZm_Int:
  5142. case X86::VCVTSD2SHZrr:
  5143. case X86::VCVTSD2SHZrr_Int:
  5144. case X86::VCVTSD2SHZrrb_Int:
  5145. case X86::VCVTSD2SHZrm:
  5146. case X86::VCVTSD2SHZrm_Int:
  5147. case X86::VCVTSS2SHZrr:
  5148. case X86::VCVTSS2SHZrr_Int:
  5149. case X86::VCVTSS2SHZrrb_Int:
  5150. case X86::VCVTSS2SHZrm:
  5151. case X86::VCVTSS2SHZrm_Int:
  5152. case X86::VCVTSH2SDZrr:
  5153. case X86::VCVTSH2SDZrr_Int:
  5154. case X86::VCVTSH2SDZrrb_Int:
  5155. case X86::VCVTSH2SDZrm:
  5156. case X86::VCVTSH2SDZrm_Int:
  5157. case X86::VCVTSH2SSZrr:
  5158. case X86::VCVTSH2SSZrr_Int:
  5159. case X86::VCVTSH2SSZrrb_Int:
  5160. case X86::VCVTSH2SSZrm:
  5161. case X86::VCVTSH2SSZrm_Int:
  5162. return OpNum == 1;
  5163. case X86::VMOVSSZrrk:
  5164. case X86::VMOVSDZrrk:
  5165. return OpNum == 3 && !ForLoadFold;
  5166. case X86::VMOVSSZrrkz:
  5167. case X86::VMOVSDZrrkz:
  5168. return OpNum == 2 && !ForLoadFold;
  5169. }
  5170. return false;
  5171. }
  5172. /// Inform the BreakFalseDeps pass how many idle instructions we would like
  5173. /// before certain undef register reads.
  5174. ///
  5175. /// This catches the VCVTSI2SD family of instructions:
  5176. ///
  5177. /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
  5178. ///
  5179. /// We should to be careful *not* to catch VXOR idioms which are presumably
  5180. /// handled specially in the pipeline:
  5181. ///
  5182. /// vxorps undef %xmm1, undef %xmm1, %xmm1
  5183. ///
  5184. /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
  5185. /// high bits that are passed-through are not live.
  5186. unsigned
  5187. X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
  5188. const TargetRegisterInfo *TRI) const {
  5189. const MachineOperand &MO = MI.getOperand(OpNum);
  5190. if (Register::isPhysicalRegister(MO.getReg()) &&
  5191. hasUndefRegUpdate(MI.getOpcode(), OpNum))
  5192. return UndefRegClearance;
  5193. return 0;
  5194. }
  5195. void X86InstrInfo::breakPartialRegDependency(
  5196. MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
  5197. Register Reg = MI.getOperand(OpNum).getReg();
  5198. // If MI kills this register, the false dependence is already broken.
  5199. if (MI.killsRegister(Reg, TRI))
  5200. return;
  5201. if (X86::VR128RegClass.contains(Reg)) {
  5202. // These instructions are all floating point domain, so xorps is the best
  5203. // choice.
  5204. unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
  5205. BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
  5206. .addReg(Reg, RegState::Undef)
  5207. .addReg(Reg, RegState::Undef);
  5208. MI.addRegisterKilled(Reg, TRI, true);
  5209. } else if (X86::VR256RegClass.contains(Reg)) {
  5210. // Use vxorps to clear the full ymm register.
  5211. // It wants to read and write the xmm sub-register.
  5212. Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
  5213. BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
  5214. .addReg(XReg, RegState::Undef)
  5215. .addReg(XReg, RegState::Undef)
  5216. .addReg(Reg, RegState::ImplicitDefine);
  5217. MI.addRegisterKilled(Reg, TRI, true);
  5218. } else if (X86::GR64RegClass.contains(Reg)) {
  5219. // Using XOR32rr because it has shorter encoding and zeros up the upper bits
  5220. // as well.
  5221. Register XReg = TRI->getSubReg(Reg, X86::sub_32bit);
  5222. BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
  5223. .addReg(XReg, RegState::Undef)
  5224. .addReg(XReg, RegState::Undef)
  5225. .addReg(Reg, RegState::ImplicitDefine);
  5226. MI.addRegisterKilled(Reg, TRI, true);
  5227. } else if (X86::GR32RegClass.contains(Reg)) {
  5228. BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
  5229. .addReg(Reg, RegState::Undef)
  5230. .addReg(Reg, RegState::Undef);
  5231. MI.addRegisterKilled(Reg, TRI, true);
  5232. }
  5233. }
  5234. static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
  5235. int PtrOffset = 0) {
  5236. unsigned NumAddrOps = MOs.size();
  5237. if (NumAddrOps < 4) {
  5238. // FrameIndex only - add an immediate offset (whether its zero or not).
  5239. for (unsigned i = 0; i != NumAddrOps; ++i)
  5240. MIB.add(MOs[i]);
  5241. addOffset(MIB, PtrOffset);
  5242. } else {
  5243. // General Memory Addressing - we need to add any offset to an existing
  5244. // offset.
  5245. assert(MOs.size() == 5 && "Unexpected memory operand list length");
  5246. for (unsigned i = 0; i != NumAddrOps; ++i) {
  5247. const MachineOperand &MO = MOs[i];
  5248. if (i == 3 && PtrOffset != 0) {
  5249. MIB.addDisp(MO, PtrOffset);
  5250. } else {
  5251. MIB.add(MO);
  5252. }
  5253. }
  5254. }
  5255. }
  5256. static void updateOperandRegConstraints(MachineFunction &MF,
  5257. MachineInstr &NewMI,
  5258. const TargetInstrInfo &TII) {
  5259. MachineRegisterInfo &MRI = MF.getRegInfo();
  5260. const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
  5261. for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
  5262. MachineOperand &MO = NewMI.getOperand(Idx);
  5263. // We only need to update constraints on virtual register operands.
  5264. if (!MO.isReg())
  5265. continue;
  5266. Register Reg = MO.getReg();
  5267. if (!Reg.isVirtual())
  5268. continue;
  5269. auto *NewRC = MRI.constrainRegClass(
  5270. Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
  5271. if (!NewRC) {
  5272. LLVM_DEBUG(
  5273. dbgs() << "WARNING: Unable to update register constraint for operand "
  5274. << Idx << " of instruction:\n";
  5275. NewMI.dump(); dbgs() << "\n");
  5276. }
  5277. }
  5278. }
  5279. static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
  5280. ArrayRef<MachineOperand> MOs,
  5281. MachineBasicBlock::iterator InsertPt,
  5282. MachineInstr &MI,
  5283. const TargetInstrInfo &TII) {
  5284. // Create the base instruction with the memory operand as the first part.
  5285. // Omit the implicit operands, something BuildMI can't do.
  5286. MachineInstr *NewMI =
  5287. MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
  5288. MachineInstrBuilder MIB(MF, NewMI);
  5289. addOperands(MIB, MOs);
  5290. // Loop over the rest of the ri operands, converting them over.
  5291. unsigned NumOps = MI.getDesc().getNumOperands() - 2;
  5292. for (unsigned i = 0; i != NumOps; ++i) {
  5293. MachineOperand &MO = MI.getOperand(i + 2);
  5294. MIB.add(MO);
  5295. }
  5296. for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), NumOps + 2))
  5297. MIB.add(MO);
  5298. updateOperandRegConstraints(MF, *NewMI, TII);
  5299. MachineBasicBlock *MBB = InsertPt->getParent();
  5300. MBB->insert(InsertPt, NewMI);
  5301. return MIB;
  5302. }
  5303. static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
  5304. unsigned OpNo, ArrayRef<MachineOperand> MOs,
  5305. MachineBasicBlock::iterator InsertPt,
  5306. MachineInstr &MI, const TargetInstrInfo &TII,
  5307. int PtrOffset = 0) {
  5308. // Omit the implicit operands, something BuildMI can't do.
  5309. MachineInstr *NewMI =
  5310. MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
  5311. MachineInstrBuilder MIB(MF, NewMI);
  5312. for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
  5313. MachineOperand &MO = MI.getOperand(i);
  5314. if (i == OpNo) {
  5315. assert(MO.isReg() && "Expected to fold into reg operand!");
  5316. addOperands(MIB, MOs, PtrOffset);
  5317. } else {
  5318. MIB.add(MO);
  5319. }
  5320. }
  5321. updateOperandRegConstraints(MF, *NewMI, TII);
  5322. // Copy the NoFPExcept flag from the instruction we're fusing.
  5323. if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
  5324. NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept);
  5325. MachineBasicBlock *MBB = InsertPt->getParent();
  5326. MBB->insert(InsertPt, NewMI);
  5327. return MIB;
  5328. }
  5329. static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
  5330. ArrayRef<MachineOperand> MOs,
  5331. MachineBasicBlock::iterator InsertPt,
  5332. MachineInstr &MI) {
  5333. MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
  5334. MI.getDebugLoc(), TII.get(Opcode));
  5335. addOperands(MIB, MOs);
  5336. return MIB.addImm(0);
  5337. }
  5338. MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
  5339. MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
  5340. ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
  5341. unsigned Size, Align Alignment) const {
  5342. switch (MI.getOpcode()) {
  5343. case X86::INSERTPSrr:
  5344. case X86::VINSERTPSrr:
  5345. case X86::VINSERTPSZrr:
  5346. // Attempt to convert the load of inserted vector into a fold load
  5347. // of a single float.
  5348. if (OpNum == 2) {
  5349. unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
  5350. unsigned ZMask = Imm & 15;
  5351. unsigned DstIdx = (Imm >> 4) & 3;
  5352. unsigned SrcIdx = (Imm >> 6) & 3;
  5353. const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
  5354. const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
  5355. unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
  5356. if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(4)) {
  5357. int PtrOffset = SrcIdx * 4;
  5358. unsigned NewImm = (DstIdx << 4) | ZMask;
  5359. unsigned NewOpCode =
  5360. (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
  5361. (MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm :
  5362. X86::INSERTPSrm;
  5363. MachineInstr *NewMI =
  5364. FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
  5365. NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
  5366. return NewMI;
  5367. }
  5368. }
  5369. break;
  5370. case X86::MOVHLPSrr:
  5371. case X86::VMOVHLPSrr:
  5372. case X86::VMOVHLPSZrr:
  5373. // Move the upper 64-bits of the second operand to the lower 64-bits.
  5374. // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
  5375. // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
  5376. if (OpNum == 2) {
  5377. const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
  5378. const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
  5379. unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
  5380. if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) {
  5381. unsigned NewOpCode =
  5382. (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
  5383. (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm :
  5384. X86::MOVLPSrm;
  5385. MachineInstr *NewMI =
  5386. FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
  5387. return NewMI;
  5388. }
  5389. }
  5390. break;
  5391. case X86::UNPCKLPDrr:
  5392. // If we won't be able to fold this to the memory form of UNPCKL, use
  5393. // MOVHPD instead. Done as custom because we can't have this in the load
  5394. // table twice.
  5395. if (OpNum == 2) {
  5396. const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
  5397. const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
  5398. unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
  5399. if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) {
  5400. MachineInstr *NewMI =
  5401. FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
  5402. return NewMI;
  5403. }
  5404. }
  5405. break;
  5406. }
  5407. return nullptr;
  5408. }
  5409. static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
  5410. MachineInstr &MI) {
  5411. if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/true) ||
  5412. !MI.getOperand(1).isReg())
  5413. return false;
  5414. // The are two cases we need to handle depending on where in the pipeline
  5415. // the folding attempt is being made.
  5416. // -Register has the undef flag set.
  5417. // -Register is produced by the IMPLICIT_DEF instruction.
  5418. if (MI.getOperand(1).isUndef())
  5419. return true;
  5420. MachineRegisterInfo &RegInfo = MF.getRegInfo();
  5421. MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
  5422. return VRegDef && VRegDef->isImplicitDef();
  5423. }
  5424. MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
  5425. MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
  5426. ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
  5427. unsigned Size, Align Alignment, bool AllowCommute) const {
  5428. bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
  5429. bool isTwoAddrFold = false;
  5430. // For CPUs that favor the register form of a call or push,
  5431. // do not fold loads into calls or pushes, unless optimizing for size
  5432. // aggressively.
  5433. if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
  5434. (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
  5435. MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
  5436. MI.getOpcode() == X86::PUSH64r))
  5437. return nullptr;
  5438. // Avoid partial and undef register update stalls unless optimizing for size.
  5439. if (!MF.getFunction().hasOptSize() &&
  5440. (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
  5441. shouldPreventUndefRegUpdateMemFold(MF, MI)))
  5442. return nullptr;
  5443. unsigned NumOps = MI.getDesc().getNumOperands();
  5444. bool isTwoAddr =
  5445. NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
  5446. // FIXME: AsmPrinter doesn't know how to handle
  5447. // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
  5448. if (MI.getOpcode() == X86::ADD32ri &&
  5449. MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
  5450. return nullptr;
  5451. // GOTTPOFF relocation loads can only be folded into add instructions.
  5452. // FIXME: Need to exclude other relocations that only support specific
  5453. // instructions.
  5454. if (MOs.size() == X86::AddrNumOperands &&
  5455. MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
  5456. MI.getOpcode() != X86::ADD64rr)
  5457. return nullptr;
  5458. MachineInstr *NewMI = nullptr;
  5459. // Attempt to fold any custom cases we have.
  5460. if (MachineInstr *CustomMI = foldMemoryOperandCustom(
  5461. MF, MI, OpNum, MOs, InsertPt, Size, Alignment))
  5462. return CustomMI;
  5463. const X86MemoryFoldTableEntry *I = nullptr;
  5464. // Folding a memory location into the two-address part of a two-address
  5465. // instruction is different than folding it other places. It requires
  5466. // replacing the *two* registers with the memory location.
  5467. if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
  5468. MI.getOperand(1).isReg() &&
  5469. MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
  5470. I = lookupTwoAddrFoldTable(MI.getOpcode());
  5471. isTwoAddrFold = true;
  5472. } else {
  5473. if (OpNum == 0) {
  5474. if (MI.getOpcode() == X86::MOV32r0) {
  5475. NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
  5476. if (NewMI)
  5477. return NewMI;
  5478. }
  5479. }
  5480. I = lookupFoldTable(MI.getOpcode(), OpNum);
  5481. }
  5482. if (I != nullptr) {
  5483. unsigned Opcode = I->DstOp;
  5484. bool FoldedLoad =
  5485. isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_LOAD) || OpNum > 0;
  5486. bool FoldedStore =
  5487. isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_STORE);
  5488. MaybeAlign MinAlign =
  5489. decodeMaybeAlign((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT);
  5490. if (MinAlign && Alignment < *MinAlign)
  5491. return nullptr;
  5492. bool NarrowToMOV32rm = false;
  5493. if (Size) {
  5494. const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
  5495. const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
  5496. &RI, MF);
  5497. unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
  5498. // Check if it's safe to fold the load. If the size of the object is
  5499. // narrower than the load width, then it's not.
  5500. // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
  5501. if (FoldedLoad && Size < RCSize) {
  5502. // If this is a 64-bit load, but the spill slot is 32, then we can do
  5503. // a 32-bit load which is implicitly zero-extended. This likely is
  5504. // due to live interval analysis remat'ing a load from stack slot.
  5505. if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
  5506. return nullptr;
  5507. if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
  5508. return nullptr;
  5509. Opcode = X86::MOV32rm;
  5510. NarrowToMOV32rm = true;
  5511. }
  5512. // For stores, make sure the size of the object is equal to the size of
  5513. // the store. If the object is larger, the extra bits would be garbage. If
  5514. // the object is smaller we might overwrite another object or fault.
  5515. if (FoldedStore && Size != RCSize)
  5516. return nullptr;
  5517. }
  5518. if (isTwoAddrFold)
  5519. NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
  5520. else
  5521. NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
  5522. if (NarrowToMOV32rm) {
  5523. // If this is the special case where we use a MOV32rm to load a 32-bit
  5524. // value and zero-extend the top bits. Change the destination register
  5525. // to a 32-bit one.
  5526. Register DstReg = NewMI->getOperand(0).getReg();
  5527. if (DstReg.isPhysical())
  5528. NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
  5529. else
  5530. NewMI->getOperand(0).setSubReg(X86::sub_32bit);
  5531. }
  5532. return NewMI;
  5533. }
  5534. // If the instruction and target operand are commutable, commute the
  5535. // instruction and try again.
  5536. if (AllowCommute) {
  5537. unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
  5538. if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
  5539. bool HasDef = MI.getDesc().getNumDefs();
  5540. Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
  5541. Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
  5542. Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
  5543. bool Tied1 =
  5544. 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
  5545. bool Tied2 =
  5546. 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
  5547. // If either of the commutable operands are tied to the destination
  5548. // then we can not commute + fold.
  5549. if ((HasDef && Reg0 == Reg1 && Tied1) ||
  5550. (HasDef && Reg0 == Reg2 && Tied2))
  5551. return nullptr;
  5552. MachineInstr *CommutedMI =
  5553. commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
  5554. if (!CommutedMI) {
  5555. // Unable to commute.
  5556. return nullptr;
  5557. }
  5558. if (CommutedMI != &MI) {
  5559. // New instruction. We can't fold from this.
  5560. CommutedMI->eraseFromParent();
  5561. return nullptr;
  5562. }
  5563. // Attempt to fold with the commuted version of the instruction.
  5564. NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size,
  5565. Alignment, /*AllowCommute=*/false);
  5566. if (NewMI)
  5567. return NewMI;
  5568. // Folding failed again - undo the commute before returning.
  5569. MachineInstr *UncommutedMI =
  5570. commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
  5571. if (!UncommutedMI) {
  5572. // Unable to commute.
  5573. return nullptr;
  5574. }
  5575. if (UncommutedMI != &MI) {
  5576. // New instruction. It doesn't need to be kept.
  5577. UncommutedMI->eraseFromParent();
  5578. return nullptr;
  5579. }
  5580. // Return here to prevent duplicate fuse failure report.
  5581. return nullptr;
  5582. }
  5583. }
  5584. // No fusion
  5585. if (PrintFailedFusing && !MI.isCopy())
  5586. dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
  5587. return nullptr;
  5588. }
  5589. MachineInstr *
  5590. X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
  5591. ArrayRef<unsigned> Ops,
  5592. MachineBasicBlock::iterator InsertPt,
  5593. int FrameIndex, LiveIntervals *LIS,
  5594. VirtRegMap *VRM) const {
  5595. // Check switch flag
  5596. if (NoFusing)
  5597. return nullptr;
  5598. // Avoid partial and undef register update stalls unless optimizing for size.
  5599. if (!MF.getFunction().hasOptSize() &&
  5600. (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
  5601. shouldPreventUndefRegUpdateMemFold(MF, MI)))
  5602. return nullptr;
  5603. // Don't fold subreg spills, or reloads that use a high subreg.
  5604. for (auto Op : Ops) {
  5605. MachineOperand &MO = MI.getOperand(Op);
  5606. auto SubReg = MO.getSubReg();
  5607. if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
  5608. return nullptr;
  5609. }
  5610. const MachineFrameInfo &MFI = MF.getFrameInfo();
  5611. unsigned Size = MFI.getObjectSize(FrameIndex);
  5612. Align Alignment = MFI.getObjectAlign(FrameIndex);
  5613. // If the function stack isn't realigned we don't want to fold instructions
  5614. // that need increased alignment.
  5615. if (!RI.hasStackRealignment(MF))
  5616. Alignment =
  5617. std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign());
  5618. if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
  5619. unsigned NewOpc = 0;
  5620. unsigned RCSize = 0;
  5621. switch (MI.getOpcode()) {
  5622. default: return nullptr;
  5623. case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
  5624. case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
  5625. case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
  5626. case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
  5627. }
  5628. // Check if it's safe to fold the load. If the size of the object is
  5629. // narrower than the load width, then it's not.
  5630. if (Size < RCSize)
  5631. return nullptr;
  5632. // Change to CMPXXri r, 0 first.
  5633. MI.setDesc(get(NewOpc));
  5634. MI.getOperand(1).ChangeToImmediate(0);
  5635. } else if (Ops.size() != 1)
  5636. return nullptr;
  5637. return foldMemoryOperandImpl(MF, MI, Ops[0],
  5638. MachineOperand::CreateFI(FrameIndex), InsertPt,
  5639. Size, Alignment, /*AllowCommute=*/true);
  5640. }
  5641. /// Check if \p LoadMI is a partial register load that we can't fold into \p MI
  5642. /// because the latter uses contents that wouldn't be defined in the folded
  5643. /// version. For instance, this transformation isn't legal:
  5644. /// movss (%rdi), %xmm0
  5645. /// addps %xmm0, %xmm0
  5646. /// ->
  5647. /// addps (%rdi), %xmm0
  5648. ///
  5649. /// But this one is:
  5650. /// movss (%rdi), %xmm0
  5651. /// addss %xmm0, %xmm0
  5652. /// ->
  5653. /// addss (%rdi), %xmm0
  5654. ///
  5655. static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
  5656. const MachineInstr &UserMI,
  5657. const MachineFunction &MF) {
  5658. unsigned Opc = LoadMI.getOpcode();
  5659. unsigned UserOpc = UserMI.getOpcode();
  5660. const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
  5661. const TargetRegisterClass *RC =
  5662. MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
  5663. unsigned RegSize = TRI.getRegSizeInBits(*RC);
  5664. if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
  5665. Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
  5666. Opc == X86::VMOVSSZrm_alt) &&
  5667. RegSize > 32) {
  5668. // These instructions only load 32 bits, we can't fold them if the
  5669. // destination register is wider than 32 bits (4 bytes), and its user
  5670. // instruction isn't scalar (SS).
