12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461 |
- //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains the X86 implementation of the TargetInstrInfo class.
- //
- //===----------------------------------------------------------------------===//
- #include "X86InstrInfo.h"
- #include "X86.h"
- #include "X86InstrBuilder.h"
- #include "X86InstrFoldTables.h"
- #include "X86MachineFunctionInfo.h"
- #include "X86Subtarget.h"
- #include "X86TargetMachine.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/Sequence.h"
- #include "llvm/CodeGen/LiveIntervals.h"
- #include "llvm/CodeGen/LivePhysRegs.h"
- #include "llvm/CodeGen/LiveVariables.h"
- #include "llvm/CodeGen/MachineConstantPool.h"
- #include "llvm/CodeGen/MachineDominators.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineModuleInfo.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/StackMaps.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/MC/MCAsmInfo.h"
- #include "llvm/MC/MCExpr.h"
- #include "llvm/MC/MCInst.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetOptions.h"
- using namespace llvm;
- #define DEBUG_TYPE "x86-instr-info"
- #define GET_INSTRINFO_CTOR_DTOR
- #include "X86GenInstrInfo.inc"
- static cl::opt<bool>
- NoFusing("disable-spill-fusing",
- cl::desc("Disable fusing of spill code into instructions"),
- cl::Hidden);
- static cl::opt<bool>
- PrintFailedFusing("print-failed-fuse-candidates",
- cl::desc("Print instructions that the allocator wants to"
- " fuse, but the X86 backend currently can't"),
- cl::Hidden);
- static cl::opt<bool>
- ReMatPICStubLoad("remat-pic-stub-load",
- cl::desc("Re-materialize load from stub in PIC mode"),
- cl::init(false), cl::Hidden);
- static cl::opt<unsigned>
- PartialRegUpdateClearance("partial-reg-update-clearance",
- cl::desc("Clearance between two register writes "
- "for inserting XOR to avoid partial "
- "register update"),
- cl::init(64), cl::Hidden);
- static cl::opt<unsigned>
- UndefRegClearance("undef-reg-clearance",
- cl::desc("How many idle instructions we would like before "
- "certain undef register reads"),
- cl::init(128), cl::Hidden);
- // Pin the vtable to this file.
- void X86InstrInfo::anchor() {}
- X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
- : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
- : X86::ADJCALLSTACKDOWN32),
- (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
- : X86::ADJCALLSTACKUP32),
- X86::CATCHRET,
- (STI.is64Bit() ? X86::RET64 : X86::RET32)),
- Subtarget(STI), RI(STI.getTargetTriple()) {
- }
- bool
- X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
- Register &SrcReg, Register &DstReg,
- unsigned &SubIdx) const {
- switch (MI.getOpcode()) {
- default: break;
- case X86::MOVSX16rr8:
- case X86::MOVZX16rr8:
- case X86::MOVSX32rr8:
- case X86::MOVZX32rr8:
- case X86::MOVSX64rr8:
- if (!Subtarget.is64Bit())
- // It's not always legal to reference the low 8-bit of the larger
- // register in 32-bit mode.
- return false;
- LLVM_FALLTHROUGH;
- case X86::MOVSX32rr16:
- case X86::MOVZX32rr16:
- case X86::MOVSX64rr16:
- case X86::MOVSX64rr32: {
- if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
- // Be conservative.
- return false;
- SrcReg = MI.getOperand(1).getReg();
- DstReg = MI.getOperand(0).getReg();
- switch (MI.getOpcode()) {
- default: llvm_unreachable("Unreachable!");
- case X86::MOVSX16rr8:
- case X86::MOVZX16rr8:
- case X86::MOVSX32rr8:
- case X86::MOVZX32rr8:
- case X86::MOVSX64rr8:
- SubIdx = X86::sub_8bit;
- break;
- case X86::MOVSX32rr16:
- case X86::MOVZX32rr16:
- case X86::MOVSX64rr16:
- SubIdx = X86::sub_16bit;
- break;
- case X86::MOVSX64rr32:
- SubIdx = X86::sub_32bit;
- break;
- }
- return true;
- }
- }
- return false;
- }
- bool X86InstrInfo::isDataInvariant(MachineInstr &MI) {
- switch (MI.getOpcode()) {
- default:
- // By default, assume that the instruction is not data invariant.
- return false;
- // Some target-independent operations that trivially lower to data-invariant
- // instructions.
- case TargetOpcode::COPY:
- case TargetOpcode::INSERT_SUBREG:
- case TargetOpcode::SUBREG_TO_REG:
- return true;
- // On x86 it is believed that imul is constant time w.r.t. the loaded data.
- // However, they set flags and are perhaps the most surprisingly constant
- // time operations so we call them out here separately.
- case X86::IMUL16rr:
- case X86::IMUL16rri8:
- case X86::IMUL16rri:
- case X86::IMUL32rr:
- case X86::IMUL32rri8:
- case X86::IMUL32rri:
- case X86::IMUL64rr:
- case X86::IMUL64rri32:
- case X86::IMUL64rri8:
- // Bit scanning and counting instructions that are somewhat surprisingly
- // constant time as they scan across bits and do other fairly complex
- // operations like popcnt, but are believed to be constant time on x86.
- // However, these set flags.
- case X86::BSF16rr:
- case X86::BSF32rr:
- case X86::BSF64rr:
- case X86::BSR16rr:
- case X86::BSR32rr:
- case X86::BSR64rr:
- case X86::LZCNT16rr:
- case X86::LZCNT32rr:
- case X86::LZCNT64rr:
- case X86::POPCNT16rr:
- case X86::POPCNT32rr:
- case X86::POPCNT64rr:
- case X86::TZCNT16rr:
- case X86::TZCNT32rr:
- case X86::TZCNT64rr:
- // Bit manipulation instructions are effectively combinations of basic
- // arithmetic ops, and should still execute in constant time. These also
- // set flags.