  5671. switch (UserOpc) {
  5672. case X86::CVTSS2SDrr_Int:
  5673. case X86::VCVTSS2SDrr_Int:
  5674. case X86::VCVTSS2SDZrr_Int:
  5675. case X86::VCVTSS2SDZrr_Intk:
  5676. case X86::VCVTSS2SDZrr_Intkz:
  5677. case X86::CVTSS2SIrr_Int: case X86::CVTSS2SI64rr_Int:
  5678. case X86::VCVTSS2SIrr_Int: case X86::VCVTSS2SI64rr_Int:
  5679. case X86::VCVTSS2SIZrr_Int: case X86::VCVTSS2SI64Zrr_Int:
  5680. case X86::CVTTSS2SIrr_Int: case X86::CVTTSS2SI64rr_Int:
  5681. case X86::VCVTTSS2SIrr_Int: case X86::VCVTTSS2SI64rr_Int:
  5682. case X86::VCVTTSS2SIZrr_Int: case X86::VCVTTSS2SI64Zrr_Int:
  5683. case X86::VCVTSS2USIZrr_Int: case X86::VCVTSS2USI64Zrr_Int:
  5684. case X86::VCVTTSS2USIZrr_Int: case X86::VCVTTSS2USI64Zrr_Int:
  5685. case X86::RCPSSr_Int: case X86::VRCPSSr_Int:
  5686. case X86::RSQRTSSr_Int: case X86::VRSQRTSSr_Int:
  5687. case X86::ROUNDSSr_Int: case X86::VROUNDSSr_Int:
  5688. case X86::COMISSrr_Int: case X86::VCOMISSrr_Int: case X86::VCOMISSZrr_Int:
  5689. case X86::UCOMISSrr_Int:case X86::VUCOMISSrr_Int:case X86::VUCOMISSZrr_Int:
  5690. case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
  5691. case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
  5692. case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
  5693. case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
  5694. case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
  5695. case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
  5696. case X86::SQRTSSr_Int: case X86::VSQRTSSr_Int: case X86::VSQRTSSZr_Int:
  5697. case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
  5698. case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
  5699. case X86::VCMPSSZrr_Intk:
  5700. case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
  5701. case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
  5702. case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
  5703. case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
  5704. case X86::VSQRTSSZr_Intk: case X86::VSQRTSSZr_Intkz:
  5705. case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
  5706. case X86::VFMADDSS4rr_Int: case X86::VFNMADDSS4rr_Int:
  5707. case X86::VFMSUBSS4rr_Int: case X86::VFNMSUBSS4rr_Int:
  5708. case X86::VFMADD132SSr_Int: case X86::VFNMADD132SSr_Int:
  5709. case X86::VFMADD213SSr_Int: case X86::VFNMADD213SSr_Int:
  5710. case X86::VFMADD231SSr_Int: case X86::VFNMADD231SSr_Int:
  5711. case X86::VFMSUB132SSr_Int: case X86::VFNMSUB132SSr_Int:
  5712. case X86::VFMSUB213SSr_Int: case X86::VFNMSUB213SSr_Int:
  5713. case X86::VFMSUB231SSr_Int: case X86::VFNMSUB231SSr_Int:
  5714. case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
  5715. case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
  5716. case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
  5717. case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
  5718. case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
  5719. case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
  5720. case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
  5721. case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
  5722. case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
  5723. case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
  5724. case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
  5725. case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
  5726. case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
  5727. case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
  5728. case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
  5729. case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
  5730. case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
  5731. case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
  5732. case X86::VFIXUPIMMSSZrri:
  5733. case X86::VFIXUPIMMSSZrrik:
  5734. case X86::VFIXUPIMMSSZrrikz:
  5735. case X86::VFPCLASSSSZrr:
  5736. case X86::VFPCLASSSSZrrk:
  5737. case X86::VGETEXPSSZr:
  5738. case X86::VGETEXPSSZrk:
  5739. case X86::VGETEXPSSZrkz:
  5740. case X86::VGETMANTSSZrri:
  5741. case X86::VGETMANTSSZrrik:
  5742. case X86::VGETMANTSSZrrikz:
  5743. case X86::VRANGESSZrri:
  5744. case X86::VRANGESSZrrik:
  5745. case X86::VRANGESSZrrikz:
  5746. case X86::VRCP14SSZrr:
  5747. case X86::VRCP14SSZrrk:
  5748. case X86::VRCP14SSZrrkz:
  5749. case X86::VRCP28SSZr:
  5750. case X86::VRCP28SSZrk:
  5751. case X86::VRCP28SSZrkz:
  5752. case X86::VREDUCESSZrri:
  5753. case X86::VREDUCESSZrrik:
  5754. case X86::VREDUCESSZrrikz:
  5755. case X86::VRNDSCALESSZr_Int:
  5756. case X86::VRNDSCALESSZr_Intk:
  5757. case X86::VRNDSCALESSZr_Intkz:
  5758. case X86::VRSQRT14SSZrr:
  5759. case X86::VRSQRT14SSZrrk:
  5760. case X86::VRSQRT14SSZrrkz:
  5761. case X86::VRSQRT28SSZr:
  5762. case X86::VRSQRT28SSZrk:
  5763. case X86::VRSQRT28SSZrkz:
  5764. case X86::VSCALEFSSZrr:
  5765. case X86::VSCALEFSSZrrk:
  5766. case X86::VSCALEFSSZrrkz:
  5767. return false;
  5768. default:
  5769. return true;
  5770. }
  5771. }
  5772. if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
  5773. Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
  5774. Opc == X86::VMOVSDZrm_alt) &&
  5775. RegSize > 64) {
  5776. // These instructions only load 64 bits, we can't fold them if the
  5777. // destination register is wider than 64 bits (8 bytes), and its user
  5778. // instruction isn't scalar (SD).
  5779. switch (UserOpc) {
  5780. case X86::CVTSD2SSrr_Int:
  5781. case X86::VCVTSD2SSrr_Int:
  5782. case X86::VCVTSD2SSZrr_Int:
  5783. case X86::VCVTSD2SSZrr_Intk:
  5784. case X86::VCVTSD2SSZrr_Intkz:
  5785. case X86::CVTSD2SIrr_Int: case X86::CVTSD2SI64rr_Int:
  5786. case X86::VCVTSD2SIrr_Int: case X86::VCVTSD2SI64rr_Int:
  5787. case X86::VCVTSD2SIZrr_Int: case X86::VCVTSD2SI64Zrr_Int:
  5788. case X86::CVTTSD2SIrr_Int: case X86::CVTTSD2SI64rr_Int:
  5789. case X86::VCVTTSD2SIrr_Int: case X86::VCVTTSD2SI64rr_Int:
  5790. case X86::VCVTTSD2SIZrr_Int: case X86::VCVTTSD2SI64Zrr_Int:
  5791. case X86::VCVTSD2USIZrr_Int: case X86::VCVTSD2USI64Zrr_Int:
  5792. case X86::VCVTTSD2USIZrr_Int: case X86::VCVTTSD2USI64Zrr_Int:
  5793. case X86::ROUNDSDr_Int: case X86::VROUNDSDr_Int:
  5794. case X86::COMISDrr_Int: case X86::VCOMISDrr_Int: case X86::VCOMISDZrr_Int:
  5795. case X86::UCOMISDrr_Int:case X86::VUCOMISDrr_Int:case X86::VUCOMISDZrr_Int:
  5796. case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
  5797. case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
  5798. case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
  5799. case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
  5800. case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
  5801. case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
  5802. case X86::SQRTSDr_Int: case X86::VSQRTSDr_Int: case X86::VSQRTSDZr_Int:
  5803. case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
  5804. case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
  5805. case X86::VCMPSDZrr_Intk:
  5806. case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
  5807. case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
  5808. case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
  5809. case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
  5810. case X86::VSQRTSDZr_Intk: case X86::VSQRTSDZr_Intkz:
  5811. case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
  5812. case X86::VFMADDSD4rr_Int: case X86::VFNMADDSD4rr_Int:
  5813. case X86::VFMSUBSD4rr_Int: case X86::VFNMSUBSD4rr_Int:
  5814. case X86::VFMADD132SDr_Int: case X86::VFNMADD132SDr_Int:
  5815. case X86::VFMADD213SDr_Int: case X86::VFNMADD213SDr_Int:
  5816. case X86::VFMADD231SDr_Int: case X86::VFNMADD231SDr_Int:
  5817. case X86::VFMSUB132SDr_Int: case X86::VFNMSUB132SDr_Int:
  5818. case X86::VFMSUB213SDr_Int: case X86::VFNMSUB213SDr_Int:
  5819. case X86::VFMSUB231SDr_Int: case X86::VFNMSUB231SDr_Int:
  5820. case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
  5821. case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
  5822. case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
  5823. case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
  5824. case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
  5825. case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
  5826. case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
  5827. case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
  5828. case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
  5829. case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
  5830. case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
  5831. case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
  5832. case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
  5833. case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
  5834. case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
  5835. case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
  5836. case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
  5837. case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
  5838. case X86::VFIXUPIMMSDZrri:
  5839. case X86::VFIXUPIMMSDZrrik:
  5840. case X86::VFIXUPIMMSDZrrikz:
  5841. case X86::VFPCLASSSDZrr:
  5842. case X86::VFPCLASSSDZrrk:
  5843. case X86::VGETEXPSDZr:
  5844. case X86::VGETEXPSDZrk:
  5845. case X86::VGETEXPSDZrkz:
  5846. case X86::VGETMANTSDZrri:
  5847. case X86::VGETMANTSDZrrik:
  5848. case X86::VGETMANTSDZrrikz:
  5849. case X86::VRANGESDZrri:
  5850. case X86::VRANGESDZrrik:
  5851. case X86::VRANGESDZrrikz:
  5852. case X86::VRCP14SDZrr:
  5853. case X86::VRCP14SDZrrk:
  5854. case X86::VRCP14SDZrrkz:
  5855. case X86::VRCP28SDZr:
  5856. case X86::VRCP28SDZrk:
  5857. case X86::VRCP28SDZrkz:
  5858. case X86::VREDUCESDZrri:
  5859. case X86::VREDUCESDZrrik:
  5860. case X86::VREDUCESDZrrikz:
  5861. case X86::VRNDSCALESDZr_Int:
  5862. case X86::VRNDSCALESDZr_Intk:
  5863. case X86::VRNDSCALESDZr_Intkz:
  5864. case X86::VRSQRT14SDZrr:
  5865. case X86::VRSQRT14SDZrrk:
  5866. case X86::VRSQRT14SDZrrkz:
  5867. case X86::VRSQRT28SDZr:
  5868. case X86::VRSQRT28SDZrk:
  5869. case X86::VRSQRT28SDZrkz:
  5870. case X86::VSCALEFSDZrr:
  5871. case X86::VSCALEFSDZrrk:
  5872. case X86::VSCALEFSDZrrkz:
  5873. return false;
  5874. default:
  5875. return true;
  5876. }
  5877. }
  5878. if ((Opc == X86::VMOVSHZrm || Opc == X86::VMOVSHZrm_alt) && RegSize > 16) {
  5879. // These instructions only load 16 bits, we can't fold them if the
  5880. // destination register is wider than 16 bits (2 bytes), and its user
  5881. // instruction isn't scalar (SH).
  5882. switch (UserOpc) {
  5883. case X86::VADDSHZrr_Int:
  5884. case X86::VCMPSHZrr_Int:
  5885. case X86::VDIVSHZrr_Int:
  5886. case X86::VMAXSHZrr_Int:
  5887. case X86::VMINSHZrr_Int:
  5888. case X86::VMULSHZrr_Int:
  5889. case X86::VSUBSHZrr_Int:
  5890. case X86::VADDSHZrr_Intk: case X86::VADDSHZrr_Intkz:
  5891. case X86::VCMPSHZrr_Intk:
  5892. case X86::VDIVSHZrr_Intk: case X86::VDIVSHZrr_Intkz:
  5893. case X86::VMAXSHZrr_Intk: case X86::VMAXSHZrr_Intkz:
  5894. case X86::VMINSHZrr_Intk: case X86::VMINSHZrr_Intkz:
  5895. case X86::VMULSHZrr_Intk: case X86::VMULSHZrr_Intkz:
  5896. case X86::VSUBSHZrr_Intk: case X86::VSUBSHZrr_Intkz:
  5897. case X86::VFMADD132SHZr_Int: case X86::VFNMADD132SHZr_Int:
  5898. case X86::VFMADD213SHZr_Int: case X86::VFNMADD213SHZr_Int:
  5899. case X86::VFMADD231SHZr_Int: case X86::VFNMADD231SHZr_Int:
  5900. case X86::VFMSUB132SHZr_Int: case X86::VFNMSUB132SHZr_Int:
  5901. case X86::VFMSUB213SHZr_Int: case X86::VFNMSUB213SHZr_Int:
  5902. case X86::VFMSUB231SHZr_Int: case X86::VFNMSUB231SHZr_Int:
  5903. case X86::VFMADD132SHZr_Intk: case X86::VFNMADD132SHZr_Intk:
  5904. case X86::VFMADD213SHZr_Intk: case X86::VFNMADD213SHZr_Intk:
  5905. case X86::VFMADD231SHZr_Intk: case X86::VFNMADD231SHZr_Intk:
  5906. case X86::VFMSUB132SHZr_Intk: case X86::VFNMSUB132SHZr_Intk:
  5907. case X86::VFMSUB213SHZr_Intk: case X86::VFNMSUB213SHZr_Intk:
  5908. case X86::VFMSUB231SHZr_Intk: case X86::VFNMSUB231SHZr_Intk:
  5909. case X86::VFMADD132SHZr_Intkz: case X86::VFNMADD132SHZr_Intkz:
  5910. case X86::VFMADD213SHZr_Intkz: case X86::VFNMADD213SHZr_Intkz:
  5911. case X86::VFMADD231SHZr_Intkz: case X86::VFNMADD231SHZr_Intkz:
  5912. case X86::VFMSUB132SHZr_Intkz: case X86::VFNMSUB132SHZr_Intkz:
  5913. case X86::VFMSUB213SHZr_Intkz: case X86::VFNMSUB213SHZr_Intkz:
  5914. case X86::VFMSUB231SHZr_Intkz: case X86::VFNMSUB231SHZr_Intkz:
  5915. return false;
  5916. default:
  5917. return true;
  5918. }
  5919. }
  5920. return false;
  5921. }
  5922. MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
  5923. MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
  5924. MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
  5925. LiveIntervals *LIS) const {
  5926. // TODO: Support the case where LoadMI loads a wide register, but MI
  5927. // only uses a subreg.
  5928. for (auto Op : Ops) {
  5929. if (MI.getOperand(Op).getSubReg())
  5930. return nullptr;
  5931. }
  5932. // If loading from a FrameIndex, fold directly from the FrameIndex.
  5933. unsigned NumOps = LoadMI.getDesc().getNumOperands();
  5934. int FrameIndex;
  5935. if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
  5936. if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
  5937. return nullptr;
  5938. return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
  5939. }
  5940. // Check switch flag
  5941. if (NoFusing) return nullptr;
  5942. // Avoid partial and undef register update stalls unless optimizing for size.
  5943. if (!MF.getFunction().hasOptSize() &&
  5944. (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
  5945. shouldPreventUndefRegUpdateMemFold(MF, MI)))
  5946. return nullptr;
  5947. // Determine the alignment of the load.
  5948. Align Alignment;
  5949. if (LoadMI.hasOneMemOperand())
  5950. Alignment = (*LoadMI.memoperands_begin())->getAlign();
  5951. else
  5952. switch (LoadMI.getOpcode()) {
  5953. case X86::AVX512_512_SET0:
  5954. case X86::AVX512_512_SETALLONES:
  5955. Alignment = Align(64);
  5956. break;
  5957. case X86::AVX2_SETALLONES:
  5958. case X86::AVX1_SETALLONES:
  5959. case X86::AVX_SET0:
  5960. case X86::AVX512_256_SET0:
  5961. Alignment = Align(32);
  5962. break;
  5963. case X86::V_SET0:
  5964. case X86::V_SETALLONES:
  5965. case X86::AVX512_128_SET0:
  5966. case X86::FsFLD0F128:
  5967. case X86::AVX512_FsFLD0F128:
  5968. Alignment = Align(16);
  5969. break;
  5970. case X86::MMX_SET0:
  5971. case X86::FsFLD0SD:
  5972. case X86::AVX512_FsFLD0SD:
  5973. Alignment = Align(8);
  5974. break;
  5975. case X86::FsFLD0SS:
  5976. case X86::AVX512_FsFLD0SS:
  5977. Alignment = Align(4);
  5978. break;
  5979. case X86::AVX512_FsFLD0SH:
  5980. Alignment = Align(2);
  5981. break;
  5982. default:
  5983. return nullptr;
  5984. }
  5985. if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
  5986. unsigned NewOpc = 0;
  5987. switch (MI.getOpcode()) {
  5988. default: return nullptr;
  5989. case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
  5990. case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
  5991. case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
  5992. case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
  5993. }
  5994. // Change to CMPXXri r, 0 first.
  5995. MI.setDesc(get(NewOpc));
  5996. MI.getOperand(1).ChangeToImmediate(0);
  5997. } else if (Ops.size() != 1)
  5998. return nullptr;
  5999. // Make sure the subregisters match.
  6000. // Otherwise we risk changing the size of the load.
  6001. if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
  6002. return nullptr;
  6003. SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
  6004. switch (LoadMI.getOpcode()) {
  6005. case X86::MMX_SET0:
  6006. case X86::V_SET0:
  6007. case X86::V_SETALLONES:
  6008. case X86::AVX2_SETALLONES:
  6009. case X86::AVX1_SETALLONES:
  6010. case X86::AVX_SET0:
  6011. case X86::AVX512_128_SET0:
  6012. case X86::AVX512_256_SET0:
  6013. case X86::AVX512_512_SET0:
  6014. case X86::AVX512_512_SETALLONES:
  6015. case X86::AVX512_FsFLD0SH:
  6016. case X86::FsFLD0SD:
  6017. case X86::AVX512_FsFLD0SD:
  6018. case X86::FsFLD0SS:
  6019. case X86::AVX512_FsFLD0SS:
  6020. case X86::FsFLD0F128:
  6021. case X86::AVX512_FsFLD0F128: {
  6022. // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
  6023. // Create a constant-pool entry and operands to load from it.
  6024. // Medium and large mode can't fold loads this way.
  6025. if (MF.getTarget().getCodeModel() != CodeModel::Small &&
  6026. MF.getTarget().getCodeModel() != CodeModel::Kernel)
  6027. return nullptr;
  6028. // x86-32 PIC requires a PIC base register for constant pools.
  6029. unsigned PICBase = 0;
  6030. // Since we're using Small or Kernel code model, we can always use
  6031. // RIP-relative addressing for a smaller encoding.
  6032. if (Subtarget.is64Bit()) {
  6033. PICBase = X86::RIP;
  6034. } else if (MF.getTarget().isPositionIndependent()) {
  6035. // FIXME: PICBase = getGlobalBaseReg(&MF);
  6036. // This doesn't work for several reasons.
  6037. // 1. GlobalBaseReg may have been spilled.
  6038. // 2. It may not be live at MI.
  6039. return nullptr;
  6040. }
  6041. // Create a constant-pool entry.
  6042. MachineConstantPool &MCP = *MF.getConstantPool();
  6043. Type *Ty;
  6044. unsigned Opc = LoadMI.getOpcode();
  6045. if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
  6046. Ty = Type::getFloatTy(MF.getFunction().getContext());
  6047. else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
  6048. Ty = Type::getDoubleTy(MF.getFunction().getContext());
  6049. else if (Opc == X86::FsFLD0F128 || Opc == X86::AVX512_FsFLD0F128)
  6050. Ty = Type::getFP128Ty(MF.getFunction().getContext());
  6051. else if (Opc == X86::AVX512_FsFLD0SH)
  6052. Ty = Type::getHalfTy(MF.getFunction().getContext());
  6053. else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
  6054. Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
  6055. 16);
  6056. else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
  6057. Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
  6058. Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
  6059. 8);
  6060. else if (Opc == X86::MMX_SET0)
  6061. Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
  6062. 2);
  6063. else
  6064. Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
  6065. 4);
  6066. bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
  6067. Opc == X86::AVX512_512_SETALLONES ||
  6068. Opc == X86::AVX1_SETALLONES);
  6069. const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
  6070. Constant::getNullValue(Ty);
  6071. unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
  6072. // Create operands to load from the constant pool entry.
  6073. MOs.push_back(MachineOperand::CreateReg(PICBase, false));
  6074. MOs.push_back(MachineOperand::CreateImm(1));
  6075. MOs.push_back(MachineOperand::CreateReg(0, false));
  6076. MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
  6077. MOs.push_back(MachineOperand::CreateReg(0, false));
  6078. break;
  6079. }
  6080. default: {
  6081. if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
  6082. return nullptr;
  6083. // Folding a normal load. Just copy the load's address operands.
  6084. MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
  6085. LoadMI.operands_begin() + NumOps);
  6086. break;
  6087. }
  6088. }
  6089. return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
  6090. /*Size=*/0, Alignment, /*AllowCommute=*/true);
  6091. }
  6092. static SmallVector<MachineMemOperand *, 2>
  6093. extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
  6094. SmallVector<MachineMemOperand *, 2> LoadMMOs;
  6095. for (MachineMemOperand *MMO : MMOs) {
  6096. if (!MMO->isLoad())
  6097. continue;
  6098. if (!MMO->isStore()) {
  6099. // Reuse the MMO.
  6100. LoadMMOs.push_back(MMO);
  6101. } else {
  6102. // Clone the MMO and unset the store flag.
  6103. LoadMMOs.push_back(MF.getMachineMemOperand(
  6104. MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
  6105. }
  6106. }
  6107. return LoadMMOs;
  6108. }
  6109. static SmallVector<MachineMemOperand *, 2>
  6110. extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
  6111. SmallVector<MachineMemOperand *, 2> StoreMMOs;
  6112. for (MachineMemOperand *MMO : MMOs) {
  6113. if (!MMO->isStore())
  6114. continue;
  6115. if (!MMO->isLoad()) {
  6116. // Reuse the MMO.
  6117. StoreMMOs.push_back(MMO);
  6118. } else {
  6119. // Clone the MMO and unset the load flag.
  6120. StoreMMOs.push_back(MF.getMachineMemOperand(
  6121. MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
  6122. }
  6123. }
  6124. return StoreMMOs;
  6125. }
  6126. static unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry *I,
  6127. const TargetRegisterClass *RC,
  6128. const X86Subtarget &STI) {
  6129. assert(STI.hasAVX512() && "Expected at least AVX512!");
  6130. unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC);
  6131. assert((SpillSize == 64 || STI.hasVLX()) &&
  6132. "Can't broadcast less than 64 bytes without AVX512VL!");
  6133. switch (I->Flags & TB_BCAST_MASK) {
  6134. default: llvm_unreachable("Unexpected broadcast type!");
  6135. case TB_BCAST_D:
  6136. switch (SpillSize) {
  6137. default: llvm_unreachable("Unknown spill size");
  6138. case 16: return X86::VPBROADCASTDZ128rm;
  6139. case 32: return X86::VPBROADCASTDZ256rm;
  6140. case 64: return X86::VPBROADCASTDZrm;
  6141. }
  6142. break;
  6143. case TB_BCAST_Q:
  6144. switch (SpillSize) {
  6145. default: llvm_unreachable("Unknown spill size");
  6146. case 16: return X86::VPBROADCASTQZ128rm;
  6147. case 32: return X86::VPBROADCASTQZ256rm;
  6148. case 64: return X86::VPBROADCASTQZrm;
  6149. }
  6150. break;
  6151. case TB_BCAST_SS:
  6152. switch (SpillSize) {
  6153. default: llvm_unreachable("Unknown spill size");
  6154. case 16: return X86::VBROADCASTSSZ128rm;
  6155. case 32: return X86::VBROADCASTSSZ256rm;
  6156. case 64: return X86::VBROADCASTSSZrm;
  6157. }
  6158. break;
  6159. case TB_BCAST_SD:
  6160. switch (SpillSize) {
  6161. default: llvm_unreachable("Unknown spill size");
  6162. case 16: return X86::VMOVDDUPZ128rm;
  6163. case 32: return X86::VBROADCASTSDZ256rm;
  6164. case 64: return X86::VBROADCASTSDZrm;
  6165. }
  6166. break;
  6167. }
  6168. }
  6169. bool X86InstrInfo::unfoldMemoryOperand(
  6170. MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
  6171. bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
  6172. const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
  6173. if (I == nullptr)
  6174. return false;
  6175. unsigned Opc = I->DstOp;
  6176. unsigned Index = I->Flags & TB_INDEX_MASK;
  6177. bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
  6178. bool FoldedStore = I->Flags & TB_FOLDED_STORE;
  6179. bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
  6180. if (UnfoldLoad && !FoldedLoad)
  6181. return false;
  6182. UnfoldLoad &= FoldedLoad;
  6183. if (UnfoldStore && !FoldedStore)
  6184. return false;
  6185. UnfoldStore &= FoldedStore;
  6186. const MCInstrDesc &MCID = get(Opc);
  6187. const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
  6188. const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
  6189. // TODO: Check if 32-byte or greater accesses are slow too?
  6190. if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
  6191. Subtarget.isUnalignedMem16Slow())
  6192. // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
  6193. // conservatively assume the address is unaligned. That's bad for
  6194. // performance.
  6195. return false;
  6196. SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
  6197. SmallVector<MachineOperand,2> BeforeOps;
  6198. SmallVector<MachineOperand,2> AfterOps;
  6199. SmallVector<MachineOperand,4> ImpOps;
  6200. for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
  6201. MachineOperand &Op = MI.getOperand(i);
  6202. if (i >= Index && i < Index + X86::AddrNumOperands)
  6203. AddrOps.push_back(Op);
  6204. else if (Op.isReg() && Op.isImplicit())
  6205. ImpOps.push_back(Op);
  6206. else if (i < Index)
  6207. BeforeOps.push_back(Op);
  6208. else if (i > Index)
  6209. AfterOps.push_back(Op);
  6210. }
  6211. // Emit the load or broadcast instruction.
  6212. if (UnfoldLoad) {
  6213. auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
  6214. unsigned Opc;
  6215. if (FoldedBCast) {
  6216. Opc = getBroadcastOpcode(I, RC, Subtarget);
  6217. } else {
  6218. unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
  6219. bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
  6220. Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget);
  6221. }
  6222. DebugLoc DL;
  6223. MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg);
  6224. for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
  6225. MIB.add(AddrOps[i]);
  6226. MIB.setMemRefs(MMOs);
  6227. NewMIs.push_back(MIB);
  6228. if (UnfoldStore) {
  6229. // Address operands cannot be marked isKill.
  6230. for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
  6231. MachineOperand &MO = NewMIs[0]->getOperand(i);
  6232. if (MO.isReg())
  6233. MO.setIsKill(false);
  6234. }
  6235. }
  6236. }
  6237. // Emit the data processing instruction.
  6238. MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
  6239. MachineInstrBuilder MIB(MF, DataMI);
  6240. if (FoldedStore)
  6241. MIB.addReg(Reg, RegState::Define);
  6242. for (MachineOperand &BeforeOp : BeforeOps)
  6243. MIB.add(BeforeOp);
  6244. if (FoldedLoad)
  6245. MIB.addReg(Reg);
  6246. for (MachineOperand &AfterOp : AfterOps)
  6247. MIB.add(AfterOp);
  6248. for (MachineOperand &ImpOp : ImpOps) {
  6249. MIB.addReg(ImpOp.getReg(),
  6250. getDefRegState(ImpOp.isDef()) |
  6251. RegState::Implicit |
  6252. getKillRegState(ImpOp.isKill()) |
  6253. getDeadRegState(ImpOp.isDead()) |
  6254. getUndefRegState(ImpOp.isUndef()));
  6255. }
  6256. // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
  6257. switch (DataMI->getOpcode()) {
  6258. default: break;
  6259. case X86::CMP64ri32:
  6260. case X86::CMP64ri8:
  6261. case X86::CMP32ri:
  6262. case X86::CMP32ri8:
  6263. case X86::CMP16ri:
  6264. case X86::CMP16ri8:
  6265. case X86::CMP8ri: {
  6266. MachineOperand &MO0 = DataMI->getOperand(0);
  6267. MachineOperand &MO1 = DataMI->getOperand(1);
  6268. if (MO1.isImm() && MO1.getImm() == 0) {
  6269. unsigned NewOpc;
  6270. switch (DataMI->getOpcode()) {
  6271. default: llvm_unreachable("Unreachable!");
  6272. case X86::CMP64ri8:
  6273. case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
  6274. case X86::CMP32ri8:
  6275. case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
  6276. case X86::CMP16ri8:
  6277. case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
  6278. case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
  6279. }
  6280. DataMI->setDesc(get(NewOpc));
  6281. MO1.ChangeToRegister(MO0.getReg(), false);
  6282. }
  6283. }
  6284. }
  6285. NewMIs.push_back(DataMI);
  6286. // Emit the store instruction.
  6287. if (UnfoldStore) {
  6288. const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
  6289. auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
  6290. unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16);
  6291. bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
  6292. unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget);
  6293. DebugLoc DL;
  6294. MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
  6295. for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
  6296. MIB.add(AddrOps[i]);
  6297. MIB.addReg(Reg, RegState::Kill);
  6298. MIB.setMemRefs(MMOs);
  6299. NewMIs.push_back(MIB);
  6300. }
  6301. return true;
  6302. }
  6303. bool
  6304. X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
  6305. SmallVectorImpl<SDNode*> &NewNodes) const {
  6306. if (!N->isMachineOpcode())
  6307. return false;
  6308. const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
  6309. if (I == nullptr)
  6310. return false;
  6311. unsigned Opc = I->DstOp;
  6312. unsigned Index = I->Flags & TB_INDEX_MASK;
  6313. bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
  6314. bool FoldedStore = I->Flags & TB_FOLDED_STORE;
  6315. bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
  6316. const MCInstrDesc &MCID = get(Opc);
  6317. MachineFunction &MF = DAG.getMachineFunction();
  6318. const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
  6319. const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
  6320. unsigned NumDefs = MCID.NumDefs;
  6321. std::vector<SDValue> AddrOps;
  6322. std::vector<SDValue> BeforeOps;
  6323. std::vector<SDValue> AfterOps;
  6324. SDLoc dl(N);
  6325. unsigned NumOps = N->getNumOperands();
  6326. for (unsigned i = 0; i != NumOps-1; ++i) {
  6327. SDValue Op = N->getOperand(i);
  6328. if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
  6329. AddrOps.push_back(Op);
  6330. else if (i < Index-NumDefs)
  6331. BeforeOps.push_back(Op);
  6332. else if (i > Index-NumDefs)
  6333. AfterOps.push_back(Op);
  6334. }
  6335. SDValue Chain = N->getOperand(NumOps-1);
  6336. AddrOps.push_back(Chain);
  6337. // Emit the load instruction.
  6338. SDNode *Load = nullptr;
  6339. if (FoldedLoad) {
  6340. EVT VT = *TRI.legalclasstypes_begin(*RC);
  6341. auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
  6342. if (MMOs.empty() && RC == &X86::VR128RegClass &&
  6343. Subtarget.isUnalignedMem16Slow())
  6344. // Do not introduce a slow unaligned load.
  6345. return false;
  6346. // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
  6347. // memory access is slow above.
  6348. unsigned Opc;
  6349. if (FoldedBCast) {
  6350. Opc = getBroadcastOpcode(I, RC, Subtarget);
  6351. } else {
  6352. unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
  6353. bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
  6354. Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget);
  6355. }
  6356. Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps);
  6357. NewNodes.push_back(Load);
  6358. // Preserve memory reference information.
  6359. DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
  6360. }
  6361. // Emit the data processing instruction.
  6362. std::vector<EVT> VTs;
  6363. const TargetRegisterClass *DstRC = nullptr;
  6364. if (MCID.getNumDefs() > 0) {
  6365. DstRC = getRegClass(MCID, 0, &RI, MF);
  6366. VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
  6367. }
  6368. for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
  6369. EVT VT = N->getValueType(i);
  6370. if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
  6371. VTs.push_back(VT);
  6372. }
  6373. if (Load)
  6374. BeforeOps.push_back(SDValue(Load, 0));
  6375. llvm::append_range(BeforeOps, AfterOps);
  6376. // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
  6377. switch (Opc) {
  6378. default: break;
  6379. case X86::CMP64ri32:
  6380. case X86::CMP64ri8:
  6381. case X86::CMP32ri:
  6382. case X86::CMP32ri8:
  6383. case X86::CMP16ri:
  6384. case X86::CMP16ri8:
  6385. case X86::CMP8ri:
  6386. if (isNullConstant(BeforeOps[1])) {
  6387. switch (Opc) {
  6388. default: llvm_unreachable("Unreachable!");
  6389. case X86::CMP64ri8:
  6390. case X86::CMP64ri32: Opc = X86::TEST64rr; break;
  6391. case X86::CMP32ri8:
  6392. case X86::CMP32ri: Opc = X86::TEST32rr; break;
  6393. case X86::CMP16ri8:
  6394. case X86::CMP16ri: Opc = X86::TEST16rr; break;
  6395. case X86::CMP8ri: Opc = X86::TEST8rr; break;
  6396. }
  6397. BeforeOps[1] = BeforeOps[0];
  6398. }
  6399. }
  6400. SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
  6401. NewNodes.push_back(NewNode);
  6402. // Emit the store instruction.
  6403. if (FoldedStore) {
  6404. AddrOps.pop_back();
  6405. AddrOps.push_back(SDValue(NewNode, 0));
  6406. AddrOps.push_back(Chain);
  6407. auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
  6408. if (MMOs.empty() && RC == &X86::VR128RegClass &&
  6409. Subtarget.isUnalignedMem16Slow())
  6410. // Do not introduce a slow unaligned store.
  6411. return false;
  6412. // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
  6413. // memory access is slow above.
  6414. unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
  6415. bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
  6416. SDNode *Store =
  6417. DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
  6418. dl, MVT::Other, AddrOps);
  6419. NewNodes.push_back(Store);
  6420. // Preserve memory reference information.
  6421. DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
  6422. }
  6423. return true;
  6424. }
  6425. unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
  6426. bool UnfoldLoad, bool UnfoldStore,
  6427. unsigned *LoadRegIndex) const {
  6428. const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
  6429. if (I == nullptr)
  6430. return 0;
  6431. bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
  6432. bool FoldedStore = I->Flags & TB_FOLDED_STORE;
  6433. if (UnfoldLoad && !FoldedLoad)
  6434. return 0;
  6435. if (UnfoldStore && !FoldedStore)
  6436. return 0;
  6437. if (LoadRegIndex)
  6438. *LoadRegIndex = I->Flags & TB_INDEX_MASK;
  6439. return I->DstOp;
  6440. }
  6441. bool
  6442. X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
  6443. int64_t &Offset1, int64_t &Offset2) const {
  6444. if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
  6445. return false;
  6446. unsigned Opc1 = Load1->getMachineOpcode();
  6447. unsigned Opc2 = Load2->getMachineOpcode();
  6448. switch (Opc1) {
  6449. default: return false;
  6450. case X86::MOV8rm:
  6451. case X86::MOV16rm:
  6452. case X86::MOV32rm:
  6453. case X86::MOV64rm:
  6454. case X86::LD_Fp32m:
  6455. case X86::LD_Fp64m:
  6456. case X86::LD_Fp80m:
  6457. case X86::MOVSSrm:
  6458. case X86::MOVSSrm_alt:
  6459. case X86::MOVSDrm:
  6460. case X86::MOVSDrm_alt:
  6461. case X86::MMX_MOVD64rm:
  6462. case X86::MMX_MOVQ64rm:
  6463. case X86::MOVAPSrm:
  6464. case X86::MOVUPSrm:
  6465. case X86::MOVAPDrm:
  6466. case X86::MOVUPDrm:
  6467. case X86::MOVDQArm:
  6468. case X86::MOVDQUrm:
  6469. // AVX load instructions
  6470. case X86::VMOVSSrm:
  6471. case X86::VMOVSSrm_alt:
  6472. case X86::VMOVSDrm:
  6473. case X86::VMOVSDrm_alt:
  6474. case X86::VMOVAPSrm:
  6475. case X86::VMOVUPSrm:
  6476. case X86::VMOVAPDrm:
  6477. case X86::VMOVUPDrm:
  6478. case X86::VMOVDQArm:
  6479. case X86::VMOVDQUrm:
  6480. case X86::VMOVAPSYrm:
  6481. case X86::VMOVUPSYrm:
  6482. case X86::VMOVAPDYrm:
  6483. case X86::VMOVUPDYrm:
  6484. case X86::VMOVDQAYrm:
  6485. case X86::VMOVDQUYrm:
  6486. // AVX512 load instructions
  6487. case X86::VMOVSSZrm:
  6488. case X86::VMOVSSZrm_alt:
  6489. case X86::VMOVSDZrm:
  6490. case X86::VMOVSDZrm_alt:
  6491. case X86::VMOVAPSZ128rm:
  6492. case X86::VMOVUPSZ128rm:
  6493. case X86::VMOVAPSZ128rm_NOVLX:
  6494. case X86::VMOVUPSZ128rm_NOVLX:
  6495. case X86::VMOVAPDZ128rm:
  6496. case X86::VMOVUPDZ128rm:
  6497. case X86::VMOVDQU8Z128rm:
  6498. case X86::VMOVDQU16Z128rm:
  6499. case X86::VMOVDQA32Z128rm:
  6500. case X86::VMOVDQU32Z128rm:
  6501. case X86::VMOVDQA64Z128rm:
  6502. case X86::VMOVDQU64Z128rm:
  6503. case X86::VMOVAPSZ256rm:
  6504. case X86::VMOVUPSZ256rm:
  6505. case X86::VMOVAPSZ256rm_NOVLX:
  6506. case X86::VMOVUPSZ256rm_NOVLX:
  6507. case X86::VMOVAPDZ256rm:
  6508. case X86::VMOVUPDZ256rm:
  6509. case X86::VMOVDQU8Z256rm:
  6510. case X86::VMOVDQU16Z256rm:
  6511. case X86::VMOVDQA32Z256rm:
  6512. case X86::VMOVDQU32Z256rm:
  6513. case X86::VMOVDQA64Z256rm:
  6514. case X86::VMOVDQU64Z256rm:
  6515. case X86::VMOVAPSZrm:
  6516. case X86::VMOVUPSZrm:
  6517. case X86::VMOVAPDZrm:
  6518. case X86::VMOVUPDZrm:
  6519. case X86::VMOVDQU8Zrm:
  6520. case X86::VMOVDQU16Zrm:
  6521. case X86::VMOVDQA32Zrm:
  6522. case X86::VMOVDQU32Zrm:
  6523. case X86::VMOVDQA64Zrm:
  6524. case X86::VMOVDQU64Zrm:
  6525. case X86::KMOVBkm:
  6526. case X86::KMOVWkm:
  6527. case X86::KMOVDkm:
  6528. case X86::KMOVQkm:
  6529. break;
  6530. }
  6531. switch (Opc2) {
  6532. default: return false;
  6533. case X86::MOV8rm:
  6534. case X86::MOV16rm:
  6535. case X86::MOV32rm:
  6536. case X86::MOV64rm:
  6537. case X86::LD_Fp32m:
  6538. case X86::LD_Fp64m:
  6539. case X86::LD_Fp80m:
  6540. case X86::MOVSSrm:
  6541. case X86::MOVSSrm_alt:
  6542. case X86::MOVSDrm:
  6543. case X86::MOVSDrm_alt:
  6544. case X86::MMX_MOVD64rm:
  6545. case X86::MMX_MOVQ64rm:
  6546. case X86::MOVAPSrm:
  6547. case X86::MOVUPSrm:
  6548. case X86::MOVAPDrm:
  6549. case X86::MOVUPDrm:
  6550. case X86::MOVDQArm:
  6551. case X86::MOVDQUrm:
  6552. // AVX load instructions
  6553. case X86::VMOVSSrm:
  6554. case X86::VMOVSSrm_alt:
  6555. case X86::VMOVSDrm:
  6556. case X86::VMOVSDrm_alt:
  6557. case X86::VMOVAPSrm:
  6558. case X86::VMOVUPSrm:
  6559. case X86::VMOVAPDrm:
  6560. case X86::VMOVUPDrm:
  6561. case X86::VMOVDQArm:
  6562. case X86::VMOVDQUrm:
  6563. case X86::VMOVAPSYrm:
  6564. case X86::VMOVUPSYrm:
  6565. case X86::VMOVAPDYrm:
  6566. case X86::VMOVUPDYrm:
  6567. case X86::VMOVDQAYrm:
  6568. case X86::VMOVDQUYrm:
  6569. // AVX512 load instructions
  6570. case X86::VMOVSSZrm:
  6571. case X86::VMOVSSZrm_alt:
  6572. case X86::VMOVSDZrm:
  6573. case X86::VMOVSDZrm_alt:
  6574. case X86::VMOVAPSZ128rm:
  6575. case X86::VMOVUPSZ128rm:
  6576. case X86::VMOVAPSZ128rm_NOVLX:
  6577. case X86::VMOVUPSZ128rm_NOVLX:
  6578. case X86::VMOVAPDZ128rm:
  6579. case X86::VMOVUPDZ128rm:
  6580. case X86::VMOVDQU8Z128rm:
  6581. case X86::VMOVDQU16Z128rm:
  6582. case X86::VMOVDQA32Z128rm:
  6583. case X86::VMOVDQU32Z128rm:
  6584. case X86::VMOVDQA64Z128rm:
  6585. case X86::VMOVDQU64Z128rm:
  6586. case X86::VMOVAPSZ256rm:
  6587. case X86::VMOVUPSZ256rm:
  6588. case X86::VMOVAPSZ256rm_NOVLX:
  6589. case X86::VMOVUPSZ256rm_NOVLX:
  6590. case X86::VMOVAPDZ256rm:
  6591. case X86::VMOVUPDZ256rm:
  6592. case X86::VMOVDQU8Z256rm:
  6593. case X86::VMOVDQU16Z256rm:
  6594. case X86::VMOVDQA32Z256rm:
  6595. case X86::VMOVDQU32Z256rm:
  6596. case X86::VMOVDQA64Z256rm:
  6597. case X86::VMOVDQU64Z256rm:
  6598. case X86::VMOVAPSZrm:
  6599. case X86::VMOVUPSZrm:
  6600. case X86::VMOVAPDZrm:
  6601. case X86::VMOVUPDZrm:
  6602. case X86::VMOVDQU8Zrm:
  6603. case X86::VMOVDQU16Zrm:
  6604. case X86::VMOVDQA32Zrm:
  6605. case X86::VMOVDQU32Zrm:
  6606. case X86::VMOVDQA64Zrm:
  6607. case X86::VMOVDQU64Zrm:
  6608. case X86::KMOVBkm:
  6609. case X86::KMOVWkm:
  6610. case X86::KMOVDkm:
  6611. case X86::KMOVQkm:
  6612. break;
  6613. }
  6614. // Lambda to check if both the loads have the same value for an operand index.
  6615. auto HasSameOp = [&](int I) {
  6616. return Load1->getOperand(I) == Load2->getOperand(I);
  6617. };
  6618. // All operands except the displacement should match.
  6619. if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
  6620. !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
  6621. return false;
  6622. // Chain Operand must be the same.
  6623. if (!HasSameOp(5))
  6624. return false;
  6625. // Now let's examine if the displacements are constants.
  6626. auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
  6627. auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
  6628. if (!Disp1 || !Disp2)
  6629. return false;
  6630. Offset1 = Disp1->getSExtValue();
  6631. Offset2 = Disp2->getSExtValue();
  6632. return true;
  6633. }
  6634. bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
  6635. int64_t Offset1, int64_t Offset2,
  6636. unsigned NumLoads) const {
  6637. assert(Offset2 > Offset1);
  6638. if ((Offset2 - Offset1) / 8 > 64)
  6639. return false;
  6640. unsigned Opc1 = Load1->getMachineOpcode();
  6641. unsigned Opc2 = Load2->getMachineOpcode();
  6642. if (Opc1 != Opc2)
  6643. return false; // FIXME: overly conservative?