- case X86::BLCFILL32rr:
- case X86::BLCFILL64rr:
- case X86::BLCI32rr:
- case X86::BLCI64rr:
- case X86::BLCIC32rr:
- case X86::BLCIC64rr:
- case X86::BLCMSK32rr:
- case X86::BLCMSK64rr:
- case X86::BLCS32rr:
- case X86::BLCS64rr:
- case X86::BLSFILL32rr:
- case X86::BLSFILL64rr:
- case X86::BLSI32rr:
- case X86::BLSI64rr:
- case X86::BLSIC32rr:
- case X86::BLSIC64rr:
- case X86::BLSMSK32rr:
- case X86::BLSMSK64rr:
- case X86::BLSR32rr:
- case X86::BLSR64rr:
- case X86::TZMSK32rr:
- case X86::TZMSK64rr:
- // Bit extracting and clearing instructions should execute in constant time,
- // and set flags.
- case X86::BEXTR32rr:
- case X86::BEXTR64rr:
- case X86::BEXTRI32ri:
- case X86::BEXTRI64ri:
- case X86::BZHI32rr:
- case X86::BZHI64rr:
- // Shift and rotate.
- case X86::ROL8r1:
- case X86::ROL16r1:
- case X86::ROL32r1:
- case X86::ROL64r1:
- case X86::ROL8rCL:
- case X86::ROL16rCL:
- case X86::ROL32rCL:
- case X86::ROL64rCL:
- case X86::ROL8ri:
- case X86::ROL16ri:
- case X86::ROL32ri:
- case X86::ROL64ri:
- case X86::ROR8r1:
- case X86::ROR16r1:
- case X86::ROR32r1:
- case X86::ROR64r1:
- case X86::ROR8rCL:
- case X86::ROR16rCL:
- case X86::ROR32rCL:
- case X86::ROR64rCL:
- case X86::ROR8ri:
- case X86::ROR16ri:
- case X86::ROR32ri:
- case X86::ROR64ri:
- case X86::SAR8r1:
- case X86::SAR16r1:
- case X86::SAR32r1:
- case X86::SAR64r1:
- case X86::SAR8rCL:
- case X86::SAR16rCL:
- case X86::SAR32rCL:
- case X86::SAR64rCL:
- case X86::SAR8ri:
- case X86::SAR16ri:
- case X86::SAR32ri:
- case X86::SAR64ri:
- case X86::SHL8r1:
- case X86::SHL16r1:
- case X86::SHL32r1:
- case X86::SHL64r1:
- case X86::SHL8rCL:
- case X86::SHL16rCL:
- case X86::SHL32rCL:
- case X86::SHL64rCL:
- case X86::SHL8ri:
- case X86::SHL16ri:
- case X86::SHL32ri:
- case X86::SHL64ri:
- case X86::SHR8r1:
- case X86::SHR16r1:
- case X86::SHR32r1:
- case X86::SHR64r1:
- case X86::SHR8rCL:
- case X86::SHR16rCL:
- case X86::SHR32rCL:
- case X86::SHR64rCL:
- case X86::SHR8ri:
- case X86::SHR16ri:
- case X86::SHR32ri:
- case X86::SHR64ri:
- case X86::SHLD16rrCL:
- case X86::SHLD32rrCL:
- case X86::SHLD64rrCL:
- case X86::SHLD16rri8:
- case X86::SHLD32rri8:
- case X86::SHLD64rri8:
- case X86::SHRD16rrCL:
- case X86::SHRD32rrCL:
- case X86::SHRD64rrCL:
- case X86::SHRD16rri8:
- case X86::SHRD32rri8:
- case X86::SHRD64rri8:
- // Basic arithmetic is constant time on the input but does set flags.
- case X86::ADC8rr:
- case X86::ADC8ri:
- case X86::ADC16rr:
- case X86::ADC16ri:
- case X86::ADC16ri8:
- case X86::ADC32rr:
- case X86::ADC32ri:
- case X86::ADC32ri8:
- case X86::ADC64rr:
- case X86::ADC64ri8:
- case X86::ADC64ri32:
- case X86::ADD8rr:
- case X86::ADD8ri:
- case X86::ADD16rr:
- case X86::ADD16ri:
- case X86::ADD16ri8:
- case X86::ADD32rr:
- case X86::ADD32ri:
- case X86::ADD32ri8:
- case X86::ADD64rr:
- case X86::ADD64ri8:
- case X86::ADD64ri32:
- case X86::AND8rr:
- case X86::AND8ri:
- case X86::AND16rr:
- case X86::AND16ri:
- case X86::AND16ri8:
- case X86::AND32rr:
- case X86::AND32ri:
- case X86::AND32ri8:
- case X86::AND64rr:
- case X86::AND64ri8:
- case X86::AND64ri32:
- case X86::OR8rr:
- case X86::OR8ri:
- case X86::OR16rr:
- case X86::OR16ri:
- case X86::OR16ri8:
- case X86::OR32rr:
- case X86::OR32ri:
- case X86::OR32ri8:
- case X86::OR64rr:
- case X86::OR64ri8:
- case X86::OR64ri32:
- case X86::SBB8rr:
- case X86::SBB8ri:
- case X86::SBB16rr:
- case X86::SBB16ri:
- case X86::SBB16ri8:
- case X86::SBB32rr:
- case X86::SBB32ri:
- case X86::SBB32ri8:
- case X86::SBB64rr:
- case X86::SBB64ri8:
- case X86::SBB64ri32:
- case X86::SUB8rr:
- case X86::SUB8ri:
- case X86::SUB16rr:
- case X86::SUB16ri:
- case X86::SUB16ri8:
- case X86::SUB32rr:
- case X86::SUB32ri:
- case X86::SUB32ri8:
- case X86::SUB64rr:
- case X86::SUB64ri8:
- case X86::SUB64ri32:
- case X86::XOR8rr:
- case X86::XOR8ri:
- case X86::XOR16rr:
- case X86::XOR16ri:
- case X86::XOR16ri8:
- case X86::XOR32rr:
- case X86::XOR32ri:
- case X86::XOR32ri8:
- case X86::XOR64rr:
- case X86::XOR64ri8:
- case X86::XOR64ri32:
- // Arithmetic with just 32-bit and 64-bit variants and no immediates.