  6644. switch (Opc1) {
  6645. default: break;
  6646. case X86::LD_Fp32m:
  6647. case X86::LD_Fp64m:
  6648. case X86::LD_Fp80m:
  6649. case X86::MMX_MOVD64rm:
  6650. case X86::MMX_MOVQ64rm:
  6651. return false;
  6652. }
  6653. EVT VT = Load1->getValueType(0);
  6654. switch (VT.getSimpleVT().SimpleTy) {
  6655. default:
  6656. // XMM registers. In 64-bit mode we can be a bit more aggressive since we
  6657. // have 16 of them to play with.
  6658. if (Subtarget.is64Bit()) {
  6659. if (NumLoads >= 3)
  6660. return false;
  6661. } else if (NumLoads) {
  6662. return false;
  6663. }
  6664. break;
  6665. case MVT::i8:
  6666. case MVT::i16:
  6667. case MVT::i32:
  6668. case MVT::i64:
  6669. case MVT::f32:
  6670. case MVT::f64:
  6671. if (NumLoads)
  6672. return false;
  6673. break;
  6674. }
  6675. return true;
  6676. }
  6677. bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI,
  6678. const MachineBasicBlock *MBB,
  6679. const MachineFunction &MF) const {
  6680. // ENDBR instructions should not be scheduled around.
  6681. unsigned Opcode = MI.getOpcode();
  6682. if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 ||
  6683. Opcode == X86::LDTILECFG)
  6684. return true;
  6685. return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
  6686. }
  6687. bool X86InstrInfo::
  6688. reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
  6689. assert(Cond.size() == 1 && "Invalid X86 branch condition!");
  6690. X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
  6691. Cond[0].setImm(GetOppositeBranchCondition(CC));
  6692. return false;
  6693. }
  6694. bool X86InstrInfo::
  6695. isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
  6696. // FIXME: Return false for x87 stack register classes for now. We can't
  6697. // allow any loads of these registers before FpGet_ST0_80.
  6698. return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
  6699. RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
  6700. RC == &X86::RFP80RegClass);
  6701. }
  6702. /// Return a virtual register initialized with the
  6703. /// the global base register value. Output instructions required to
  6704. /// initialize the register in the function entry block, if necessary.
  6705. ///
  6706. /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
  6707. ///
  6708. unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
  6709. assert((!Subtarget.is64Bit() ||
  6710. MF->getTarget().getCodeModel() == CodeModel::Medium ||
  6711. MF->getTarget().getCodeModel() == CodeModel::Large) &&
  6712. "X86-64 PIC uses RIP relative addressing");
  6713. X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
  6714. Register GlobalBaseReg = X86FI->getGlobalBaseReg();
  6715. if (GlobalBaseReg != 0)
  6716. return GlobalBaseReg;
  6717. // Create the register. The code to initialize it is inserted
  6718. // later, by the CGBR pass (below).
  6719. MachineRegisterInfo &RegInfo = MF->getRegInfo();
  6720. GlobalBaseReg = RegInfo.createVirtualRegister(
  6721. Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
  6722. X86FI->setGlobalBaseReg(GlobalBaseReg);
  6723. return GlobalBaseReg;
  6724. }
  6725. // These are the replaceable SSE instructions. Some of these have Int variants
  6726. // that we don't include here. We don't want to replace instructions selected
  6727. // by intrinsics.
  6728. static const uint16_t ReplaceableInstrs[][3] = {
  6729. //PackedSingle PackedDouble PackedInt
  6730. { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
  6731. { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
  6732. { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
  6733. { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
  6734. { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
  6735. { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr },
  6736. { X86::MOVSDmr, X86::MOVSDmr, X86::MOVPQI2QImr },
  6737. { X86::MOVSSmr, X86::MOVSSmr, X86::MOVPDI2DImr },
  6738. { X86::MOVSDrm, X86::MOVSDrm, X86::MOVQI2PQIrm },
  6739. { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm },
  6740. { X86::MOVSSrm, X86::MOVSSrm, X86::MOVDI2PDIrm },
  6741. { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm },
  6742. { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
  6743. { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
  6744. { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
  6745. { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
  6746. { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
  6747. { X86::ORPSrm, X86::ORPDrm, X86::PORrm },
  6748. { X86::ORPSrr, X86::ORPDrr, X86::PORrr },
  6749. { X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
  6750. { X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
  6751. { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
  6752. { X86::MOVLHPSrr, X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
  6753. { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
  6754. { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
  6755. { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
  6756. { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
  6757. { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
  6758. { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
  6759. { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
  6760. { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
  6761. // AVX 128-bit support
  6762. { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
  6763. { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
  6764. { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
  6765. { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
  6766. { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
  6767. { X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr },
  6768. { X86::VMOVSDmr, X86::VMOVSDmr, X86::VMOVPQI2QImr },
  6769. { X86::VMOVSSmr, X86::VMOVSSmr, X86::VMOVPDI2DImr },
  6770. { X86::VMOVSDrm, X86::VMOVSDrm, X86::VMOVQI2PQIrm },
  6771. { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm },
  6772. { X86::VMOVSSrm, X86::VMOVSSrm, X86::VMOVDI2PDIrm },
  6773. { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm },
  6774. { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
  6775. { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
  6776. { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
  6777. { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
  6778. { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
  6779. { X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
  6780. { X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
  6781. { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
  6782. { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
  6783. { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
  6784. { X86::VMOVLHPSrr, X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
  6785. { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
  6786. { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
  6787. { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
  6788. { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
  6789. { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
  6790. { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
  6791. { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
  6792. { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
  6793. // AVX 256-bit support
  6794. { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
  6795. { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
  6796. { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
  6797. { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
  6798. { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
  6799. { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr },
  6800. { X86::VPERMPSYrm, X86::VPERMPSYrm, X86::VPERMDYrm },
  6801. { X86::VPERMPSYrr, X86::VPERMPSYrr, X86::VPERMDYrr },
  6802. { X86::VPERMPDYmi, X86::VPERMPDYmi, X86::VPERMQYmi },
  6803. { X86::VPERMPDYri, X86::VPERMPDYri, X86::VPERMQYri },
  6804. // AVX512 support
  6805. { X86::VMOVLPSZ128mr, X86::VMOVLPDZ128mr, X86::VMOVPQI2QIZmr },
  6806. { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
  6807. { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
  6808. { X86::VMOVNTPSZmr, X86::VMOVNTPDZmr, X86::VMOVNTDQZmr },
  6809. { X86::VMOVSDZmr, X86::VMOVSDZmr, X86::VMOVPQI2QIZmr },
  6810. { X86::VMOVSSZmr, X86::VMOVSSZmr, X86::VMOVPDI2DIZmr },
  6811. { X86::VMOVSDZrm, X86::VMOVSDZrm, X86::VMOVQI2PQIZrm },
  6812. { X86::VMOVSDZrm_alt, X86::VMOVSDZrm_alt, X86::VMOVQI2PQIZrm },
  6813. { X86::VMOVSSZrm, X86::VMOVSSZrm, X86::VMOVDI2PDIZrm },
  6814. { X86::VMOVSSZrm_alt, X86::VMOVSSZrm_alt, X86::VMOVDI2PDIZrm },
  6815. { X86::VBROADCASTSSZ128rr,X86::VBROADCASTSSZ128rr,X86::VPBROADCASTDZ128rr },
  6816. { X86::VBROADCASTSSZ128rm,X86::VBROADCASTSSZ128rm,X86::VPBROADCASTDZ128rm },
  6817. { X86::VBROADCASTSSZ256rr,X86::VBROADCASTSSZ256rr,X86::VPBROADCASTDZ256rr },
  6818. { X86::VBROADCASTSSZ256rm,X86::VBROADCASTSSZ256rm,X86::VPBROADCASTDZ256rm },
  6819. { X86::VBROADCASTSSZrr, X86::VBROADCASTSSZrr, X86::VPBROADCASTDZrr },
  6820. { X86::VBROADCASTSSZrm, X86::VBROADCASTSSZrm, X86::VPBROADCASTDZrm },
  6821. { X86::VMOVDDUPZ128rr, X86::VMOVDDUPZ128rr, X86::VPBROADCASTQZ128rr },
  6822. { X86::VMOVDDUPZ128rm, X86::VMOVDDUPZ128rm, X86::VPBROADCASTQZ128rm },
  6823. { X86::VBROADCASTSDZ256rr,X86::VBROADCASTSDZ256rr,X86::VPBROADCASTQZ256rr },
  6824. { X86::VBROADCASTSDZ256rm,X86::VBROADCASTSDZ256rm,X86::VPBROADCASTQZ256rm },
  6825. { X86::VBROADCASTSDZrr, X86::VBROADCASTSDZrr, X86::VPBROADCASTQZrr },
  6826. { X86::VBROADCASTSDZrm, X86::VBROADCASTSDZrm, X86::VPBROADCASTQZrm },
  6827. { X86::VINSERTF32x4Zrr, X86::VINSERTF32x4Zrr, X86::VINSERTI32x4Zrr },
  6828. { X86::VINSERTF32x4Zrm, X86::VINSERTF32x4Zrm, X86::VINSERTI32x4Zrm },
  6829. { X86::VINSERTF32x8Zrr, X86::VINSERTF32x8Zrr, X86::VINSERTI32x8Zrr },
  6830. { X86::VINSERTF32x8Zrm, X86::VINSERTF32x8Zrm, X86::VINSERTI32x8Zrm },
  6831. { X86::VINSERTF64x2Zrr, X86::VINSERTF64x2Zrr, X86::VINSERTI64x2Zrr },
  6832. { X86::VINSERTF64x2Zrm, X86::VINSERTF64x2Zrm, X86::VINSERTI64x2Zrm },
  6833. { X86::VINSERTF64x4Zrr, X86::VINSERTF64x4Zrr, X86::VINSERTI64x4Zrr },
  6834. { X86::VINSERTF64x4Zrm, X86::VINSERTF64x4Zrm, X86::VINSERTI64x4Zrm },
  6835. { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
  6836. { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
  6837. { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
  6838. { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
  6839. { X86::VEXTRACTF32x4Zrr, X86::VEXTRACTF32x4Zrr, X86::VEXTRACTI32x4Zrr },
  6840. { X86::VEXTRACTF32x4Zmr, X86::VEXTRACTF32x4Zmr, X86::VEXTRACTI32x4Zmr },
  6841. { X86::VEXTRACTF32x8Zrr, X86::VEXTRACTF32x8Zrr, X86::VEXTRACTI32x8Zrr },
  6842. { X86::VEXTRACTF32x8Zmr, X86::VEXTRACTF32x8Zmr, X86::VEXTRACTI32x8Zmr },
  6843. { X86::VEXTRACTF64x2Zrr, X86::VEXTRACTF64x2Zrr, X86::VEXTRACTI64x2Zrr },
  6844. { X86::VEXTRACTF64x2Zmr, X86::VEXTRACTF64x2Zmr, X86::VEXTRACTI64x2Zmr },
  6845. { X86::VEXTRACTF64x4Zrr, X86::VEXTRACTF64x4Zrr, X86::VEXTRACTI64x4Zrr },
  6846. { X86::VEXTRACTF64x4Zmr, X86::VEXTRACTF64x4Zmr, X86::VEXTRACTI64x4Zmr },
  6847. { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
  6848. { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
  6849. { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
  6850. { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
  6851. { X86::VPERMILPSmi, X86::VPERMILPSmi, X86::VPSHUFDmi },
  6852. { X86::VPERMILPSri, X86::VPERMILPSri, X86::VPSHUFDri },
  6853. { X86::VPERMILPSZ128mi, X86::VPERMILPSZ128mi, X86::VPSHUFDZ128mi },
  6854. { X86::VPERMILPSZ128ri, X86::VPERMILPSZ128ri, X86::VPSHUFDZ128ri },
  6855. { X86::VPERMILPSZ256mi, X86::VPERMILPSZ256mi, X86::VPSHUFDZ256mi },
  6856. { X86::VPERMILPSZ256ri, X86::VPERMILPSZ256ri, X86::VPSHUFDZ256ri },
  6857. { X86::VPERMILPSZmi, X86::VPERMILPSZmi, X86::VPSHUFDZmi },
  6858. { X86::VPERMILPSZri, X86::VPERMILPSZri, X86::VPSHUFDZri },
  6859. { X86::VPERMPSZ256rm, X86::VPERMPSZ256rm, X86::VPERMDZ256rm },
  6860. { X86::VPERMPSZ256rr, X86::VPERMPSZ256rr, X86::VPERMDZ256rr },
  6861. { X86::VPERMPDZ256mi, X86::VPERMPDZ256mi, X86::VPERMQZ256mi },
  6862. { X86::VPERMPDZ256ri, X86::VPERMPDZ256ri, X86::VPERMQZ256ri },
  6863. { X86::VPERMPDZ256rm, X86::VPERMPDZ256rm, X86::VPERMQZ256rm },
  6864. { X86::VPERMPDZ256rr, X86::VPERMPDZ256rr, X86::VPERMQZ256rr },
  6865. { X86::VPERMPSZrm, X86::VPERMPSZrm, X86::VPERMDZrm },
  6866. { X86::VPERMPSZrr, X86::VPERMPSZrr, X86::VPERMDZrr },
  6867. { X86::VPERMPDZmi, X86::VPERMPDZmi, X86::VPERMQZmi },
  6868. { X86::VPERMPDZri, X86::VPERMPDZri, X86::VPERMQZri },
  6869. { X86::VPERMPDZrm, X86::VPERMPDZrm, X86::VPERMQZrm },
  6870. { X86::VPERMPDZrr, X86::VPERMPDZrr, X86::VPERMQZrr },
  6871. { X86::VUNPCKLPDZ256rm, X86::VUNPCKLPDZ256rm, X86::VPUNPCKLQDQZ256rm },
  6872. { X86::VUNPCKLPDZ256rr, X86::VUNPCKLPDZ256rr, X86::VPUNPCKLQDQZ256rr },
  6873. { X86::VUNPCKHPDZ256rm, X86::VUNPCKHPDZ256rm, X86::VPUNPCKHQDQZ256rm },
  6874. { X86::VUNPCKHPDZ256rr, X86::VUNPCKHPDZ256rr, X86::VPUNPCKHQDQZ256rr },
  6875. { X86::VUNPCKLPSZ256rm, X86::VUNPCKLPSZ256rm, X86::VPUNPCKLDQZ256rm },
  6876. { X86::VUNPCKLPSZ256rr, X86::VUNPCKLPSZ256rr, X86::VPUNPCKLDQZ256rr },
  6877. { X86::VUNPCKHPSZ256rm, X86::VUNPCKHPSZ256rm, X86::VPUNPCKHDQZ256rm },
  6878. { X86::VUNPCKHPSZ256rr, X86::VUNPCKHPSZ256rr, X86::VPUNPCKHDQZ256rr },
  6879. { X86::VUNPCKLPDZ128rm, X86::VUNPCKLPDZ128rm, X86::VPUNPCKLQDQZ128rm },
  6880. { X86::VMOVLHPSZrr, X86::VUNPCKLPDZ128rr, X86::VPUNPCKLQDQZ128rr },
  6881. { X86::VUNPCKHPDZ128rm, X86::VUNPCKHPDZ128rm, X86::VPUNPCKHQDQZ128rm },
  6882. { X86::VUNPCKHPDZ128rr, X86::VUNPCKHPDZ128rr, X86::VPUNPCKHQDQZ128rr },
  6883. { X86::VUNPCKLPSZ128rm, X86::VUNPCKLPSZ128rm, X86::VPUNPCKLDQZ128rm },
  6884. { X86::VUNPCKLPSZ128rr, X86::VUNPCKLPSZ128rr, X86::VPUNPCKLDQZ128rr },
  6885. { X86::VUNPCKHPSZ128rm, X86::VUNPCKHPSZ128rm, X86::VPUNPCKHDQZ128rm },
  6886. { X86::VUNPCKHPSZ128rr, X86::VUNPCKHPSZ128rr, X86::VPUNPCKHDQZ128rr },
  6887. { X86::VUNPCKLPDZrm, X86::VUNPCKLPDZrm, X86::VPUNPCKLQDQZrm },
  6888. { X86::VUNPCKLPDZrr, X86::VUNPCKLPDZrr, X86::VPUNPCKLQDQZrr },
  6889. { X86::VUNPCKHPDZrm, X86::VUNPCKHPDZrm, X86::VPUNPCKHQDQZrm },
  6890. { X86::VUNPCKHPDZrr, X86::VUNPCKHPDZrr, X86::VPUNPCKHQDQZrr },
  6891. { X86::VUNPCKLPSZrm, X86::VUNPCKLPSZrm, X86::VPUNPCKLDQZrm },
  6892. { X86::VUNPCKLPSZrr, X86::VUNPCKLPSZrr, X86::VPUNPCKLDQZrr },
  6893. { X86::VUNPCKHPSZrm, X86::VUNPCKHPSZrm, X86::VPUNPCKHDQZrm },
  6894. { X86::VUNPCKHPSZrr, X86::VUNPCKHPSZrr, X86::VPUNPCKHDQZrr },
  6895. { X86::VEXTRACTPSZmr, X86::VEXTRACTPSZmr, X86::VPEXTRDZmr },
  6896. { X86::VEXTRACTPSZrr, X86::VEXTRACTPSZrr, X86::VPEXTRDZrr },
  6897. };
  6898. static const uint16_t ReplaceableInstrsAVX2[][3] = {
  6899. //PackedSingle PackedDouble PackedInt
  6900. { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
  6901. { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
  6902. { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
  6903. { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
  6904. { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
  6905. { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
  6906. { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
  6907. { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
  6908. { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
  6909. { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr },
  6910. { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
  6911. { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
  6912. { X86::VMOVDDUPrm, X86::VMOVDDUPrm, X86::VPBROADCASTQrm},
  6913. { X86::VMOVDDUPrr, X86::VMOVDDUPrr, X86::VPBROADCASTQrr},
  6914. { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
  6915. { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
  6916. { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
  6917. { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
  6918. { X86::VBROADCASTF128, X86::VBROADCASTF128, X86::VBROADCASTI128 },
  6919. { X86::VBLENDPSYrri, X86::VBLENDPSYrri, X86::VPBLENDDYrri },
  6920. { X86::VBLENDPSYrmi, X86::VBLENDPSYrmi, X86::VPBLENDDYrmi },
  6921. { X86::VPERMILPSYmi, X86::VPERMILPSYmi, X86::VPSHUFDYmi },
  6922. { X86::VPERMILPSYri, X86::VPERMILPSYri, X86::VPSHUFDYri },
  6923. { X86::VUNPCKLPDYrm, X86::VUNPCKLPDYrm, X86::VPUNPCKLQDQYrm },
  6924. { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrr, X86::VPUNPCKLQDQYrr },
  6925. { X86::VUNPCKHPDYrm, X86::VUNPCKHPDYrm, X86::VPUNPCKHQDQYrm },
  6926. { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrr, X86::VPUNPCKHQDQYrr },
  6927. { X86::VUNPCKLPSYrm, X86::VUNPCKLPSYrm, X86::VPUNPCKLDQYrm },
  6928. { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrr, X86::VPUNPCKLDQYrr },
  6929. { X86::VUNPCKHPSYrm, X86::VUNPCKHPSYrm, X86::VPUNPCKHDQYrm },
  6930. { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrr, X86::VPUNPCKHDQYrr },
  6931. };
  6932. static const uint16_t ReplaceableInstrsFP[][3] = {
  6933. //PackedSingle PackedDouble
  6934. { X86::MOVLPSrm, X86::MOVLPDrm, X86::INSTRUCTION_LIST_END },
  6935. { X86::MOVHPSrm, X86::MOVHPDrm, X86::INSTRUCTION_LIST_END },
  6936. { X86::MOVHPSmr, X86::MOVHPDmr, X86::INSTRUCTION_LIST_END },
  6937. { X86::VMOVLPSrm, X86::VMOVLPDrm, X86::INSTRUCTION_LIST_END },
  6938. { X86::VMOVHPSrm, X86::VMOVHPDrm, X86::INSTRUCTION_LIST_END },
  6939. { X86::VMOVHPSmr, X86::VMOVHPDmr, X86::INSTRUCTION_LIST_END },
  6940. { X86::VMOVLPSZ128rm, X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END },
  6941. { X86::VMOVHPSZ128rm, X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END },
  6942. { X86::VMOVHPSZ128mr, X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END },
  6943. };
  6944. static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
  6945. //PackedSingle PackedDouble PackedInt
  6946. { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
  6947. { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
  6948. { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
  6949. { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
  6950. };
  6951. static const uint16_t ReplaceableInstrsAVX512[][4] = {
  6952. // Two integer columns for 64-bit and 32-bit elements.
  6953. //PackedSingle PackedDouble PackedInt PackedInt
  6954. { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr },
  6955. { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm },
  6956. { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr },
  6957. { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr },
  6958. { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm },
  6959. { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr },
  6960. { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm },
  6961. { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr },
  6962. { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr },
  6963. { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm },
  6964. { X86::VMOVAPSZmr, X86::VMOVAPDZmr, X86::VMOVDQA64Zmr, X86::VMOVDQA32Zmr },
  6965. { X86::VMOVAPSZrm, X86::VMOVAPDZrm, X86::VMOVDQA64Zrm, X86::VMOVDQA32Zrm },
  6966. { X86::VMOVAPSZrr, X86::VMOVAPDZrr, X86::VMOVDQA64Zrr, X86::VMOVDQA32Zrr },
  6967. { X86::VMOVUPSZmr, X86::VMOVUPDZmr, X86::VMOVDQU64Zmr, X86::VMOVDQU32Zmr },
  6968. { X86::VMOVUPSZrm, X86::VMOVUPDZrm, X86::VMOVDQU64Zrm, X86::VMOVDQU32Zrm },
  6969. };
  6970. static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
  6971. // Two integer columns for 64-bit and 32-bit elements.
  6972. //PackedSingle PackedDouble PackedInt PackedInt
  6973. { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
  6974. { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
  6975. { X86::VANDPSZ128rm, X86::VANDPDZ128rm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
  6976. { X86::VANDPSZ128rr, X86::VANDPDZ128rr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
  6977. { X86::VORPSZ128rm, X86::VORPDZ128rm, X86::VPORQZ128rm, X86::VPORDZ128rm },
  6978. { X86::VORPSZ128rr, X86::VORPDZ128rr, X86::VPORQZ128rr, X86::VPORDZ128rr },
  6979. { X86::VXORPSZ128rm, X86::VXORPDZ128rm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
  6980. { X86::VXORPSZ128rr, X86::VXORPDZ128rr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
  6981. { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
  6982. { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
  6983. { X86::VANDPSZ256rm, X86::VANDPDZ256rm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
  6984. { X86::VANDPSZ256rr, X86::VANDPDZ256rr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
  6985. { X86::VORPSZ256rm, X86::VORPDZ256rm, X86::VPORQZ256rm, X86::VPORDZ256rm },
  6986. { X86::VORPSZ256rr, X86::VORPDZ256rr, X86::VPORQZ256rr, X86::VPORDZ256rr },
  6987. { X86::VXORPSZ256rm, X86::VXORPDZ256rm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
  6988. { X86::VXORPSZ256rr, X86::VXORPDZ256rr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
  6989. { X86::VANDNPSZrm, X86::VANDNPDZrm, X86::VPANDNQZrm, X86::VPANDNDZrm },
  6990. { X86::VANDNPSZrr, X86::VANDNPDZrr, X86::VPANDNQZrr, X86::VPANDNDZrr },
  6991. { X86::VANDPSZrm, X86::VANDPDZrm, X86::VPANDQZrm, X86::VPANDDZrm },
  6992. { X86::VANDPSZrr, X86::VANDPDZrr, X86::VPANDQZrr, X86::VPANDDZrr },
  6993. { X86::VORPSZrm, X86::VORPDZrm, X86::VPORQZrm, X86::VPORDZrm },
  6994. { X86::VORPSZrr, X86::VORPDZrr, X86::VPORQZrr, X86::VPORDZrr },
  6995. { X86::VXORPSZrm, X86::VXORPDZrm, X86::VPXORQZrm, X86::VPXORDZrm },
  6996. { X86::VXORPSZrr, X86::VXORPDZrr, X86::VPXORQZrr, X86::VPXORDZrr },
  6997. };
  6998. static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
  6999. // Two integer columns for 64-bit and 32-bit elements.
  7000. //PackedSingle PackedDouble
  7001. //PackedInt PackedInt
  7002. { X86::VANDNPSZ128rmk, X86::VANDNPDZ128rmk,
  7003. X86::VPANDNQZ128rmk, X86::VPANDNDZ128rmk },
  7004. { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
  7005. X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
  7006. { X86::VANDNPSZ128rrk, X86::VANDNPDZ128rrk,
  7007. X86::VPANDNQZ128rrk, X86::VPANDNDZ128rrk },
  7008. { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
  7009. X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
  7010. { X86::VANDPSZ128rmk, X86::VANDPDZ128rmk,
  7011. X86::VPANDQZ128rmk, X86::VPANDDZ128rmk },
  7012. { X86::VANDPSZ128rmkz, X86::VANDPDZ128rmkz,
  7013. X86::VPANDQZ128rmkz, X86::VPANDDZ128rmkz },
  7014. { X86::VANDPSZ128rrk, X86::VANDPDZ128rrk,
  7015. X86::VPANDQZ128rrk, X86::VPANDDZ128rrk },
  7016. { X86::VANDPSZ128rrkz, X86::VANDPDZ128rrkz,
  7017. X86::VPANDQZ128rrkz, X86::VPANDDZ128rrkz },
  7018. { X86::VORPSZ128rmk, X86::VORPDZ128rmk,
  7019. X86::VPORQZ128rmk, X86::VPORDZ128rmk },
  7020. { X86::VORPSZ128rmkz, X86::VORPDZ128rmkz,
  7021. X86::VPORQZ128rmkz, X86::VPORDZ128rmkz },
  7022. { X86::VORPSZ128rrk, X86::VORPDZ128rrk,
  7023. X86::VPORQZ128rrk, X86::VPORDZ128rrk },
  7024. { X86::VORPSZ128rrkz, X86::VORPDZ128rrkz,
  7025. X86::VPORQZ128rrkz, X86::VPORDZ128rrkz },
  7026. { X86::VXORPSZ128rmk, X86::VXORPDZ128rmk,
  7027. X86::VPXORQZ128rmk, X86::VPXORDZ128rmk },
  7028. { X86::VXORPSZ128rmkz, X86::VXORPDZ128rmkz,
  7029. X86::VPXORQZ128rmkz, X86::VPXORDZ128rmkz },
  7030. { X86::VXORPSZ128rrk, X86::VXORPDZ128rrk,
  7031. X86::VPXORQZ128rrk, X86::VPXORDZ128rrk },
  7032. { X86::VXORPSZ128rrkz, X86::VXORPDZ128rrkz,
  7033. X86::VPXORQZ128rrkz, X86::VPXORDZ128rrkz },
  7034. { X86::VANDNPSZ256rmk, X86::VANDNPDZ256rmk,
  7035. X86::VPANDNQZ256rmk, X86::VPANDNDZ256rmk },
  7036. { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
  7037. X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
  7038. { X86::VANDNPSZ256rrk, X86::VANDNPDZ256rrk,
  7039. X86::VPANDNQZ256rrk, X86::VPANDNDZ256rrk },
  7040. { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
  7041. X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
  7042. { X86::VANDPSZ256rmk, X86::VANDPDZ256rmk,
  7043. X86::VPANDQZ256rmk, X86::VPANDDZ256rmk },
  7044. { X86::VANDPSZ256rmkz, X86::VANDPDZ256rmkz,
  7045. X86::VPANDQZ256rmkz, X86::VPANDDZ256rmkz },
  7046. { X86::VANDPSZ256rrk, X86::VANDPDZ256rrk,
  7047. X86::VPANDQZ256rrk, X86::VPANDDZ256rrk },
  7048. { X86::VANDPSZ256rrkz, X86::VANDPDZ256rrkz,
  7049. X86::VPANDQZ256rrkz, X86::VPANDDZ256rrkz },
  7050. { X86::VORPSZ256rmk, X86::VORPDZ256rmk,
  7051. X86::VPORQZ256rmk, X86::VPORDZ256rmk },
  7052. { X86::VORPSZ256rmkz, X86::VORPDZ256rmkz,
  7053. X86::VPORQZ256rmkz, X86::VPORDZ256rmkz },
  7054. { X86::VORPSZ256rrk, X86::VORPDZ256rrk,
  7055. X86::VPORQZ256rrk, X86::VPORDZ256rrk },
  7056. { X86::VORPSZ256rrkz, X86::VORPDZ256rrkz,
  7057. X86::VPORQZ256rrkz, X86::VPORDZ256rrkz },
  7058. { X86::VXORPSZ256rmk, X86::VXORPDZ256rmk,
  7059. X86::VPXORQZ256rmk, X86::VPXORDZ256rmk },
  7060. { X86::VXORPSZ256rmkz, X86::VXORPDZ256rmkz,
  7061. X86::VPXORQZ256rmkz, X86::VPXORDZ256rmkz },
  7062. { X86::VXORPSZ256rrk, X86::VXORPDZ256rrk,
  7063. X86::VPXORQZ256rrk, X86::VPXORDZ256rrk },
  7064. { X86::VXORPSZ256rrkz, X86::VXORPDZ256rrkz,
  7065. X86::VPXORQZ256rrkz, X86::VPXORDZ256rrkz },
  7066. { X86::VANDNPSZrmk, X86::VANDNPDZrmk,
  7067. X86::VPANDNQZrmk, X86::VPANDNDZrmk },
  7068. { X86::VANDNPSZrmkz, X86::VANDNPDZrmkz,
  7069. X86::VPANDNQZrmkz, X86::VPANDNDZrmkz },
  7070. { X86::VANDNPSZrrk, X86::VANDNPDZrrk,
  7071. X86::VPANDNQZrrk, X86::VPANDNDZrrk },
  7072. { X86::VANDNPSZrrkz, X86::VANDNPDZrrkz,
  7073. X86::VPANDNQZrrkz, X86::VPANDNDZrrkz },
  7074. { X86::VANDPSZrmk, X86::VANDPDZrmk,
  7075. X86::VPANDQZrmk, X86::VPANDDZrmk },
  7076. { X86::VANDPSZrmkz, X86::VANDPDZrmkz,
  7077. X86::VPANDQZrmkz, X86::VPANDDZrmkz },
  7078. { X86::VANDPSZrrk, X86::VANDPDZrrk,
  7079. X86::VPANDQZrrk, X86::VPANDDZrrk },
  7080. { X86::VANDPSZrrkz, X86::VANDPDZrrkz,
  7081. X86::VPANDQZrrkz, X86::VPANDDZrrkz },
  7082. { X86::VORPSZrmk, X86::VORPDZrmk,
  7083. X86::VPORQZrmk, X86::VPORDZrmk },
  7084. { X86::VORPSZrmkz, X86::VORPDZrmkz,
  7085. X86::VPORQZrmkz, X86::VPORDZrmkz },
  7086. { X86::VORPSZrrk, X86::VORPDZrrk,
  7087. X86::VPORQZrrk, X86::VPORDZrrk },
  7088. { X86::VORPSZrrkz, X86::VORPDZrrkz,
  7089. X86::VPORQZrrkz, X86::VPORDZrrkz },
  7090. { X86::VXORPSZrmk, X86::VXORPDZrmk,
  7091. X86::VPXORQZrmk, X86::VPXORDZrmk },
  7092. { X86::VXORPSZrmkz, X86::VXORPDZrmkz,
  7093. X86::VPXORQZrmkz, X86::VPXORDZrmkz },
  7094. { X86::VXORPSZrrk, X86::VXORPDZrrk,
  7095. X86::VPXORQZrrk, X86::VPXORDZrrk },
  7096. { X86::VXORPSZrrkz, X86::VXORPDZrrkz,
  7097. X86::VPXORQZrrkz, X86::VPXORDZrrkz },
  7098. // Broadcast loads can be handled the same as masked operations to avoid
  7099. // changing element size.
  7100. { X86::VANDNPSZ128rmb, X86::VANDNPDZ128rmb,
  7101. X86::VPANDNQZ128rmb, X86::VPANDNDZ128rmb },
  7102. { X86::VANDPSZ128rmb, X86::VANDPDZ128rmb,
  7103. X86::VPANDQZ128rmb, X86::VPANDDZ128rmb },
  7104. { X86::VORPSZ128rmb, X86::VORPDZ128rmb,
  7105. X86::VPORQZ128rmb, X86::VPORDZ128rmb },
  7106. { X86::VXORPSZ128rmb, X86::VXORPDZ128rmb,
  7107. X86::VPXORQZ128rmb, X86::VPXORDZ128rmb },
  7108. { X86::VANDNPSZ256rmb, X86::VANDNPDZ256rmb,
  7109. X86::VPANDNQZ256rmb, X86::VPANDNDZ256rmb },
  7110. { X86::VANDPSZ256rmb, X86::VANDPDZ256rmb,
  7111. X86::VPANDQZ256rmb, X86::VPANDDZ256rmb },
  7112. { X86::VORPSZ256rmb, X86::VORPDZ256rmb,
  7113. X86::VPORQZ256rmb, X86::VPORDZ256rmb },
  7114. { X86::VXORPSZ256rmb, X86::VXORPDZ256rmb,
  7115. X86::VPXORQZ256rmb, X86::VPXORDZ256rmb },
  7116. { X86::VANDNPSZrmb, X86::VANDNPDZrmb,
  7117. X86::VPANDNQZrmb, X86::VPANDNDZrmb },
  7118. { X86::VANDPSZrmb, X86::VANDPDZrmb,
  7119. X86::VPANDQZrmb, X86::VPANDDZrmb },
  7120. { X86::VANDPSZrmb, X86::VANDPDZrmb,
  7121. X86::VPANDQZrmb, X86::VPANDDZrmb },
  7122. { X86::VORPSZrmb, X86::VORPDZrmb,
  7123. X86::VPORQZrmb, X86::VPORDZrmb },
  7124. { X86::VXORPSZrmb, X86::VXORPDZrmb,
  7125. X86::VPXORQZrmb, X86::VPXORDZrmb },
  7126. { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
  7127. X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
  7128. { X86::VANDPSZ128rmbk, X86::VANDPDZ128rmbk,
  7129. X86::VPANDQZ128rmbk, X86::VPANDDZ128rmbk },
  7130. { X86::VORPSZ128rmbk, X86::VORPDZ128rmbk,
  7131. X86::VPORQZ128rmbk, X86::VPORDZ128rmbk },
  7132. { X86::VXORPSZ128rmbk, X86::VXORPDZ128rmbk,
  7133. X86::VPXORQZ128rmbk, X86::VPXORDZ128rmbk },
  7134. { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
  7135. X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
  7136. { X86::VANDPSZ256rmbk, X86::VANDPDZ256rmbk,
  7137. X86::VPANDQZ256rmbk, X86::VPANDDZ256rmbk },
  7138. { X86::VORPSZ256rmbk, X86::VORPDZ256rmbk,
  7139. X86::VPORQZ256rmbk, X86::VPORDZ256rmbk },
  7140. { X86::VXORPSZ256rmbk, X86::VXORPDZ256rmbk,
  7141. X86::VPXORQZ256rmbk, X86::VPXORDZ256rmbk },
  7142. { X86::VANDNPSZrmbk, X86::VANDNPDZrmbk,
  7143. X86::VPANDNQZrmbk, X86::VPANDNDZrmbk },
  7144. { X86::VANDPSZrmbk, X86::VANDPDZrmbk,
  7145. X86::VPANDQZrmbk, X86::VPANDDZrmbk },
  7146. { X86::VANDPSZrmbk, X86::VANDPDZrmbk,
  7147. X86::VPANDQZrmbk, X86::VPANDDZrmbk },
  7148. { X86::VORPSZrmbk, X86::VORPDZrmbk,
  7149. X86::VPORQZrmbk, X86::VPORDZrmbk },
  7150. { X86::VXORPSZrmbk, X86::VXORPDZrmbk,
  7151. X86::VPXORQZrmbk, X86::VPXORDZrmbk },
  7152. { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
  7153. X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
  7154. { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
  7155. X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
  7156. { X86::VORPSZ128rmbkz, X86::VORPDZ128rmbkz,
  7157. X86::VPORQZ128rmbkz, X86::VPORDZ128rmbkz },
  7158. { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
  7159. X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
  7160. { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
  7161. X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
  7162. { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
  7163. X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
  7164. { X86::VORPSZ256rmbkz, X86::VORPDZ256rmbkz,
  7165. X86::VPORQZ256rmbkz, X86::VPORDZ256rmbkz },
  7166. { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
  7167. X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
  7168. { X86::VANDNPSZrmbkz, X86::VANDNPDZrmbkz,
  7169. X86::VPANDNQZrmbkz, X86::VPANDNDZrmbkz },
  7170. { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
  7171. X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
  7172. { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
  7173. X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
  7174. { X86::VORPSZrmbkz, X86::VORPDZrmbkz,
  7175. X86::VPORQZrmbkz, X86::VPORDZrmbkz },
  7176. { X86::VXORPSZrmbkz, X86::VXORPDZrmbkz,
  7177. X86::VPXORQZrmbkz, X86::VPXORDZrmbkz },
  7178. };
  7179. // NOTE: These should only be used by the custom domain methods.
  7180. static const uint16_t ReplaceableBlendInstrs[][3] = {
  7181. //PackedSingle PackedDouble PackedInt
  7182. { X86::BLENDPSrmi, X86::BLENDPDrmi, X86::PBLENDWrmi },
  7183. { X86::BLENDPSrri, X86::BLENDPDrri, X86::PBLENDWrri },
  7184. { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDWrmi },
  7185. { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDWrri },
  7186. { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDWYrmi },
  7187. { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDWYrri },
  7188. };
  7189. static const uint16_t ReplaceableBlendAVX2Instrs[][3] = {
  7190. //PackedSingle PackedDouble PackedInt
  7191. { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDDrmi },
  7192. { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDDrri },
  7193. { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDDYrmi },
  7194. { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDDYrri },
  7195. };
  7196. // Special table for changing EVEX logic instructions to VEX.
  7197. // TODO: Should we run EVEX->VEX earlier?
  7198. static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
  7199. // Two integer columns for 64-bit and 32-bit elements.
  7200. //PackedSingle PackedDouble PackedInt PackedInt
  7201. { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
  7202. { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
  7203. { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
  7204. { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
  7205. { X86::VORPSrm, X86::VORPDrm, X86::VPORQZ128rm, X86::VPORDZ128rm },
  7206. { X86::VORPSrr, X86::VORPDrr, X86::VPORQZ128rr, X86::VPORDZ128rr },
  7207. { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
  7208. { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
  7209. { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
  7210. { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
  7211. { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
  7212. { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
  7213. { X86::VORPSYrm, X86::VORPDYrm, X86::VPORQZ256rm, X86::VPORDZ256rm },
  7214. { X86::VORPSYrr, X86::VORPDYrr, X86::VPORQZ256rr, X86::VPORDZ256rr },
  7215. { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
  7216. { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
  7217. };
  7218. // FIXME: Some shuffle and unpack instructions have equivalents in different
  7219. // domains, but they require a bit more work than just switching opcodes.
  7220. static const uint16_t *lookup(unsigned opcode, unsigned domain,
  7221. ArrayRef<uint16_t[3]> Table) {
  7222. for (const uint16_t (&Row)[3] : Table)
  7223. if (Row[domain-1] == opcode)
  7224. return Row;
  7225. return nullptr;
  7226. }
  7227. static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
  7228. ArrayRef<uint16_t[4]> Table) {
  7229. // If this is the integer domain make sure to check both integer columns.
  7230. for (const uint16_t (&Row)[4] : Table)
  7231. if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
  7232. return Row;
  7233. return nullptr;
  7234. }
  7235. // Helper to attempt to widen/narrow blend masks.
  7236. static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
  7237. unsigned NewWidth, unsigned *pNewMask = nullptr) {
  7238. assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
  7239. "Illegal blend mask scale");
  7240. unsigned NewMask = 0;
  7241. if ((OldWidth % NewWidth) == 0) {
  7242. unsigned Scale = OldWidth / NewWidth;
  7243. unsigned SubMask = (1u << Scale) - 1;
  7244. for (unsigned i = 0; i != NewWidth; ++i) {
  7245. unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
  7246. if (Sub == SubMask)
  7247. NewMask |= (1u << i);
  7248. else if (Sub != 0x0)
  7249. return false;
  7250. }
  7251. } else {
  7252. unsigned Scale = NewWidth / OldWidth;
  7253. unsigned SubMask = (1u << Scale) - 1;
  7254. for (unsigned i = 0; i != OldWidth; ++i) {
  7255. if (OldMask & (1 << i)) {
  7256. NewMask |= (SubMask << (i * Scale));
  7257. }
  7258. }
  7259. }
  7260. if (pNewMask)
  7261. *pNewMask = NewMask;
  7262. return true;
  7263. }
  7264. uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
  7265. unsigned Opcode = MI.getOpcode();
  7266. unsigned NumOperands = MI.getDesc().getNumOperands();
  7267. auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
  7268. uint16_t validDomains = 0;
  7269. if (MI.getOperand(NumOperands - 1).isImm()) {
  7270. unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
  7271. if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
  7272. validDomains |= 0x2; // PackedSingle
  7273. if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
  7274. validDomains |= 0x4; // PackedDouble
  7275. if (!Is256 || Subtarget.hasAVX2())
  7276. validDomains |= 0x8; // PackedInt
  7277. }
  7278. return validDomains;
  7279. };
  7280. switch (Opcode) {
  7281. case X86::BLENDPDrmi:
  7282. case X86::BLENDPDrri:
  7283. case X86::VBLENDPDrmi:
  7284. case X86::VBLENDPDrri:
  7285. return GetBlendDomains(2, false);
  7286. case X86::VBLENDPDYrmi:
  7287. case X86::VBLENDPDYrri:
  7288. return GetBlendDomains(4, true);
  7289. case X86::BLENDPSrmi:
  7290. case X86::BLENDPSrri:
  7291. case X86::VBLENDPSrmi:
  7292. case X86::VBLENDPSrri:
  7293. case X86::VPBLENDDrmi:
  7294. case X86::VPBLENDDrri:
  7295. return GetBlendDomains(4, false);
  7296. case X86::VBLENDPSYrmi:
  7297. case X86::VBLENDPSYrri:
  7298. case X86::VPBLENDDYrmi:
  7299. case X86::VPBLENDDYrri:
  7300. return GetBlendDomains(8, true);
  7301. case X86::PBLENDWrmi:
  7302. case X86::PBLENDWrri:
  7303. case X86::VPBLENDWrmi:
  7304. case X86::VPBLENDWrri:
  7305. // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
  7306. case X86::VPBLENDWYrmi:
  7307. case X86::VPBLENDWYrri:
  7308. return GetBlendDomains(8, false);
  7309. case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
  7310. case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
  7311. case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
  7312. case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
  7313. case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
  7314. case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
  7315. case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
  7316. case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
  7317. case X86::VPORDZ128rr: case X86::VPORDZ128rm:
  7318. case X86::VPORDZ256rr: case X86::VPORDZ256rm:
  7319. case X86::VPORQZ128rr: case X86::VPORQZ128rm:
  7320. case X86::VPORQZ256rr: case X86::VPORQZ256rm:
  7321. case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
  7322. case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
  7323. case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
  7324. case X86::VPXORQZ256rr: case X86::VPXORQZ256rm:
  7325. // If we don't have DQI see if we can still switch from an EVEX integer
  7326. // instruction to a VEX floating point instruction.
  7327. if (Subtarget.hasDQI())
  7328. return 0;
  7329. if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
  7330. return 0;
  7331. if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
  7332. return 0;
  7333. // Register forms will have 3 operands. Memory form will have more.