- case X86::ADCX32rr:
- case X86::ADCX64rr:
- case X86::ADOX32rr:
- case X86::ADOX64rr:
- case X86::ANDN32rr:
- case X86::ANDN64rr:
- // Unary arithmetic operations.
- case X86::DEC8r:
- case X86::DEC16r:
- case X86::DEC32r:
- case X86::DEC64r:
- case X86::INC8r:
- case X86::INC16r:
- case X86::INC32r:
- case X86::INC64r:
- case X86::NEG8r:
- case X86::NEG16r:
- case X86::NEG32r:
- case X86::NEG64r:
- // Unlike other arithmetic, NOT doesn't set EFLAGS.
- case X86::NOT8r:
- case X86::NOT16r:
- case X86::NOT32r:
- case X86::NOT64r:
- // Various move instructions used to zero or sign extend things. Note that we
- // intentionally don't support the _NOREX variants as we can't handle that
- // register constraint anyways.
- case X86::MOVSX16rr8:
- case X86::MOVSX32rr8:
- case X86::MOVSX32rr16:
- case X86::MOVSX64rr8:
- case X86::MOVSX64rr16:
- case X86::MOVSX64rr32:
- case X86::MOVZX16rr8:
- case X86::MOVZX32rr8:
- case X86::MOVZX32rr16:
- case X86::MOVZX64rr8:
- case X86::MOVZX64rr16:
- case X86::MOV32rr:
- // Arithmetic instructions that are both constant time and don't set flags.
- case X86::RORX32ri:
- case X86::RORX64ri:
- case X86::SARX32rr:
- case X86::SARX64rr:
- case X86::SHLX32rr:
- case X86::SHLX64rr:
- case X86::SHRX32rr:
- case X86::SHRX64rr:
- // LEA doesn't actually access memory, and its arithmetic is constant time.
- case X86::LEA16r:
- case X86::LEA32r:
- case X86::LEA64_32r:
- case X86::LEA64r:
- return true;
- }
- }
- bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) {
- switch (MI.getOpcode()) {
- default:
- // By default, assume that the load will immediately leak.
- return false;
- // On x86 it is believed that imul is constant time w.r.t. the loaded data.
- // However, they set flags and are perhaps the most surprisingly constant
- // time operations so we call them out here separately.
- case X86::IMUL16rm:
- case X86::IMUL16rmi8:
- case X86::IMUL16rmi:
- case X86::IMUL32rm:
- case X86::IMUL32rmi8:
- case X86::IMUL32rmi:
- case X86::IMUL64rm:
- case X86::IMUL64rmi32:
- case X86::IMUL64rmi8:
- // Bit scanning and counting instructions that are somewhat surprisingly
- // constant time as they scan across bits and do other fairly complex
- // operations like popcnt, but are believed to be constant time on x86.
- // However, these set flags.
- case X86::BSF16rm:
- case X86::BSF32rm:
- case X86::BSF64rm:
- case X86::BSR16rm:
- case X86::BSR32rm:
- case X86::BSR64rm:
- case X86::LZCNT16rm:
- case X86::LZCNT32rm:
- case X86::LZCNT64rm:
- case X86::POPCNT16rm:
- case X86::POPCNT32rm:
- case X86::POPCNT64rm:
- case X86::TZCNT16rm:
- case X86::TZCNT32rm:
- case X86::TZCNT64rm:
- // Bit manipulation instructions are effectively combinations of basic
- // arithmetic ops, and should still execute in constant time. These also
- // set flags.
- case X86::BLCFILL32rm:
- case X86::BLCFILL64rm:
- case X86::BLCI32rm:
- case X86::BLCI64rm:
- case X86::BLCIC32rm:
- case X86::BLCIC64rm:
- case X86::BLCMSK32rm:
- case X86::BLCMSK64rm:
- case X86::BLCS32rm:
- case X86::BLCS64rm:
- case X86::BLSFILL32rm:
- case X86::BLSFILL64rm:
- case X86::BLSI32rm:
- case X86::BLSI64rm:
- case X86::BLSIC32rm:
- case X86::BLSIC64rm:
- case X86::BLSMSK32rm:
- case X86::BLSMSK64rm:
- case X86::BLSR32rm:
- case X86::BLSR64rm:
- case X86::TZMSK32rm:
- case X86::TZMSK64rm:
- // Bit extracting and clearing instructions should execute in constant time,
- // and set flags.
- case X86::BEXTR32rm:
- case X86::BEXTR64rm:
- case X86::BEXTRI32mi:
- case X86::BEXTRI64mi:
- case X86::BZHI32rm:
- case X86::BZHI64rm:
- // Basic arithmetic is constant time on the input but does set flags.