  7334. if (NumOperands == 3 &&
  7335. RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
  7336. return 0;
  7337. // All domains are valid.
  7338. return 0xe;
  7339. case X86::MOVHLPSrr:
  7340. // We can swap domains when both inputs are the same register.
  7341. // FIXME: This doesn't catch all the cases we would like. If the input
  7342. // register isn't KILLed by the instruction, the two address instruction
  7343. // pass puts a COPY on one input. The other input uses the original
  7344. // register. This prevents the same physical register from being used by
  7345. // both inputs.
  7346. if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
  7347. MI.getOperand(0).getSubReg() == 0 &&
  7348. MI.getOperand(1).getSubReg() == 0 &&
  7349. MI.getOperand(2).getSubReg() == 0)
  7350. return 0x6;
  7351. return 0;
  7352. case X86::SHUFPDrri:
  7353. return 0x6;
  7354. }
  7355. return 0;
  7356. }
  7357. bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
  7358. unsigned Domain) const {
  7359. assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
  7360. uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
  7361. assert(dom && "Not an SSE instruction");
  7362. unsigned Opcode = MI.getOpcode();
  7363. unsigned NumOperands = MI.getDesc().getNumOperands();
  7364. auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
  7365. if (MI.getOperand(NumOperands - 1).isImm()) {
  7366. unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
  7367. Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
  7368. unsigned NewImm = Imm;
  7369. const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
  7370. if (!table)
  7371. table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
  7372. if (Domain == 1) { // PackedSingle
  7373. AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
  7374. } else if (Domain == 2) { // PackedDouble
  7375. AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
  7376. } else if (Domain == 3) { // PackedInt
  7377. if (Subtarget.hasAVX2()) {
  7378. // If we are already VPBLENDW use that, else use VPBLENDD.
  7379. if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
  7380. table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
  7381. AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
  7382. }
  7383. } else {
  7384. assert(!Is256 && "128-bit vector expected");
  7385. AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
  7386. }
  7387. }
  7388. assert(table && table[Domain - 1] && "Unknown domain op");
  7389. MI.setDesc(get(table[Domain - 1]));
  7390. MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
  7391. }
  7392. return true;
  7393. };
  7394. switch (Opcode) {
  7395. case X86::BLENDPDrmi:
  7396. case X86::BLENDPDrri:
  7397. case X86::VBLENDPDrmi:
  7398. case X86::VBLENDPDrri:
  7399. return SetBlendDomain(2, false);
  7400. case X86::VBLENDPDYrmi:
  7401. case X86::VBLENDPDYrri:
  7402. return SetBlendDomain(4, true);
  7403. case X86::BLENDPSrmi:
  7404. case X86::BLENDPSrri:
  7405. case X86::VBLENDPSrmi:
  7406. case X86::VBLENDPSrri:
  7407. case X86::VPBLENDDrmi:
  7408. case X86::VPBLENDDrri:
  7409. return SetBlendDomain(4, false);
  7410. case X86::VBLENDPSYrmi:
  7411. case X86::VBLENDPSYrri:
  7412. case X86::VPBLENDDYrmi:
  7413. case X86::VPBLENDDYrri:
  7414. return SetBlendDomain(8, true);
  7415. case X86::PBLENDWrmi:
  7416. case X86::PBLENDWrri:
  7417. case X86::VPBLENDWrmi:
  7418. case X86::VPBLENDWrri:
  7419. return SetBlendDomain(8, false);
  7420. case X86::VPBLENDWYrmi:
  7421. case X86::VPBLENDWYrri:
  7422. return SetBlendDomain(16, true);
  7423. case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
  7424. case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
  7425. case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
  7426. case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
  7427. case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
  7428. case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
  7429. case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
  7430. case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
  7431. case X86::VPORDZ128rr: case X86::VPORDZ128rm:
  7432. case X86::VPORDZ256rr: case X86::VPORDZ256rm:
  7433. case X86::VPORQZ128rr: case X86::VPORQZ128rm:
  7434. case X86::VPORQZ256rr: case X86::VPORQZ256rm:
  7435. case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
  7436. case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
  7437. case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
  7438. case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: {
  7439. // Without DQI, convert EVEX instructions to VEX instructions.
  7440. if (Subtarget.hasDQI())
  7441. return false;
  7442. const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
  7443. ReplaceableCustomAVX512LogicInstrs);
  7444. assert(table && "Instruction not found in table?");
  7445. // Don't change integer Q instructions to D instructions and
  7446. // use D intructions if we started with a PS instruction.
  7447. if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
  7448. Domain = 4;
  7449. MI.setDesc(get(table[Domain - 1]));
  7450. return true;
  7451. }
  7452. case X86::UNPCKHPDrr:
  7453. case X86::MOVHLPSrr:
  7454. // We just need to commute the instruction which will switch the domains.
  7455. if (Domain != dom && Domain != 3 &&
  7456. MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
  7457. MI.getOperand(0).getSubReg() == 0 &&
  7458. MI.getOperand(1).getSubReg() == 0 &&
  7459. MI.getOperand(2).getSubReg() == 0) {
  7460. commuteInstruction(MI, false);
  7461. return true;
  7462. }
  7463. // We must always return true for MOVHLPSrr.
  7464. if (Opcode == X86::MOVHLPSrr)
  7465. return true;
  7466. break;
  7467. case X86::SHUFPDrri: {
  7468. if (Domain == 1) {
  7469. unsigned Imm = MI.getOperand(3).getImm();
  7470. unsigned NewImm = 0x44;
  7471. if (Imm & 1) NewImm |= 0x0a;
  7472. if (Imm & 2) NewImm |= 0xa0;
  7473. MI.getOperand(3).setImm(NewImm);
  7474. MI.setDesc(get(X86::SHUFPSrri));
  7475. }
  7476. return true;
  7477. }
  7478. }
  7479. return false;
  7480. }
  7481. std::pair<uint16_t, uint16_t>
  7482. X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
  7483. uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
  7484. unsigned opcode = MI.getOpcode();
  7485. uint16_t validDomains = 0;
  7486. if (domain) {
  7487. // Attempt to match for custom instructions.
  7488. validDomains = getExecutionDomainCustom(MI);
  7489. if (validDomains)
  7490. return std::make_pair(domain, validDomains);
  7491. if (lookup(opcode, domain, ReplaceableInstrs)) {
  7492. validDomains = 0xe;
  7493. } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
  7494. validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
  7495. } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
  7496. validDomains = 0x6;
  7497. } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
  7498. // Insert/extract instructions should only effect domain if AVX2
  7499. // is enabled.
  7500. if (!Subtarget.hasAVX2())
  7501. return std::make_pair(0, 0);
  7502. validDomains = 0xe;
  7503. } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
  7504. validDomains = 0xe;
  7505. } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
  7506. ReplaceableInstrsAVX512DQ)) {
  7507. validDomains = 0xe;
  7508. } else if (Subtarget.hasDQI()) {
  7509. if (const uint16_t *table = lookupAVX512(opcode, domain,
  7510. ReplaceableInstrsAVX512DQMasked)) {
  7511. if (domain == 1 || (domain == 3 && table[3] == opcode))
  7512. validDomains = 0xa;
  7513. else
  7514. validDomains = 0xc;
  7515. }
  7516. }
  7517. }
  7518. return std::make_pair(domain, validDomains);
  7519. }
  7520. void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
  7521. assert(Domain>0 && Domain<4 && "Invalid execution domain");
  7522. uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
  7523. assert(dom && "Not an SSE instruction");
  7524. // Attempt to match for custom instructions.
  7525. if (setExecutionDomainCustom(MI, Domain))
  7526. return;
  7527. const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
  7528. if (!table) { // try the other table
  7529. assert((Subtarget.hasAVX2() || Domain < 3) &&
  7530. "256-bit vector operations only available in AVX2");
  7531. table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
  7532. }
  7533. if (!table) { // try the FP table
  7534. table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
  7535. assert((!table || Domain < 3) &&
  7536. "Can only select PackedSingle or PackedDouble");
  7537. }
  7538. if (!table) { // try the other table
  7539. assert(Subtarget.hasAVX2() &&
  7540. "256-bit insert/extract only available in AVX2");
  7541. table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
  7542. }
  7543. if (!table) { // try the AVX512 table
  7544. assert(Subtarget.hasAVX512() && "Requires AVX-512");
  7545. table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
  7546. // Don't change integer Q instructions to D instructions.
  7547. if (table && Domain == 3 && table[3] == MI.getOpcode())
  7548. Domain = 4;
  7549. }
  7550. if (!table) { // try the AVX512DQ table
  7551. assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
  7552. table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
  7553. // Don't change integer Q instructions to D instructions and
  7554. // use D instructions if we started with a PS instruction.
  7555. if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
  7556. Domain = 4;
  7557. }
  7558. if (!table) { // try the AVX512DQMasked table
  7559. assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
  7560. table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
  7561. if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
  7562. Domain = 4;
  7563. }
  7564. assert(table && "Cannot change domain");
  7565. MI.setDesc(get(table[Domain - 1]));
  7566. }
  7567. /// Return the noop instruction to use for a noop.
  7568. MCInst X86InstrInfo::getNop() const {
  7569. MCInst Nop;
  7570. Nop.setOpcode(X86::NOOP);
  7571. return Nop;
  7572. }
  7573. bool X86InstrInfo::isHighLatencyDef(int opc) const {
  7574. switch (opc) {
  7575. default: return false;
  7576. case X86::DIVPDrm:
  7577. case X86::DIVPDrr:
  7578. case X86::DIVPSrm:
  7579. case X86::DIVPSrr:
  7580. case X86::DIVSDrm:
  7581. case X86::DIVSDrm_Int:
  7582. case X86::DIVSDrr:
  7583. case X86::DIVSDrr_Int:
  7584. case X86::DIVSSrm:
  7585. case X86::DIVSSrm_Int:
  7586. case X86::DIVSSrr:
  7587. case X86::DIVSSrr_Int:
  7588. case X86::SQRTPDm:
  7589. case X86::SQRTPDr:
  7590. case X86::SQRTPSm:
  7591. case X86::SQRTPSr:
  7592. case X86::SQRTSDm:
  7593. case X86::SQRTSDm_Int:
  7594. case X86::SQRTSDr:
  7595. case X86::SQRTSDr_Int:
  7596. case X86::SQRTSSm:
  7597. case X86::SQRTSSm_Int:
  7598. case X86::SQRTSSr:
  7599. case X86::SQRTSSr_Int:
  7600. // AVX instructions with high latency
  7601. case X86::VDIVPDrm:
  7602. case X86::VDIVPDrr:
  7603. case X86::VDIVPDYrm:
  7604. case X86::VDIVPDYrr:
  7605. case X86::VDIVPSrm:
  7606. case X86::VDIVPSrr:
  7607. case X86::VDIVPSYrm:
  7608. case X86::VDIVPSYrr:
  7609. case X86::VDIVSDrm:
  7610. case X86::VDIVSDrm_Int:
  7611. case X86::VDIVSDrr:
  7612. case X86::VDIVSDrr_Int:
  7613. case X86::VDIVSSrm:
  7614. case X86::VDIVSSrm_Int:
  7615. case X86::VDIVSSrr:
  7616. case X86::VDIVSSrr_Int:
  7617. case X86::VSQRTPDm:
  7618. case X86::VSQRTPDr:
  7619. case X86::VSQRTPDYm:
  7620. case X86::VSQRTPDYr:
  7621. case X86::VSQRTPSm:
  7622. case X86::VSQRTPSr:
  7623. case X86::VSQRTPSYm:
  7624. case X86::VSQRTPSYr:
  7625. case X86::VSQRTSDm:
  7626. case X86::VSQRTSDm_Int:
  7627. case X86::VSQRTSDr:
  7628. case X86::VSQRTSDr_Int:
  7629. case X86::VSQRTSSm:
  7630. case X86::VSQRTSSm_Int:
  7631. case X86::VSQRTSSr:
  7632. case X86::VSQRTSSr_Int:
  7633. // AVX512 instructions with high latency
  7634. case X86::VDIVPDZ128rm:
  7635. case X86::VDIVPDZ128rmb:
  7636. case X86::VDIVPDZ128rmbk:
  7637. case X86::VDIVPDZ128rmbkz:
  7638. case X86::VDIVPDZ128rmk:
  7639. case X86::VDIVPDZ128rmkz:
  7640. case X86::VDIVPDZ128rr:
  7641. case X86::VDIVPDZ128rrk:
  7642. case X86::VDIVPDZ128rrkz:
  7643. case X86::VDIVPDZ256rm:
  7644. case X86::VDIVPDZ256rmb:
  7645. case X86::VDIVPDZ256rmbk:
  7646. case X86::VDIVPDZ256rmbkz:
  7647. case X86::VDIVPDZ256rmk:
  7648. case X86::VDIVPDZ256rmkz:
  7649. case X86::VDIVPDZ256rr:
  7650. case X86::VDIVPDZ256rrk:
  7651. case X86::VDIVPDZ256rrkz:
  7652. case X86::VDIVPDZrrb:
  7653. case X86::VDIVPDZrrbk:
  7654. case X86::VDIVPDZrrbkz:
  7655. case X86::VDIVPDZrm:
  7656. case X86::VDIVPDZrmb:
  7657. case X86::VDIVPDZrmbk:
  7658. case X86::VDIVPDZrmbkz:
  7659. case X86::VDIVPDZrmk:
  7660. case X86::VDIVPDZrmkz:
  7661. case X86::VDIVPDZrr:
  7662. case X86::VDIVPDZrrk:
  7663. case X86::VDIVPDZrrkz:
  7664. case X86::VDIVPSZ128rm:
  7665. case X86::VDIVPSZ128rmb:
  7666. case X86::VDIVPSZ128rmbk:
  7667. case X86::VDIVPSZ128rmbkz:
  7668. case X86::VDIVPSZ128rmk:
  7669. case X86::VDIVPSZ128rmkz:
  7670. case X86::VDIVPSZ128rr:
  7671. case X86::VDIVPSZ128rrk:
  7672. case X86::VDIVPSZ128rrkz:
  7673. case X86::VDIVPSZ256rm:
  7674. case X86::VDIVPSZ256rmb:
  7675. case X86::VDIVPSZ256rmbk:
  7676. case X86::VDIVPSZ256rmbkz:
  7677. case X86::VDIVPSZ256rmk:
  7678. case X86::VDIVPSZ256rmkz:
  7679. case X86::VDIVPSZ256rr:
  7680. case X86::VDIVPSZ256rrk:
  7681. case X86::VDIVPSZ256rrkz:
  7682. case X86::VDIVPSZrrb:
  7683. case X86::VDIVPSZrrbk:
  7684. case X86::VDIVPSZrrbkz:
  7685. case X86::VDIVPSZrm:
  7686. case X86::VDIVPSZrmb:
  7687. case X86::VDIVPSZrmbk:
  7688. case X86::VDIVPSZrmbkz:
  7689. case X86::VDIVPSZrmk:
  7690. case X86::VDIVPSZrmkz:
  7691. case X86::VDIVPSZrr:
  7692. case X86::VDIVPSZrrk:
  7693. case X86::VDIVPSZrrkz:
  7694. case X86::VDIVSDZrm:
  7695. case X86::VDIVSDZrr:
  7696. case X86::VDIVSDZrm_Int:
  7697. case X86::VDIVSDZrm_Intk:
  7698. case X86::VDIVSDZrm_Intkz:
  7699. case X86::VDIVSDZrr_Int:
  7700. case X86::VDIVSDZrr_Intk:
  7701. case X86::VDIVSDZrr_Intkz:
  7702. case X86::VDIVSDZrrb_Int:
  7703. case X86::VDIVSDZrrb_Intk:
  7704. case X86::VDIVSDZrrb_Intkz:
  7705. case X86::VDIVSSZrm:
  7706. case X86::VDIVSSZrr:
  7707. case X86::VDIVSSZrm_Int:
  7708. case X86::VDIVSSZrm_Intk:
  7709. case X86::VDIVSSZrm_Intkz:
  7710. case X86::VDIVSSZrr_Int:
  7711. case X86::VDIVSSZrr_Intk:
  7712. case X86::VDIVSSZrr_Intkz:
  7713. case X86::VDIVSSZrrb_Int:
  7714. case X86::VDIVSSZrrb_Intk:
  7715. case X86::VDIVSSZrrb_Intkz:
  7716. case X86::VSQRTPDZ128m:
  7717. case X86::VSQRTPDZ128mb:
  7718. case X86::VSQRTPDZ128mbk:
  7719. case X86::VSQRTPDZ128mbkz:
  7720. case X86::VSQRTPDZ128mk:
  7721. case X86::VSQRTPDZ128mkz:
  7722. case X86::VSQRTPDZ128r:
  7723. case X86::VSQRTPDZ128rk:
  7724. case X86::VSQRTPDZ128rkz:
  7725. case X86::VSQRTPDZ256m:
  7726. case X86::VSQRTPDZ256mb:
  7727. case X86::VSQRTPDZ256mbk:
  7728. case X86::VSQRTPDZ256mbkz:
  7729. case X86::VSQRTPDZ256mk:
  7730. case X86::VSQRTPDZ256mkz:
  7731. case X86::VSQRTPDZ256r:
  7732. case X86::VSQRTPDZ256rk:
  7733. case X86::VSQRTPDZ256rkz:
  7734. case X86::VSQRTPDZm:
  7735. case X86::VSQRTPDZmb:
  7736. case X86::VSQRTPDZmbk:
  7737. case X86::VSQRTPDZmbkz:
  7738. case X86::VSQRTPDZmk:
  7739. case X86::VSQRTPDZmkz:
  7740. case X86::VSQRTPDZr:
  7741. case X86::VSQRTPDZrb:
  7742. case X86::VSQRTPDZrbk:
  7743. case X86::VSQRTPDZrbkz:
  7744. case X86::VSQRTPDZrk:
  7745. case X86::VSQRTPDZrkz:
  7746. case X86::VSQRTPSZ128m:
  7747. case X86::VSQRTPSZ128mb:
  7748. case X86::VSQRTPSZ128mbk:
  7749. case X86::VSQRTPSZ128mbkz:
  7750. case X86::VSQRTPSZ128mk:
  7751. case X86::VSQRTPSZ128mkz:
  7752. case X86::VSQRTPSZ128r:
  7753. case X86::VSQRTPSZ128rk:
  7754. case X86::VSQRTPSZ128rkz:
  7755. case X86::VSQRTPSZ256m:
  7756. case X86::VSQRTPSZ256mb:
  7757. case X86::VSQRTPSZ256mbk:
  7758. case X86::VSQRTPSZ256mbkz:
  7759. case X86::VSQRTPSZ256mk:
  7760. case X86::VSQRTPSZ256mkz:
  7761. case X86::VSQRTPSZ256r:
  7762. case X86::VSQRTPSZ256rk:
  7763. case X86::VSQRTPSZ256rkz:
  7764. case X86::VSQRTPSZm:
  7765. case X86::VSQRTPSZmb:
  7766. case X86::VSQRTPSZmbk:
  7767. case X86::VSQRTPSZmbkz:
  7768. case X86::VSQRTPSZmk:
  7769. case X86::VSQRTPSZmkz:
  7770. case X86::VSQRTPSZr:
  7771. case X86::VSQRTPSZrb:
  7772. case X86::VSQRTPSZrbk:
  7773. case X86::VSQRTPSZrbkz:
  7774. case X86::VSQRTPSZrk:
  7775. case X86::VSQRTPSZrkz:
  7776. case X86::VSQRTSDZm:
  7777. case X86::VSQRTSDZm_Int:
  7778. case X86::VSQRTSDZm_Intk:
  7779. case X86::VSQRTSDZm_Intkz:
  7780. case X86::VSQRTSDZr:
  7781. case X86::VSQRTSDZr_Int:
  7782. case X86::VSQRTSDZr_Intk:
  7783. case X86::VSQRTSDZr_Intkz:
  7784. case X86::VSQRTSDZrb_Int:
  7785. case X86::VSQRTSDZrb_Intk:
  7786. case X86::VSQRTSDZrb_Intkz:
  7787. case X86::VSQRTSSZm:
  7788. case X86::VSQRTSSZm_Int:
  7789. case X86::VSQRTSSZm_Intk:
  7790. case X86::VSQRTSSZm_Intkz:
  7791. case X86::VSQRTSSZr:
  7792. case X86::VSQRTSSZr_Int:
  7793. case X86::VSQRTSSZr_Intk:
  7794. case X86::VSQRTSSZr_Intkz:
  7795. case X86::VSQRTSSZrb_Int:
  7796. case X86::VSQRTSSZrb_Intk:
  7797. case X86::VSQRTSSZrb_Intkz:
  7798. case X86::VGATHERDPDYrm:
  7799. case X86::VGATHERDPDZ128rm:
  7800. case X86::VGATHERDPDZ256rm:
  7801. case X86::VGATHERDPDZrm:
  7802. case X86::VGATHERDPDrm:
  7803. case X86::VGATHERDPSYrm:
  7804. case X86::VGATHERDPSZ128rm:
  7805. case X86::VGATHERDPSZ256rm:
  7806. case X86::VGATHERDPSZrm:
  7807. case X86::VGATHERDPSrm:
  7808. case X86::VGATHERPF0DPDm:
  7809. case X86::VGATHERPF0DPSm:
  7810. case X86::VGATHERPF0QPDm:
  7811. case X86::VGATHERPF0QPSm:
  7812. case X86::VGATHERPF1DPDm:
  7813. case X86::VGATHERPF1DPSm:
  7814. case X86::VGATHERPF1QPDm:
  7815. case X86::VGATHERPF1QPSm:
  7816. case X86::VGATHERQPDYrm:
  7817. case X86::VGATHERQPDZ128rm:
  7818. case X86::VGATHERQPDZ256rm:
  7819. case X86::VGATHERQPDZrm:
  7820. case X86::VGATHERQPDrm:
  7821. case X86::VGATHERQPSYrm:
  7822. case X86::VGATHERQPSZ128rm:
  7823. case X86::VGATHERQPSZ256rm:
  7824. case X86::VGATHERQPSZrm:
  7825. case X86::VGATHERQPSrm:
  7826. case X86::VPGATHERDDYrm:
  7827. case X86::VPGATHERDDZ128rm:
  7828. case X86::VPGATHERDDZ256rm:
  7829. case X86::VPGATHERDDZrm:
  7830. case X86::VPGATHERDDrm:
  7831. case X86::VPGATHERDQYrm:
  7832. case X86::VPGATHERDQZ128rm:
  7833. case X86::VPGATHERDQZ256rm:
  7834. case X86::VPGATHERDQZrm:
  7835. case X86::VPGATHERDQrm:
  7836. case X86::VPGATHERQDYrm:
  7837. case X86::VPGATHERQDZ128rm:
  7838. case X86::VPGATHERQDZ256rm:
  7839. case X86::VPGATHERQDZrm:
  7840. case X86::VPGATHERQDrm:
  7841. case X86::VPGATHERQQYrm:
  7842. case X86::VPGATHERQQZ128rm:
  7843. case X86::VPGATHERQQZ256rm:
  7844. case X86::VPGATHERQQZrm:
  7845. case X86::VPGATHERQQrm:
  7846. case X86::VSCATTERDPDZ128mr:
  7847. case X86::VSCATTERDPDZ256mr:
  7848. case X86::VSCATTERDPDZmr:
  7849. case X86::VSCATTERDPSZ128mr:
  7850. case X86::VSCATTERDPSZ256mr:
  7851. case X86::VSCATTERDPSZmr:
  7852. case X86::VSCATTERPF0DPDm:
  7853. case X86::VSCATTERPF0DPSm:
  7854. case X86::VSCATTERPF0QPDm:
  7855. case X86::VSCATTERPF0QPSm:
  7856. case X86::VSCATTERPF1DPDm:
  7857. case X86::VSCATTERPF1DPSm:
  7858. case X86::VSCATTERPF1QPDm:
  7859. case X86::VSCATTERPF1QPSm:
  7860. case X86::VSCATTERQPDZ128mr:
  7861. case X86::VSCATTERQPDZ256mr:
  7862. case X86::VSCATTERQPDZmr:
  7863. case X86::VSCATTERQPSZ128mr:
  7864. case X86::VSCATTERQPSZ256mr:
  7865. case X86::VSCATTERQPSZmr:
  7866. case X86::VPSCATTERDDZ128mr:
  7867. case X86::VPSCATTERDDZ256mr:
  7868. case X86::VPSCATTERDDZmr:
  7869. case X86::VPSCATTERDQZ128mr:
  7870. case X86::VPSCATTERDQZ256mr:
  7871. case X86::VPSCATTERDQZmr:
  7872. case X86::VPSCATTERQDZ128mr:
  7873. case X86::VPSCATTERQDZ256mr:
  7874. case X86::VPSCATTERQDZmr:
  7875. case X86::VPSCATTERQQZ128mr:
  7876. case X86::VPSCATTERQQZ256mr:
  7877. case X86::VPSCATTERQQZmr:
  7878. return true;
  7879. }
  7880. }
  7881. bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
  7882. const MachineRegisterInfo *MRI,
  7883. const MachineInstr &DefMI,
  7884. unsigned DefIdx,
  7885. const MachineInstr &UseMI,
  7886. unsigned UseIdx) const {
  7887. return isHighLatencyDef(DefMI.getOpcode());
  7888. }
  7889. bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
  7890. const MachineBasicBlock *MBB) const {
  7891. assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 &&
  7892. Inst.getNumDefs() <= 2 && "Reassociation needs binary operators");
  7893. // Integer binary math/logic instructions have a third source operand:
  7894. // the EFLAGS register. That operand must be both defined here and never
  7895. // used; ie, it must be dead. If the EFLAGS operand is live, then we can
  7896. // not change anything because rearranging the operands could affect other
  7897. // instructions that depend on the exact status flags (zero, sign, etc.)
  7898. // that are set by using these particular operands with this operation.
  7899. const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS);
  7900. assert((Inst.getNumDefs() == 1 || FlagDef) &&
  7901. "Implicit def isn't flags?");
  7902. if (FlagDef && !FlagDef->isDead())
  7903. return false;
  7904. return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
  7905. }
  7906. // TODO: There are many more machine instruction opcodes to match:
  7907. // 1. Other data types (integer, vectors)
  7908. // 2. Other math / logic operations (xor, or)
  7909. // 3. Other forms of the same operation (intrinsics and other variants)
  7910. bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
  7911. switch (Inst.getOpcode()) {
  7912. case X86::AND8rr:
  7913. case X86::AND16rr:
  7914. case X86::AND32rr:
  7915. case X86::AND64rr:
  7916. case X86::OR8rr:
  7917. case X86::OR16rr:
  7918. case X86::OR32rr:
  7919. case X86::OR64rr:
  7920. case X86::XOR8rr:
  7921. case X86::XOR16rr:
  7922. case X86::XOR32rr:
  7923. case X86::XOR64rr:
  7924. case X86::IMUL16rr:
  7925. case X86::IMUL32rr:
  7926. case X86::IMUL64rr:
  7927. case X86::PANDrr:
  7928. case X86::PORrr:
  7929. case X86::PXORrr:
  7930. case X86::ANDPDrr:
  7931. case X86::ANDPSrr:
  7932. case X86::ORPDrr:
  7933. case X86::ORPSrr:
  7934. case X86::XORPDrr:
  7935. case X86::XORPSrr:
  7936. case X86::PADDBrr:
  7937. case X86::PADDWrr:
  7938. case X86::PADDDrr:
  7939. case X86::PADDQrr:
  7940. case X86::PMULLWrr:
  7941. case X86::PMULLDrr:
  7942. case X86::PMAXSBrr:
  7943. case X86::PMAXSDrr:
  7944. case X86::PMAXSWrr:
  7945. case X86::PMAXUBrr:
  7946. case X86::PMAXUDrr:
  7947. case X86::PMAXUWrr:
  7948. case X86::PMINSBrr:
  7949. case X86::PMINSDrr:
  7950. case X86::PMINSWrr:
  7951. case X86::PMINUBrr:
  7952. case X86::PMINUDrr:
  7953. case X86::PMINUWrr:
  7954. case X86::VPANDrr:
  7955. case X86::VPANDYrr:
  7956. case X86::VPANDDZ128rr:
  7957. case X86::VPANDDZ256rr:
  7958. case X86::VPANDDZrr:
  7959. case X86::VPANDQZ128rr:
  7960. case X86::VPANDQZ256rr:
  7961. case X86::VPANDQZrr:
  7962. case X86::VPORrr:
  7963. case X86::VPORYrr:
  7964. case X86::VPORDZ128rr:
  7965. case X86::VPORDZ256rr:
  7966. case X86::VPORDZrr:
  7967. case X86::VPORQZ128rr:
  7968. case X86::VPORQZ256rr:
  7969. case X86::VPORQZrr:
  7970. case X86::VPXORrr:
  7971. case X86::VPXORYrr:
  7972. case X86::VPXORDZ128rr:
  7973. case X86::VPXORDZ256rr:
  7974. case X86::VPXORDZrr:
  7975. case X86::VPXORQZ128rr:
  7976. case X86::VPXORQZ256rr:
  7977. case X86::VPXORQZrr:
  7978. case X86::VANDPDrr:
  7979. case X86::VANDPSrr:
  7980. case X86::VANDPDYrr:
  7981. case X86::VANDPSYrr:
  7982. case X86::VANDPDZ128rr:
  7983. case X86::VANDPSZ128rr:
  7984. case X86::VANDPDZ256rr:
  7985. case X86::VANDPSZ256rr:
  7986. case X86::VANDPDZrr:
  7987. case X86::VANDPSZrr:
  7988. case X86::VORPDrr:
  7989. case X86::VORPSrr:
  7990. case X86::VORPDYrr:
  7991. case X86::VORPSYrr:
  7992. case X86::VORPDZ128rr:
  7993. case X86::VORPSZ128rr:
  7994. case X86::VORPDZ256rr:
  7995. case X86::VORPSZ256rr:
  7996. case X86::VORPDZrr:
  7997. case X86::VORPSZrr:
  7998. case X86::VXORPDrr:
  7999. case X86::VXORPSrr:
  8000. case X86::VXORPDYrr:
  8001. case X86::VXORPSYrr:
  8002. case X86::VXORPDZ128rr:
  8003. case X86::VXORPSZ128rr:
  8004. case X86::VXORPDZ256rr:
  8005. case X86::VXORPSZ256rr:
  8006. case X86::VXORPDZrr:
  8007. case X86::VXORPSZrr:
  8008. case X86::KADDBrr:
  8009. case X86::KADDWrr:
  8010. case X86::KADDDrr:
  8011. case X86::KADDQrr:
  8012. case X86::KANDBrr:
  8013. case X86::KANDWrr:
  8014. case X86::KANDDrr:
  8015. case X86::KANDQrr:
  8016. case X86::KORBrr:
  8017. case X86::KORWrr:
  8018. case X86::KORDrr:
  8019. case X86::KORQrr:
  8020. case X86::KXORBrr:
  8021. case X86::KXORWrr:
  8022. case X86::KXORDrr:
  8023. case X86::KXORQrr:
  8024. case X86::VPADDBrr:
  8025. case X86::VPADDWrr:
  8026. case X86::VPADDDrr:
  8027. case X86::VPADDQrr:
  8028. case X86::VPADDBYrr:
  8029. case X86::VPADDWYrr:
  8030. case X86::VPADDDYrr:
  8031. case X86::VPADDQYrr:
  8032. case X86::VPADDBZ128rr:
  8033. case X86::VPADDWZ128rr:
  8034. case X86::VPADDDZ128rr:
  8035. case X86::VPADDQZ128rr:
  8036. case X86::VPADDBZ256rr:
  8037. case X86::VPADDWZ256rr:
  8038. case X86::VPADDDZ256rr:
  8039. case X86::VPADDQZ256rr:
  8040. case X86::VPADDBZrr:
  8041. case X86::VPADDWZrr:
  8042. case X86::VPADDDZrr:
  8043. case X86::VPADDQZrr:
  8044. case X86::VPMULLWrr:
  8045. case X86::VPMULLWYrr:
  8046. case X86::VPMULLWZ128rr:
  8047. case X86::VPMULLWZ256rr:
  8048. case X86::VPMULLWZrr:
  8049. case X86::VPMULLDrr:
  8050. case X86::VPMULLDYrr:
  8051. case X86::VPMULLDZ128rr:
  8052. case X86::VPMULLDZ256rr:
  8053. case X86::VPMULLDZrr:
  8054. case X86::VPMULLQZ128rr:
  8055. case X86::VPMULLQZ256rr:
  8056. case X86::VPMULLQZrr:
  8057. case X86::VPMAXSBrr:
  8058. case X86::VPMAXSBYrr:
  8059. case X86::VPMAXSBZ128rr:
  8060. case X86::VPMAXSBZ256rr:
  8061. case X86::VPMAXSBZrr:
  8062. case X86::VPMAXSDrr:
  8063. case X86::VPMAXSDYrr:
  8064. case X86::VPMAXSDZ128rr:
  8065. case X86::VPMAXSDZ256rr:
  8066. case X86::VPMAXSDZrr:
  8067. case X86::VPMAXSQZ128rr:
  8068. case X86::VPMAXSQZ256rr:
  8069. case X86::VPMAXSQZrr:
  8070. case X86::VPMAXSWrr:
  8071. case X86::VPMAXSWYrr:
  8072. case X86::VPMAXSWZ128rr:
  8073. case X86::VPMAXSWZ256rr:
  8074. case X86::VPMAXSWZrr:
  8075. case X86::VPMAXUBrr:
  8076. case X86::VPMAXUBYrr:
  8077. case X86::VPMAXUBZ128rr:
  8078. case X86::VPMAXUBZ256rr:
  8079. case X86::VPMAXUBZrr:
  8080. case X86::VPMAXUDrr:
  8081. case X86::VPMAXUDYrr:
  8082. case X86::VPMAXUDZ128rr:
  8083. case X86::VPMAXUDZ256rr:
  8084. case X86::VPMAXUDZrr:
  8085. case X86::VPMAXUQZ128rr:
  8086. case X86::VPMAXUQZ256rr:
  8087. case X86::VPMAXUQZrr:
  8088. case X86::VPMAXUWrr:
  8089. case X86::VPMAXUWYrr:
  8090. case X86::VPMAXUWZ128rr:
  8091. case X86::VPMAXUWZ256rr:
  8092. case X86::VPMAXUWZrr:
  8093. case X86::VPMINSBrr:
  8094. case X86::VPMINSBYrr:
  8095. case X86::VPMINSBZ128rr:
  8096. case X86::VPMINSBZ256rr:
  8097. case X86::VPMINSBZrr:
  8098. case X86::VPMINSDrr:
  8099. case X86::VPMINSDYrr:
  8100. case X86::VPMINSDZ128rr:
  8101. case X86::VPMINSDZ256rr:
  8102. case X86::VPMINSDZrr:
  8103. case X86::VPMINSQZ128rr:
  8104. case X86::VPMINSQZ256rr:
  8105. case X86::VPMINSQZrr:
  8106. case X86::VPMINSWrr:
  8107. case X86::VPMINSWYrr:
  8108. case X86::VPMINSWZ128rr:
  8109. case X86::VPMINSWZ256rr:
  8110. case X86::VPMINSWZrr:
  8111. case X86::VPMINUBrr:
  8112. case X86::VPMINUBYrr:
  8113. case X86::VPMINUBZ128rr:
  8114. case X86::VPMINUBZ256rr:
  8115. case X86::VPMINUBZrr:
  8116. case X86::VPMINUDrr:
  8117. case X86::VPMINUDYrr:
  8118. case X86::VPMINUDZ128rr:
  8119. case X86::VPMINUDZ256rr:
  8120. case X86::VPMINUDZrr:
  8121. case X86::VPMINUQZ128rr:
  8122. case X86::VPMINUQZ256rr:
  8123. case X86::VPMINUQZrr:
  8124. case X86::VPMINUWrr:
  8125. case X86::VPMINUWYrr:
  8126. case X86::VPMINUWZ128rr:
  8127. case X86::VPMINUWZ256rr:
  8128. case X86::VPMINUWZrr:
  8129. // Normal min/max instructions are not commutative because of NaN and signed
  8130. // zero semantics, but these are. Thus, there's no need to check for global
  8131. // relaxed math; the instructions themselves have the properties we need.
  8132. case X86::MAXCPDrr:
  8133. case X86::MAXCPSrr:
  8134. case X86::MAXCSDrr:
  8135. case X86::MAXCSSrr:
  8136. case X86::MINCPDrr:
  8137. case X86::MINCPSrr:
  8138. case X86::MINCSDrr:
  8139. case X86::MINCSSrr:
  8140. case X86::VMAXCPDrr:
  8141. case X86::VMAXCPSrr:
  8142. case X86::VMAXCPDYrr:
  8143. case X86::VMAXCPSYrr:
  8144. case X86::VMAXCPDZ128rr:
  8145. case X86::VMAXCPSZ128rr:
  8146. case X86::VMAXCPDZ256rr:
  8147. case X86::VMAXCPSZ256rr:
  8148. case X86::VMAXCPDZrr:
  8149. case X86::VMAXCPSZrr:
  8150. case X86::VMAXCSDrr:
  8151. case X86::VMAXCSSrr:
  8152. case X86::VMAXCSDZrr:
  8153. case X86::VMAXCSSZrr:
  8154. case X86::VMINCPDrr:
  8155. case X86::VMINCPSrr:
  8156. case X86::VMINCPDYrr:
  8157. case X86::VMINCPSYrr:
  8158. case X86::VMINCPDZ128rr:
  8159. case X86::VMINCPSZ128rr:
  8160. case X86::VMINCPDZ256rr:
  8161. case X86::VMINCPSZ256rr:
  8162. case X86::VMINCPDZrr:
  8163. case X86::VMINCPSZrr:
  8164. case X86::VMINCSDrr:
  8165. case X86::VMINCSSrr:
  8166. case X86::VMINCSDZrr:
  8167. case X86::VMINCSSZrr:
  8168. case X86::VMAXCPHZ128rr:
  8169. case X86::VMAXCPHZ256rr:
  8170. case X86::VMAXCPHZrr:
  8171. case X86::VMAXCSHZrr:
  8172. case X86::VMINCPHZ128rr:
  8173. case X86::VMINCPHZ256rr:
  8174. case X86::VMINCPHZrr:
  8175. case X86::VMINCSHZrr:
  8176. return true;
  8177. case X86::ADDPDrr:
  8178. case X86::ADDPSrr:
  8179. case X86::ADDSDrr:
  8180. case X86::ADDSSrr:
  8181. case X86::MULPDrr:
  8182. case X86::MULPSrr:
  8183. case X86::MULSDrr:
  8184. case X86::MULSSrr:
  8185. case X86::VADDPDrr:
  8186. case X86::VADDPSrr:
  8187. case X86::VADDPDYrr:
  8188. case X86::VADDPSYrr:
  8189. case X86::VADDPDZ128rr:
  8190. case X86::VADDPSZ128rr:
  8191. case X86::VADDPDZ256rr:
  8192. case X86::VADDPSZ256rr:
  8193. case X86::VADDPDZrr:
  8194. case X86::VADDPSZrr:
  8195. case X86::VADDSDrr:
  8196. case X86::VADDSSrr:
  8197. case X86::VADDSDZrr:
  8198. case X86::VADDSSZrr:
  8199. case X86::VMULPDrr:
  8200. case X86::VMULPSrr:
  8201. case X86::VMULPDYrr:
  8202. case X86::VMULPSYrr:
  8203. case X86::VMULPDZ128rr:
  8204. case X86::VMULPSZ128rr:
  8205. case X86::VMULPDZ256rr:
  8206. case X86::VMULPSZ256rr:
  8207. case X86::VMULPDZrr:
  8208. case X86::VMULPSZrr:
  8209. case X86::VMULSDrr:
  8210. case X86::VMULSSrr:
  8211. case X86::VMULSDZrr:
  8212. case X86::VMULSSZrr:
  8213. case X86::VADDPHZ128rr:
  8214. case X86::VADDPHZ256rr:
  8215. case X86::VADDPHZrr:
  8216. case X86::VADDSHZrr:
  8217. case X86::VMULPHZ128rr:
  8218. case X86::VMULPHZ256rr:
  8219. case X86::VMULPHZrr:
  8220. case X86::VMULSHZrr:
  8221. return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
  8222. Inst.getFlag(MachineInstr::MIFlag::FmNsz);
  8223. default:
  8224. return false;
  8225. }
  8226. }
  8227. /// If \p DescribedReg overlaps with the MOVrr instruction's destination
  8228. /// register then, if possible, describe the value in terms of the source
  8229. /// register.
  8230. static Optional<ParamLoadedValue>
  8231. describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg,
  8232. const TargetRegisterInfo *TRI) {
  8233. Register DestReg = MI.getOperand(0).getReg();
  8234. Register SrcReg = MI.getOperand(1).getReg();
  8235. auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
  8236. // If the described register is the destination, just return the source.
  8237. if (DestReg == DescribedReg)
  8238. return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
  8239. // If the described register is a sub-register of the destination register,
  8240. // then pick out the source register's corresponding sub-register.
  8241. if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) {
  8242. Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx);
  8243. return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
  8244. }
  8245. // The remaining case to consider is when the described register is a
  8246. // super-register of the destination register. MOV8rr and MOV16rr does not
  8247. // write to any of the other bytes in the register, meaning that we'd have to
  8248. // describe the value using a combination of the source register and the
  8249. // non-overlapping bits in the described register, which is not currently
  8250. // possible.
  8251. if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr ||
  8252. !TRI->isSuperRegister(DestReg, DescribedReg))
  8253. return None;
  8254. assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case");
  8255. return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
  8256. }
  8257. Optional<ParamLoadedValue>
  8258. X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
  8259. const MachineOperand *Op = nullptr;
  8260. DIExpression *Expr = nullptr;
  8261. const TargetRegisterInfo *TRI = &getRegisterInfo();
  8262. switch (MI.getOpcode()) {
  8263. case X86::LEA32r:
  8264. case X86::LEA64r:
  8265. case X86::LEA64_32r: {
  8266. // We may need to describe a 64-bit parameter with a 32-bit LEA.
  8267. if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
  8268. return None;
  8269. // Operand 4 could be global address. For now we do not support
  8270. // such situation.
  8271. if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm())
  8272. return None;
  8273. const MachineOperand &Op1 = MI.getOperand(1);
  8274. const MachineOperand &Op2 = MI.getOperand(3);
  8275. assert(Op2.isReg() && (Op2.getReg() == X86::NoRegister ||
  8276. Register::isPhysicalRegister(Op2.getReg())));
  8277. // Omit situations like:
  8278. // %rsi = lea %rsi, 4, ...
  8279. if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) ||
  8280. Op2.getReg() == MI.getOperand(0).getReg())
  8281. return None;
  8282. else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister &&
  8283. TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) ||
  8284. (Op2.getReg() != X86::NoRegister &&
  8285. TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg())))
  8286. return None;
  8287. int64_t Coef = MI.getOperand(2).getImm();
  8288. int64_t Offset = MI.getOperand(4).getImm();
  8289. SmallVector<uint64_t, 8> Ops;
  8290. if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) {
  8291. Op = &Op1;
  8292. } else if (Op1.isFI())
  8293. Op = &Op1;
  8294. if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) {
  8295. Ops.push_back(dwarf::DW_OP_constu);
  8296. Ops.push_back(Coef + 1);
  8297. Ops.push_back(dwarf::DW_OP_mul);
  8298. } else {
  8299. if (Op && Op2.getReg() != X86::NoRegister) {
  8300. int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false);
  8301. if (dwarfReg < 0)
  8302. return None;
  8303. else if (dwarfReg < 32) {
  8304. Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg);
  8305. Ops.push_back(0);
  8306. } else {
  8307. Ops.push_back(dwarf::DW_OP_bregx);
  8308. Ops.push_back(dwarfReg);
  8309. Ops.push_back(0);
  8310. }
  8311. } else if (!Op) {
  8312. assert(Op2.getReg() != X86::NoRegister);
  8313. Op = &Op2;
  8314. }
  8315. if (Coef > 1) {
  8316. assert(Op2.getReg() != X86::NoRegister);
  8317. Ops.push_back(dwarf::DW_OP_constu);
  8318. Ops.push_back(Coef);
  8319. Ops.push_back(dwarf::DW_OP_mul);
  8320. }
  8321. if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) &&
  8322. Op2.getReg() != X86::NoRegister) {
  8323. Ops.push_back(dwarf::DW_OP_plus);
  8324. }
  8325. }
  8326. DIExpression::appendOffset(Ops, Offset);
  8327. Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops);
  8328. return ParamLoadedValue(*Op, Expr);;
  8329. }
  8330. case X86::MOV8ri:
  8331. case X86::MOV16ri:
  8332. // TODO: Handle MOV8ri and MOV16ri.