- case X86::ADC8rm:
- case X86::ADC16rm:
- case X86::ADC32rm:
- case X86::ADC64rm:
- case X86::ADCX32rm:
- case X86::ADCX64rm:
- case X86::ADD8rm:
- case X86::ADD16rm:
- case X86::ADD32rm:
- case X86::ADD64rm:
- case X86::ADOX32rm:
- case X86::ADOX64rm:
- case X86::AND8rm:
- case X86::AND16rm:
- case X86::AND32rm:
- case X86::AND64rm:
- case X86::ANDN32rm:
- case X86::ANDN64rm:
- case X86::OR8rm:
- case X86::OR16rm:
- case X86::OR32rm:
- case X86::OR64rm:
- case X86::SBB8rm:
- case X86::SBB16rm:
- case X86::SBB32rm:
- case X86::SBB64rm:
- case X86::SUB8rm:
- case X86::SUB16rm:
- case X86::SUB32rm:
- case X86::SUB64rm:
- case X86::XOR8rm:
- case X86::XOR16rm:
- case X86::XOR32rm:
- case X86::XOR64rm:
- // Integer multiply w/o affecting flags is still believed to be constant
- // time on x86. Called out separately as this is among the most surprising
- // instructions to exhibit that behavior.
- case X86::MULX32rm:
- case X86::MULX64rm:
- // Arithmetic instructions that are both constant time and don't set flags.
- case X86::RORX32mi:
- case X86::RORX64mi:
- case X86::SARX32rm:
- case X86::SARX64rm:
- case X86::SHLX32rm:
- case X86::SHLX64rm:
- case X86::SHRX32rm:
- case X86::SHRX64rm:
- // Conversions are believed to be constant time and don't set flags.
- case X86::CVTTSD2SI64rm:
- case X86::VCVTTSD2SI64rm:
- case X86::VCVTTSD2SI64Zrm:
- case X86::CVTTSD2SIrm:
- case X86::VCVTTSD2SIrm:
- case X86::VCVTTSD2SIZrm:
- case X86::CVTTSS2SI64rm:
- case X86::VCVTTSS2SI64rm:
- case X86::VCVTTSS2SI64Zrm:
- case X86::CVTTSS2SIrm:
- case X86::VCVTTSS2SIrm:
- case X86::VCVTTSS2SIZrm:
- case X86::CVTSI2SDrm:
- case X86::VCVTSI2SDrm:
- case X86::VCVTSI2SDZrm:
- case X86::CVTSI2SSrm:
- case X86::VCVTSI2SSrm:
- case X86::VCVTSI2SSZrm:
- case X86::CVTSI642SDrm:
- case X86::VCVTSI642SDrm:
- case X86::VCVTSI642SDZrm:
- case X86::CVTSI642SSrm:
- case X86::VCVTSI642SSrm:
- case X86::VCVTSI642SSZrm:
- case X86::CVTSS2SDrm:
- case X86::VCVTSS2SDrm:
- case X86::VCVTSS2SDZrm:
- case X86::CVTSD2SSrm:
- case X86::VCVTSD2SSrm:
- case X86::VCVTSD2SSZrm:
- // AVX512 added unsigned integer conversions.
- case X86::VCVTTSD2USI64Zrm:
- case X86::VCVTTSD2USIZrm:
- case X86::VCVTTSS2USI64Zrm:
- case X86::VCVTTSS2USIZrm:
- case X86::VCVTUSI2SDZrm:
- case X86::VCVTUSI642SDZrm:
- case X86::VCVTUSI2SSZrm:
- case X86::VCVTUSI642SSZrm:
- // Loads to register don't set flags.
- case X86::MOV8rm:
- case X86::MOV8rm_NOREX:
- case X86::MOV16rm:
- case X86::MOV32rm:
- case X86::MOV64rm:
- case X86::MOVSX16rm8:
- case X86::MOVSX32rm16:
- case X86::MOVSX32rm8:
- case X86::MOVSX32rm8_NOREX:
- case X86::MOVSX64rm16:
- case X86::MOVSX64rm32:
- case X86::MOVSX64rm8:
- case X86::MOVZX16rm8:
- case X86::MOVZX32rm16:
- case X86::MOVZX32rm8:
- case X86::MOVZX32rm8_NOREX:
- case X86::MOVZX64rm16:
- case X86::MOVZX64rm8:
- return true;
- }
- }
- int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
- const MachineFunction *MF = MI.getParent()->getParent();
- const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
- if (isFrameInstr(MI)) {
- int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign());
- SPAdj -= getFrameAdjustment(MI);
- if (!isFrameSetup(MI))
- SPAdj = -SPAdj;
- return SPAdj;
- }
- // To know whether a call adjusts the stack, we need information
- // that is bound to the following ADJCALLSTACKUP pseudo.
- // Look for the next ADJCALLSTACKUP that follows the call.
- if (MI.isCall()) {
- const MachineBasicBlock *MBB = MI.getParent();
- auto I = ++MachineBasicBlock::const_iterator(MI);
- for (auto E = MBB->end(); I != E; ++I) {
- if (I->getOpcode() == getCallFrameDestroyOpcode() ||
- I->isCall())
- break;
- }
- // If we could not find a frame destroy opcode, then it has already
- // been simplified, so we don't care.