  8333. return None;
  8334. case X86::MOV32ri:
  8335. case X86::MOV64ri:
  8336. case X86::MOV64ri32:
  8337. // MOV32ri may be used for producing zero-extended 32-bit immediates in
  8338. // 64-bit parameters, so we need to consider super-registers.
  8339. if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
  8340. return None;
  8341. return ParamLoadedValue(MI.getOperand(1), Expr);
  8342. case X86::MOV8rr:
  8343. case X86::MOV16rr:
  8344. case X86::MOV32rr:
  8345. case X86::MOV64rr:
  8346. return describeMOVrrLoadedValue(MI, Reg, TRI);
  8347. case X86::XOR32rr: {
  8348. // 64-bit parameters are zero-materialized using XOR32rr, so also consider
  8349. // super-registers.
  8350. if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
  8351. return None;
  8352. if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
  8353. return ParamLoadedValue(MachineOperand::CreateImm(0), Expr);
  8354. return None;
  8355. }
  8356. case X86::MOVSX64rr32: {
  8357. // We may need to describe the lower 32 bits of the MOVSX; for example, in
  8358. // cases like this:
  8359. //
  8360. // $ebx = [...]
  8361. // $rdi = MOVSX64rr32 $ebx
  8362. // $esi = MOV32rr $edi
  8363. if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg))
  8364. return None;
  8365. Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
  8366. // If the described register is the destination register we need to
  8367. // sign-extend the source register from 32 bits. The other case we handle
  8368. // is when the described register is the 32-bit sub-register of the
  8369. // destination register, in case we just need to return the source
  8370. // register.
  8371. if (Reg == MI.getOperand(0).getReg())
  8372. Expr = DIExpression::appendExt(Expr, 32, 64, true);
  8373. else
  8374. assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) &&
  8375. "Unhandled sub-register case for MOVSX64rr32");
  8376. return ParamLoadedValue(MI.getOperand(1), Expr);
  8377. }
  8378. default:
  8379. assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction");
  8380. return TargetInstrInfo::describeLoadedValue(MI, Reg);
  8381. }
  8382. }
  8383. /// This is an architecture-specific helper function of reassociateOps.
  8384. /// Set special operand attributes for new instructions after reassociation.
  8385. void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
  8386. MachineInstr &OldMI2,
  8387. MachineInstr &NewMI1,
  8388. MachineInstr &NewMI2) const {
  8389. // Propagate FP flags from the original instructions.
  8390. // But clear poison-generating flags because those may not be valid now.
  8391. // TODO: There should be a helper function for copying only fast-math-flags.
  8392. uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
  8393. NewMI1.setFlags(IntersectedFlags);
  8394. NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
  8395. NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
  8396. NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
  8397. NewMI2.setFlags(IntersectedFlags);
  8398. NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
  8399. NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
  8400. NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
  8401. // Integer instructions may define an implicit EFLAGS dest register operand.
  8402. MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS);
  8403. MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS);
  8404. assert(!OldFlagDef1 == !OldFlagDef2 &&
  8405. "Unexpected instruction type for reassociation");
  8406. if (!OldFlagDef1 || !OldFlagDef2)
  8407. return;
  8408. assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() &&
  8409. "Must have dead EFLAGS operand in reassociable instruction");
  8410. MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS);
  8411. MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS);
  8412. assert(NewFlagDef1 && NewFlagDef2 &&
  8413. "Unexpected operand in reassociable instruction");
  8414. // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
  8415. // of this pass or other passes. The EFLAGS operands must be dead in these new
  8416. // instructions because the EFLAGS operands in the original instructions must
  8417. // be dead in order for reassociation to occur.
  8418. NewFlagDef1->setIsDead();
  8419. NewFlagDef2->setIsDead();
  8420. }
  8421. std::pair<unsigned, unsigned>
  8422. X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
  8423. return std::make_pair(TF, 0u);
  8424. }
  8425. ArrayRef<std::pair<unsigned, const char *>>
  8426. X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
  8427. using namespace X86II;
  8428. static const std::pair<unsigned, const char *> TargetFlags[] = {
  8429. {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
  8430. {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
  8431. {MO_GOT, "x86-got"},
  8432. {MO_GOTOFF, "x86-gotoff"},
  8433. {MO_GOTPCREL, "x86-gotpcrel"},
  8434. {MO_GOTPCREL_NORELAX, "x86-gotpcrel-norelax"},
  8435. {MO_PLT, "x86-plt"},
  8436. {MO_TLSGD, "x86-tlsgd"},
  8437. {MO_TLSLD, "x86-tlsld"},
  8438. {MO_TLSLDM, "x86-tlsldm"},
  8439. {MO_GOTTPOFF, "x86-gottpoff"},
  8440. {MO_INDNTPOFF, "x86-indntpoff"},
  8441. {MO_TPOFF, "x86-tpoff"},
  8442. {MO_DTPOFF, "x86-dtpoff"},
  8443. {MO_NTPOFF, "x86-ntpoff"},
  8444. {MO_GOTNTPOFF, "x86-gotntpoff"},
  8445. {MO_DLLIMPORT, "x86-dllimport"},
  8446. {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
  8447. {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
  8448. {MO_TLVP, "x86-tlvp"},
  8449. {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
  8450. {MO_SECREL, "x86-secrel"},
  8451. {MO_COFFSTUB, "x86-coffstub"}};
  8452. return makeArrayRef(TargetFlags);
  8453. }
  8454. namespace {
  8455. /// Create Global Base Reg pass. This initializes the PIC
  8456. /// global base register for x86-32.
  8457. struct CGBR : public MachineFunctionPass {
  8458. static char ID;
  8459. CGBR() : MachineFunctionPass(ID) {}
  8460. bool runOnMachineFunction(MachineFunction &MF) override {
  8461. const X86TargetMachine *TM =
  8462. static_cast<const X86TargetMachine *>(&MF.getTarget());
  8463. const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
  8464. // Don't do anything in the 64-bit small and kernel code models. They use
  8465. // RIP-relative addressing for everything.
  8466. if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
  8467. TM->getCodeModel() == CodeModel::Kernel))
  8468. return false;
  8469. // Only emit a global base reg in PIC mode.
  8470. if (!TM->isPositionIndependent())
  8471. return false;
  8472. X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
  8473. Register GlobalBaseReg = X86FI->getGlobalBaseReg();
  8474. // If we didn't need a GlobalBaseReg, don't insert code.
  8475. if (GlobalBaseReg == 0)
  8476. return false;
  8477. // Insert the set of GlobalBaseReg into the first MBB of the function
  8478. MachineBasicBlock &FirstMBB = MF.front();
  8479. MachineBasicBlock::iterator MBBI = FirstMBB.begin();
  8480. DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
  8481. MachineRegisterInfo &RegInfo = MF.getRegInfo();
  8482. const X86InstrInfo *TII = STI.getInstrInfo();
  8483. Register PC;
  8484. if (STI.isPICStyleGOT())
  8485. PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
  8486. else
  8487. PC = GlobalBaseReg;
  8488. if (STI.is64Bit()) {
  8489. if (TM->getCodeModel() == CodeModel::Medium) {
  8490. // In the medium code model, use a RIP-relative LEA to materialize the
  8491. // GOT.
  8492. BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
  8493. .addReg(X86::RIP)
  8494. .addImm(0)
  8495. .addReg(0)
  8496. .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
  8497. .addReg(0);
  8498. } else if (TM->getCodeModel() == CodeModel::Large) {
  8499. // In the large code model, we are aiming for this code, though the
  8500. // register allocation may vary:
  8501. // leaq .LN$pb(%rip), %rax
  8502. // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
  8503. // addq %rcx, %rax
  8504. // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
  8505. Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
  8506. Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
  8507. BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
  8508. .addReg(X86::RIP)
  8509. .addImm(0)
  8510. .addReg(0)
  8511. .addSym(MF.getPICBaseSymbol())
  8512. .addReg(0);
  8513. std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
  8514. BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
  8515. .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
  8516. X86II::MO_PIC_BASE_OFFSET);
  8517. BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
  8518. .addReg(PBReg, RegState::Kill)
  8519. .addReg(GOTReg, RegState::Kill);
  8520. } else {
  8521. llvm_unreachable("unexpected code model");
  8522. }
  8523. } else {
  8524. // Operand of MovePCtoStack is completely ignored by asm printer. It's
  8525. // only used in JIT code emission as displacement to pc.
  8526. BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
  8527. // If we're using vanilla 'GOT' PIC style, we should use relative
  8528. // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
  8529. if (STI.isPICStyleGOT()) {
  8530. // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
  8531. // %some_register
  8532. BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
  8533. .addReg(PC)
  8534. .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
  8535. X86II::MO_GOT_ABSOLUTE_ADDRESS);
  8536. }
  8537. }
  8538. return true;
  8539. }
  8540. StringRef getPassName() const override {
  8541. return "X86 PIC Global Base Reg Initialization";
  8542. }
  8543. void getAnalysisUsage(AnalysisUsage &AU) const override {
  8544. AU.setPreservesCFG();
  8545. MachineFunctionPass::getAnalysisUsage(AU);
  8546. }
  8547. };
  8548. } // namespace
  8549. char CGBR::ID = 0;
  8550. FunctionPass*
  8551. llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
  8552. namespace {
  8553. struct LDTLSCleanup : public MachineFunctionPass {
  8554. static char ID;
  8555. LDTLSCleanup() : MachineFunctionPass(ID) {}
  8556. bool runOnMachineFunction(MachineFunction &MF) override {
  8557. if (skipFunction(MF.getFunction()))
  8558. return false;
  8559. X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
  8560. if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
  8561. // No point folding accesses if there isn't at least two.
  8562. return false;
  8563. }
  8564. MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
  8565. return VisitNode(DT->getRootNode(), 0);
  8566. }
  8567. // Visit the dominator subtree rooted at Node in pre-order.
  8568. // If TLSBaseAddrReg is non-null, then use that to replace any
  8569. // TLS_base_addr instructions. Otherwise, create the register
  8570. // when the first such instruction is seen, and then use it
  8571. // as we encounter more instructions.
  8572. bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
  8573. MachineBasicBlock *BB = Node->getBlock();
  8574. bool Changed = false;
  8575. // Traverse the current block.
  8576. for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
  8577. ++I) {
  8578. switch (I->getOpcode()) {
  8579. case X86::TLS_base_addr32:
  8580. case X86::TLS_base_addr64:
  8581. if (TLSBaseAddrReg)
  8582. I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
  8583. else
  8584. I = SetRegister(*I, &TLSBaseAddrReg);
  8585. Changed = true;
  8586. break;
  8587. default:
  8588. break;
  8589. }
  8590. }
  8591. // Visit the children of this block in the dominator tree.
  8592. for (auto I = Node->begin(), E = Node->end(); I != E; ++I) {
  8593. Changed |= VisitNode(*I, TLSBaseAddrReg);
  8594. }
  8595. return Changed;
  8596. }
  8597. // Replace the TLS_base_addr instruction I with a copy from
  8598. // TLSBaseAddrReg, returning the new instruction.
  8599. MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
  8600. unsigned TLSBaseAddrReg) {
  8601. MachineFunction *MF = I.getParent()->getParent();
  8602. const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
  8603. const bool is64Bit = STI.is64Bit();
  8604. const X86InstrInfo *TII = STI.getInstrInfo();
  8605. // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
  8606. MachineInstr *Copy =
  8607. BuildMI(*I.getParent(), I, I.getDebugLoc(),
  8608. TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
  8609. .addReg(TLSBaseAddrReg);
  8610. // Erase the TLS_base_addr instruction.
  8611. I.eraseFromParent();
  8612. return Copy;
  8613. }
  8614. // Create a virtual register in *TLSBaseAddrReg, and populate it by
  8615. // inserting a copy instruction after I. Returns the new instruction.
  8616. MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
  8617. MachineFunction *MF = I.getParent()->getParent();
  8618. const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
  8619. const bool is64Bit = STI.is64Bit();
  8620. const X86InstrInfo *TII = STI.getInstrInfo();
  8621. // Create a virtual register for the TLS base address.
  8622. MachineRegisterInfo &RegInfo = MF->getRegInfo();
  8623. *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
  8624. ? &X86::GR64RegClass
  8625. : &X86::GR32RegClass);
  8626. // Insert a copy from RAX/EAX to TLSBaseAddrReg.
  8627. MachineInstr *Next = I.getNextNode();
  8628. MachineInstr *Copy =
  8629. BuildMI(*I.getParent(), Next, I.getDebugLoc(),
  8630. TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
  8631. .addReg(is64Bit ? X86::RAX : X86::EAX);
  8632. return Copy;
  8633. }
  8634. StringRef getPassName() const override {
  8635. return "Local Dynamic TLS Access Clean-up";
  8636. }
  8637. void getAnalysisUsage(AnalysisUsage &AU) const override {
  8638. AU.setPreservesCFG();
  8639. AU.addRequired<MachineDominatorTree>();
  8640. MachineFunctionPass::getAnalysisUsage(AU);
  8641. }
  8642. };
  8643. }
  8644. char LDTLSCleanup::ID = 0;
  8645. FunctionPass*
  8646. llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
  8647. /// Constants defining how certain sequences should be outlined.
  8648. ///
  8649. /// \p MachineOutlinerDefault implies that the function is called with a call
  8650. /// instruction, and a return must be emitted for the outlined function frame.
  8651. ///
  8652. /// That is,
  8653. ///
  8654. /// I1 OUTLINED_FUNCTION:
  8655. /// I2 --> call OUTLINED_FUNCTION I1
  8656. /// I3 I2
  8657. /// I3
  8658. /// ret
  8659. ///
  8660. /// * Call construction overhead: 1 (call instruction)
  8661. /// * Frame construction overhead: 1 (return instruction)
  8662. ///
  8663. /// \p MachineOutlinerTailCall implies that the function is being tail called.
  8664. /// A jump is emitted instead of a call, and the return is already present in
  8665. /// the outlined sequence. That is,
  8666. ///
  8667. /// I1 OUTLINED_FUNCTION:
  8668. /// I2 --> jmp OUTLINED_FUNCTION I1
  8669. /// ret I2
  8670. /// ret
  8671. ///
  8672. /// * Call construction overhead: 1 (jump instruction)
  8673. /// * Frame construction overhead: 0 (don't need to return)
  8674. ///
  8675. enum MachineOutlinerClass {
  8676. MachineOutlinerDefault,
  8677. MachineOutlinerTailCall
  8678. };
  8679. outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
  8680. std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
  8681. unsigned SequenceSize =
  8682. std::accumulate(RepeatedSequenceLocs[0].front(),
  8683. std::next(RepeatedSequenceLocs[0].back()), 0,
  8684. [](unsigned Sum, const MachineInstr &MI) {
  8685. // FIXME: x86 doesn't implement getInstSizeInBytes, so
  8686. // we can't tell the cost. Just assume each instruction
  8687. // is one byte.
  8688. if (MI.isDebugInstr() || MI.isKill())
  8689. return Sum;
  8690. return Sum + 1;
  8691. });
  8692. // We check to see if CFI Instructions are present, and if they are
  8693. // we find the number of CFI Instructions in the candidates.
  8694. unsigned CFICount = 0;
  8695. MachineBasicBlock::iterator MBBI = RepeatedSequenceLocs[0].front();
  8696. for (unsigned Loc = RepeatedSequenceLocs[0].getStartIdx();
  8697. Loc < RepeatedSequenceLocs[0].getEndIdx() + 1; Loc++) {
  8698. if (MBBI->isCFIInstruction())
  8699. CFICount++;
  8700. MBBI++;
  8701. }
  8702. // We compare the number of found CFI Instructions to the number of CFI
  8703. // instructions in the parent function for each candidate. We must check this
  8704. // since if we outline one of the CFI instructions in a function, we have to
  8705. // outline them all for correctness. If we do not, the address offsets will be
  8706. // incorrect between the two sections of the program.
  8707. for (outliner::Candidate &C : RepeatedSequenceLocs) {
  8708. std::vector<MCCFIInstruction> CFIInstructions =
  8709. C.getMF()->getFrameInstructions();
  8710. if (CFICount > 0 && CFICount != CFIInstructions.size())
  8711. return outliner::OutlinedFunction();
  8712. }
  8713. // FIXME: Use real size in bytes for call and ret instructions.
  8714. if (RepeatedSequenceLocs[0].back()->isTerminator()) {
  8715. for (outliner::Candidate &C : RepeatedSequenceLocs)
  8716. C.setCallInfo(MachineOutlinerTailCall, 1);
  8717. return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
  8718. 0, // Number of bytes to emit frame.
  8719. MachineOutlinerTailCall // Type of frame.
  8720. );
  8721. }
  8722. if (CFICount > 0)
  8723. return outliner::OutlinedFunction();
  8724. for (outliner::Candidate &C : RepeatedSequenceLocs)
  8725. C.setCallInfo(MachineOutlinerDefault, 1);
  8726. return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
  8727. MachineOutlinerDefault);
  8728. }
  8729. bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
  8730. bool OutlineFromLinkOnceODRs) const {
  8731. const Function &F = MF.getFunction();
  8732. // Does the function use a red zone? If it does, then we can't risk messing
  8733. // with the stack.
  8734. if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
  8735. // It could have a red zone. If it does, then we don't want to touch it.
  8736. const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
  8737. if (!X86FI || X86FI->getUsesRedZone())
  8738. return false;
  8739. }
  8740. // If we *don't* want to outline from things that could potentially be deduped
  8741. // then return false.
  8742. if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
  8743. return false;
  8744. // This function is viable for outlining, so return true.
  8745. return true;
  8746. }
  8747. outliner::InstrType
  8748. X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
  8749. MachineInstr &MI = *MIT;
  8750. // Don't allow debug values to impact outlining type.
  8751. if (MI.isDebugInstr() || MI.isIndirectDebugValue())
  8752. return outliner::InstrType::Invisible;
  8753. // At this point, KILL instructions don't really tell us much so we can go
  8754. // ahead and skip over them.
  8755. if (MI.isKill())
  8756. return outliner::InstrType::Invisible;
  8757. // Is this a tail call? If yes, we can outline as a tail call.
  8758. if (isTailCall(MI))
  8759. return outliner::InstrType::Legal;
  8760. // Is this the terminator of a basic block?
  8761. if (MI.isTerminator() || MI.isReturn()) {
  8762. // Does its parent have any successors in its MachineFunction?
  8763. if (MI.getParent()->succ_empty())
  8764. return outliner::InstrType::Legal;
  8765. // It does, so we can't tail call it.
  8766. return outliner::InstrType::Illegal;
  8767. }
  8768. // Don't outline anything that modifies or reads from the stack pointer.
  8769. //
  8770. // FIXME: There are instructions which are being manually built without
  8771. // explicit uses/defs so we also have to check the MCInstrDesc. We should be
  8772. // able to remove the extra checks once those are fixed up. For example,
  8773. // sometimes we might get something like %rax = POP64r 1. This won't be
  8774. // caught by modifiesRegister or readsRegister even though the instruction
  8775. // really ought to be formed so that modifiesRegister/readsRegister would
  8776. // catch it.
  8777. if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
  8778. MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
  8779. MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
  8780. return outliner::InstrType::Illegal;
  8781. // Outlined calls change the instruction pointer, so don't read from it.
  8782. if (MI.readsRegister(X86::RIP, &RI) ||
  8783. MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
  8784. MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
  8785. return outliner::InstrType::Illegal;
  8786. // Positions can't safely be outlined.
  8787. if (MI.isPosition())
  8788. return outliner::InstrType::Illegal;
  8789. // Make sure none of the operands of this instruction do anything tricky.
  8790. for (const MachineOperand &MOP : MI.operands())
  8791. if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
  8792. MOP.isTargetIndex())
  8793. return outliner::InstrType::Illegal;
  8794. return outliner::InstrType::Legal;
  8795. }
  8796. void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
  8797. MachineFunction &MF,
  8798. const outliner::OutlinedFunction &OF)
  8799. const {
  8800. // If we're a tail call, we already have a return, so don't do anything.
  8801. if (OF.FrameConstructionID == MachineOutlinerTailCall)
  8802. return;
  8803. // We're a normal call, so our sequence doesn't have a return instruction.
  8804. // Add it in.
  8805. MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RET64));
  8806. MBB.insert(MBB.end(), retq);
  8807. }
  8808. MachineBasicBlock::iterator
  8809. X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
  8810. MachineBasicBlock::iterator &It,
  8811. MachineFunction &MF,
  8812. const outliner::Candidate &C) const {
  8813. // Is it a tail call?
  8814. if (C.CallConstructionID == MachineOutlinerTailCall) {
  8815. // Yes, just insert a JMP.
  8816. It = MBB.insert(It,
  8817. BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
  8818. .addGlobalAddress(M.getNamedValue(MF.getName())));
  8819. } else {
  8820. // No, insert a call.
  8821. It = MBB.insert(It,
  8822. BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
  8823. .addGlobalAddress(M.getNamedValue(MF.getName())));
  8824. }
  8825. return It;
  8826. }
  8827. #define GET_INSTRINFO_HELPERS
  8828. #include "X86GenInstrInfo.inc"