- if (I->getOpcode() != getCallFrameDestroyOpcode())
- return 0;
- return -(I->getOperand(1).getImm());
- }
- // Currently handle only PUSHes we can reasonably expect to see
- // in call sequences
- switch (MI.getOpcode()) {
- default:
- return 0;
- case X86::PUSH32i8:
- case X86::PUSH32r:
- case X86::PUSH32rmm:
- case X86::PUSH32rmr:
- case X86::PUSHi32:
- return 4;
- case X86::PUSH64i8:
- case X86::PUSH64r:
- case X86::PUSH64rmm:
- case X86::PUSH64rmr:
- case X86::PUSH64i32:
- return 8;
- }
- }
- /// Return true and the FrameIndex if the specified
- /// operand and follow operands form a reference to the stack frame.
- bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
- int &FrameIndex) const {
- if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
- MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
- MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
- MI.getOperand(Op + X86::AddrDisp).isImm() &&
- MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
- MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
- MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
- FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
- return true;
- }
- return false;
- }
- static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
- switch (Opcode) {
- default:
- return false;
- case X86::MOV8rm:
- case X86::KMOVBkm:
- MemBytes = 1;
- return true;
- case X86::MOV16rm:
- case X86::KMOVWkm:
- case X86::VMOVSHZrm:
- case X86::VMOVSHZrm_alt:
- MemBytes = 2;
- return true;
- case X86::MOV32rm:
- case X86::MOVSSrm:
- case X86::MOVSSrm_alt:
- case X86::VMOVSSrm:
- case X86::VMOVSSrm_alt:
- case X86::VMOVSSZrm:
- case X86::VMOVSSZrm_alt:
- case X86::KMOVDkm:
- MemBytes = 4;
- return true;
- case X86::MOV64rm:
- case X86::LD_Fp64m:
- case X86::MOVSDrm:
- case X86::MOVSDrm_alt:
- case X86::VMOVSDrm:
- case X86::VMOVSDrm_alt:
- case X86::VMOVSDZrm:
- case X86::VMOVSDZrm_alt:
- case X86::MMX_MOVD64rm:
- case X86::MMX_MOVQ64rm:
- case X86::KMOVQkm:
- MemBytes = 8;
- return true;
- case X86::MOVAPSrm:
- case X86::MOVUPSrm:
- case X86::MOVAPDrm:
- case X86::MOVUPDrm:
- case X86::MOVDQArm:
- case X86::MOVDQUrm:
- case X86::VMOVAPSrm:
- case X86::VMOVUPSrm:
- case X86::VMOVAPDrm:
- case X86::VMOVUPDrm:
- case X86::VMOVDQArm:
- case X86::VMOVDQUrm:
- case X86::VMOVAPSZ128rm:
- case X86::VMOVUPSZ128rm:
- case X86::VMOVAPSZ128rm_NOVLX:
- case X86::VMOVUPSZ128rm_NOVLX:
- case X86::VMOVAPDZ128rm:
- case X86::VMOVUPDZ128rm:
- case X86::VMOVDQU8Z128rm:
- case X86::VMOVDQU16Z128rm:
- case X86::VMOVDQA32Z128rm:
- case X86::VMOVDQU32Z128rm:
- case X86::VMOVDQA64Z128rm:
- case X86::VMOVDQU64Z128rm:
- MemBytes = 16;
- return true;
- case X86::VMOVAPSYrm:
- case X86::VMOVUPSYrm:
- case X86::VMOVAPDYrm:
- case X86::VMOVUPDYrm:
- case X86::VMOVDQAYrm:
- case X86::VMOVDQUYrm:
- case X86::VMOVAPSZ256rm:
- case X86::VMOVUPSZ256rm:
- case X86::VMOVAPSZ256rm_NOVLX:
- case X86::VMOVUPSZ256rm_NOVLX:
- case X86::VMOVAPDZ256rm:
- case X86::VMOVUPDZ256rm:
- case X86::VMOVDQU8Z256rm:
- case X86::VMOVDQU16Z256rm:
- case X86::VMOVDQA32Z256rm:
- case X86::VMOVDQU32Z256rm:
- case X86::VMOVDQA64Z256rm:
- case X86::VMOVDQU64Z256rm:
- MemBytes = 32;
- return true;
- case X86::VMOVAPSZrm:
- case X86::VMOVUPSZrm:
- case X86::VMOVAPDZrm:
- case X86::VMOVUPDZrm:
- case X86::VMOVDQU8Zrm:
- case X86::VMOVDQU16Zrm:
- case X86::VMOVDQA32Zrm:
- case X86::VMOVDQU32Zrm:
- case X86::VMOVDQA64Zrm:
- case X86::VMOVDQU64Zrm:
- MemBytes = 64;
- return true;
- }
- }
- static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
- switch (Opcode) {
- default:
- return false;
- case X86::MOV8mr:
- case X86::KMOVBmk:
- MemBytes = 1;
- return true;
- case X86::MOV16mr:
- case X86::KMOVWmk:
- case X86::VMOVSHZmr:
- MemBytes = 2;
- return true;
- case X86::MOV32mr:
- case X86::MOVSSmr:
- case X86::VMOVSSmr:
- case X86::VMOVSSZmr:
- case X86::KMOVDmk:
- MemBytes = 4;
- return true;
- case X86::MOV64mr:
- case X86::ST_FpP64m:
- case X86::MOVSDmr:
- case X86::VMOVSDmr:
- case X86::VMOVSDZmr:
- case X86::MMX_MOVD64mr:
- case X86::MMX_MOVQ64mr:
- case X86::MMX_MOVNTQmr:
- case X86::KMOVQmk:
- MemBytes = 8;
- return true;
- case X86::MOVAPSmr:
- case X86::MOVUPSmr:
- case X86::MOVAPDmr:
- case X86::MOVUPDmr:
- case X86::MOVDQAmr:
- case X86::MOVDQUmr:
- case X86::VMOVAPSmr:
- case X86::VMOVUPSmr:
- case X86::VMOVAPDmr:
- case X86::VMOVUPDmr:
- case X86::VMOVDQAmr:
- case X86::VMOVDQUmr:
- case X86::VMOVUPSZ128mr:
- case X86::VMOVAPSZ128mr:
- case X86::VMOVUPSZ128mr_NOVLX:
- case X86::VMOVAPSZ128mr_NOVLX:
- case X86::VMOVUPDZ128mr:
- case X86::VMOVAPDZ128mr:
- case X86::VMOVDQA32Z128mr:
- case X86::VMOVDQU32Z128mr:
- case X86::VMOVDQA64Z128mr:
- case X86::VMOVDQU64Z128mr:
- case X86::VMOVDQU8Z128mr:
- case X86::VMOVDQU16Z128mr:
- MemBytes = 16;
- return true;
- case X86::VMOVUPSYmr:
- case X86::VMOVAPSYmr:
- case X86::VMOVUPDYmr:
- case X86::VMOVAPDYmr:
- case X86::VMOVDQUYmr:
- case X86::VMOVDQAYmr:
- case X86::VMOVUPSZ256mr:
- case X86::VMOVAPSZ256mr:
- case X86::VMOVUPSZ256mr_NOVLX:
- case X86::VMOVAPSZ256mr_NOVLX:
- case X86::VMOVUPDZ256mr:
- case X86::VMOVAPDZ256mr:
- case X86::VMOVDQU8Z256mr:
- case X86::VMOVDQU16Z256mr:
- case X86::VMOVDQA32Z256mr:
- case X86::VMOVDQU32Z256mr:
- case X86::VMOVDQA64Z256mr:
- case X86::VMOVDQU64Z256mr:
- MemBytes = 32;
- return true;
- case X86::VMOVUPSZmr:
- case X86::VMOVAPSZmr:
- case X86::VMOVUPDZmr:
- case X86::VMOVAPDZmr:
- case X86::VMOVDQU8Zmr:
- case X86::VMOVDQU16Zmr:
- case X86::VMOVDQA32Zmr:
- case X86::VMOVDQU32Zmr:
- case X86::VMOVDQA64Zmr:
- case X86::VMOVDQU64Zmr:
- MemBytes = 64;
- return true;
- }
- return false;
- }
- unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
- int &FrameIndex) const {
- unsigned Dummy;
- return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
- }
- unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
- int &FrameIndex,
- unsigned &MemBytes) const {
- if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
- if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
- return MI.getOperand(0).getReg();
- return 0;
- }
- unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
- int &FrameIndex) const {
- unsigned Dummy;
- if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
- unsigned Reg;
- if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
- return Reg;
- // Check for post-frame index elimination operations
- SmallVector<const MachineMemOperand *, 1> Accesses;
- if (hasLoadFromStackSlot(MI, Accesses)) {
- FrameIndex =
- cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
- ->getFrameIndex();
- return MI.getOperand(0).getReg();
- }
- }
- return 0;
- }
- unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
- int &FrameIndex) const {
- unsigned Dummy;
- return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
- }
- unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
- int &FrameIndex,
- unsigned &MemBytes) const {
- if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
- if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
- isFrameOperand(MI, 0, FrameIndex))
- return MI.getOperand(X86::AddrNumOperands).getReg();
- return 0;
- }
- unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
- int &FrameIndex) const {
- unsigned Dummy;
- if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
- unsigned Reg;
- if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
- return Reg;
- // Check for post-frame index elimination operations
- SmallVector<const MachineMemOperand *, 1> Accesses;
- if (hasStoreToStackSlot(MI, Accesses)) {
- FrameIndex =
- cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
- ->getFrameIndex();
- return MI.getOperand(X86::AddrNumOperands).getReg();
- }
- }
- return 0;
- }
- /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
- static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) {
- // Don't waste compile time scanning use-def chains of physregs.
- if (!BaseReg.isVirtual())
- return false;
- bool isPICBase = false;
- for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
- E = MRI.def_instr_end(); I != E; ++I) {
- MachineInstr *DefMI = &*I;
- if (DefMI->getOpcode() != X86::MOVPC32r)
- return false;
- assert(!isPICBase && "More than one PIC base?");
- isPICBase = true;
- }
- return isPICBase;
- }
- bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
- AAResults *AA) const {
- switch (MI.getOpcode()) {
- default:
- // This function should only be called for opcodes with the ReMaterializable
- // flag set.
- llvm_unreachable("Unknown rematerializable operation!");
- break;
- case X86::LOAD_STACK_GUARD:
- case X86::AVX1_SETALLONES:
- case X86::AVX2_SETALLONES:
- case X86::AVX512_128_SET0:
- case X86::AVX512_256_SET0:
- case X86::AVX512_512_SET0:
- case X86::AVX512_512_SETALLONES:
- case X86::AVX512_FsFLD0SD:
- case X86::AVX512_FsFLD0SH:
- case X86::AVX512_FsFLD0SS:
- case X86::AVX512_FsFLD0F128:
- case X86::AVX_SET0:
- case X86::FsFLD0SD:
- case X86::FsFLD0SS:
- case X86::FsFLD0F128:
- case X86::KSET0D:
- case X86::KSET0Q:
- case X86::KSET0W:
- case X86::KSET1D:
- case X86::KSET1Q:
- case X86::KSET1W:
- case X86::MMX_SET0:
- case X86::MOV32ImmSExti8:
- case X86::MOV32r0:
- case X86::MOV32r1:
- case X86::MOV32r_1:
- case X86::MOV32ri64:
- case X86::MOV64ImmSExti8:
- case X86::V_SET0:
- case X86::V_SETALLONES:
- case X86::MOV16ri:
- case X86::MOV32ri:
- case X86::MOV64ri:
- case X86::MOV64ri32:
- case X86::MOV8ri:
- case X86::PTILEZEROV:
- return true;
- case X86::MOV8rm:
- case X86::MOV8rm_NOREX:
- case X86::MOV16rm:
- case X86::MOV32rm:
- case X86::MOV64rm:
- case X86::MOVSSrm:
- case X86::MOVSSrm_alt:
- case X86::MOVSDrm:
- case X86::MOVSDrm_alt:
- case X86::MOVAPSrm:
- case X86::MOVUPSrm:
- case X86::MOVAPDrm:
- case X86::MOVUPDrm:
- case X86::MOVDQArm:
- case X86::MOVDQUrm:
- case X86::VMOVSSrm:
- case X86::VMOVSSrm_alt:
- case X86::VMOVSDrm:
- case X86::VMOVSDrm_alt:
- case X86::VMOVAPSrm:
- case X86::VMOVUPSrm:
- case X86::VMOVAPDrm:
- case X86::VMOVUPDrm:
- case X86::VMOVDQArm:
- case X86::VMOVDQUrm:
- case X86::VMOVAPSYrm:
- case X86::VMOVUPSYrm:
- case X86::VMOVAPDYrm:
- case X86::VMOVUPDYrm:
- case X86::VMOVDQAYrm:
- case X86::VMOVDQUYrm:
- case X86::MMX_MOVD64rm:
- case X86::MMX_MOVQ64rm:
- // AVX-512
- case X86::VMOVSSZrm:
- case X86::VMOVSSZrm_alt:
- case X86::VMOVSDZrm:
- case X86::VMOVSDZrm_alt:
- case X86::VMOVSHZrm:
- case X86::VMOVSHZrm_alt:
- case X86::VMOVAPDZ128rm:
- case X86::VMOVAPDZ256rm:
- case X86::VMOVAPDZrm:
- case X86::VMOVAPSZ128rm:
- case X86::VMOVAPSZ256rm:
- case X86::VMOVAPSZ128rm_NOVLX:
- case X86::VMOVAPSZ256rm_NOVLX:
- case X86::VMOVAPSZrm:
- case X86::VMOVDQA32Z128rm:
- case X86::VMOVDQA32Z256rm:
- case X86::VMOVDQA32Zrm:
- case X86::VMOVDQA64Z128rm:
- case X86::VMOVDQA64Z256rm:
- case X86::VMOVDQA64Zrm:
- case X86::VMOVDQU16Z128rm:
- case X86::VMOVDQU16Z256rm:
- case X86::VMOVDQU16Zrm:
- case X86::VMOVDQU32Z128rm:
- case X86::VMOVDQU32Z256rm:
- case X86::VMOVDQU32Zrm:
- case X86::VMOVDQU64Z128rm:
- case X86::VMOVDQU64Z256rm:
- case X86::VMOVDQU64Zrm:
- case X86::VMOVDQU8Z128rm:
- case X86::VMOVDQU8Z256rm:
- case X86::VMOVDQU8Zrm:
- case X86::VMOVUPDZ128rm:
- case X86::VMOVUPDZ256rm:
- case X86::VMOVUPDZrm:
- case X86::VMOVUPSZ128rm:
- case X86::VMOVUPSZ256rm:
- case X86::VMOVUPSZ128rm_NOVLX:
- case X86::VMOVUPSZ256rm_NOVLX:
- case X86::VMOVUPSZrm: {
- // Loads from constant pools are trivially rematerializable.
- if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
- MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
- MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
- MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
- MI.isDereferenceableInvariantLoad(AA)) {
- Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
- if (BaseReg == 0 || BaseReg == X86::RIP)
- return true;
- // Allow re-materialization of PIC load.
- if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
- return false;
- const MachineFunction &MF = *MI.getParent()->getParent();
- const MachineRegisterInfo &MRI = MF.getRegInfo();
- return regIsPICBase(BaseReg, MRI);
- }
- return false;
- }
- case X86::LEA32r:
- case X86::LEA64r: {
- if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
- MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
- MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
- !MI.getOperand(1 + X86::AddrDisp).isReg()) {
- // lea fi#, lea GV, etc. are all rematerializable.
- if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
- return true;
- Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
- if (BaseReg == 0)
- return true;
- // Allow re-materialization of lea PICBase + x.
- const MachineFunction &MF = *MI.getParent()->getParent();
- const MachineRegisterInfo &MRI = MF.getRegInfo();
- return regIsPICBase(BaseReg, MRI);
- }
- return false;
- }
- }
- }
- void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I,
- Register DestReg, unsigned SubIdx,
- const MachineInstr &Orig,
- const TargetRegisterInfo &TRI) const {
- bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
- if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) !=
- MachineBasicBlock::LQR_Dead) {
- // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
- // effects.
- int Value;
- switch (Orig.getOpcode()) {
- case X86::MOV32r0: Value = 0; break;
- case X86::MOV32r1: Value = 1; break;
- case X86::MOV32r_1: Value = -1; break;
- default:
- llvm_unreachable("Unexpected instruction!");
- }
- const DebugLoc &DL = Orig.getDebugLoc();
- BuildMI(MBB, I, DL, get(X86::MOV32ri))
- .add(Orig.getOperand(0))
- .addImm(Value);
- } else {
- MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
- MBB.insert(I, MI);
- }
- MachineInstr &NewMI = *std::prev(I);
- NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
- }
- /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
- bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
- for (const MachineOperand &MO : MI.operands()) {
- if (MO.isReg() && MO.isDef() &&
- MO.getReg() == X86::EFLAGS && !MO.isDead()) {
- return true;
- }
- }
- return false;
- }
- /// Check whether the shift count for a machine operand is non-zero.
- inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
- unsigned ShiftAmtOperandIdx) {
- // The shift count is six bits with the REX.W prefix and five bits without.
- unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
- unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
- return Imm & ShiftCountMask;
- }
- /// Check whether the given shift count is appropriate
- /// can be represented by a LEA instruction.
- inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
- // Left shift instructions can be transformed into load-effective-address
- // instructions if we can encode them appropriately.
- // A LEA instruction utilizes a SIB byte to encode its scale factor.
- // The SIB.scale field is two bits wide which means that we can encode any
- // shift amount less than 4.
- return ShAmt < 4 && ShAmt > 0;
- }
- bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
- unsigned Opc, bool AllowSP, Register &NewSrc,
- bool &isKill, MachineOperand &ImplicitOp,
- LiveVariables *LV, LiveIntervals *LIS) const {
- MachineFunction &MF = *MI.getParent()->getParent();
- const TargetRegisterClass *RC;
- if (AllowSP) {
- RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
- } else {
- RC = Opc != X86::LEA32r ?
- &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
- }
- Register SrcReg = Src.getReg();
- isKill = MI.killsRegister(SrcReg);
- // For both LEA64 and LEA32 the register already has essentially the right
- // type (32-bit or 64-bit) we may just need to forbid SP.
- if (Opc != X86::LEA64_32r) {
- NewSrc = SrcReg;
- assert(!Src.isUndef() && "Undef op doesn't need optimization");
- if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC))
- return false;
- return true;
- }
- // This is for an LEA64_32r and incoming registers are 32-bit. One way or
- // another we need to add 64-bit registers to the final MI.
- if (SrcReg.isPhysical()) {
- ImplicitOp = Src;
- ImplicitOp.setImplicit();
- NewSrc = getX86SubSuperRegister(SrcReg, 64);
- assert(!Src.isUndef() && "Undef op doesn't need optimization");
- } else {
- // Virtual register of the wrong class, we have to create a temporary 64-bit
- // vreg to feed into the LEA.
- NewSrc = MF.getRegInfo().createVirtualRegister(RC);
- MachineInstr *Copy =
- BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
- .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
- .addReg(SrcReg, getKillRegState(isKill));
- // Which is obviously going to be dead after we're done with it.
- isKill = true;
- if (LV)
- LV->replaceKillInstruction(SrcReg, MI, *Copy);
- if (LIS) {
- SlotIndex CopyIdx = LIS->InsertMachineInstrInMaps(*Copy);
- SlotIndex Idx = LIS->getInstructionIndex(MI);
- LiveInterval &LI = LIS->getInterval(SrcReg);
- LiveRange::Segment *S = LI.getSegmentContaining(Idx);
- if (S->end.getBaseIndex() == Idx)
- S->end = CopyIdx.getRegSlot();
- }
- }
- // We've set all the parameters without issue.
- return true;
- }
- MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
- MachineInstr &MI,
- LiveVariables *LV,
- LiveIntervals *LIS,
- bool Is8BitOp) const {
- // We handle 8-bit adds and various 16-bit opcodes in the switch below.
- MachineBasicBlock &MBB = *MI.getParent();
- MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
- assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits(
- *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
- "Unexpected type for LEA transform");
- // TODO: For a 32-bit target, we need to adjust the LEA variables with
- // something like this:
- // Opcode = X86::LEA32r;
- // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
- // OutRegLEA =
- // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
- // : RegInfo.createVirtualRegister(&X86::GR32RegClass);
- if (!Subtarget.is64Bit())
- return nullptr;
- unsigned Opcode = X86::LEA64_32r;
- Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
- Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
- Register InRegLEA2;
- // Build and insert into an implicit UNDEF value. This is OK because
- // we will be shifting and then extracting the lower 8/16-bits.
- // This has the potential to cause partial register stall. e.g.
- // movw (%rbp,%rcx,2), %dx
- // leal -65(%rdx), %esi
- // But testing has shown this *does* help performance in 64-bit mode (at
- // least on modern x86 machines).
- MachineBasicBlock::iterator MBBI = MI.getIterator();
- Register Dest = MI.getOperand(0).getReg();
- Register Src = MI.getOperand(1).getReg();
- Register Src2;
- bool IsDead = MI.getOperand(0).isDead();
- bool IsKill = MI.getOperand(1).isKill();
- unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
- assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
- MachineInstr *ImpDef =
- BuildMI(MBB, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
- MachineInstr *InsMI =
- BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
- .addReg(InRegLEA, RegState::Define, SubReg)
- .addReg(Src, getKillRegState(IsKill));
- MachineInstr *ImpDef2 = nullptr;
- MachineInstr *InsMI2 = nullptr;
- MachineInstrBuilder MIB =
- BuildMI(MBB, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
- switch (MIOpc) {
- default: llvm_unreachable("Unreachable!");
- case X86::SHL8ri:
- case X86::SHL16ri: {
- unsigned ShAmt = MI.getOperand(2).getImm();
- MIB.addReg(0).addImm(1ULL << ShAmt)
- .addReg(InRegLEA, RegState::Kill).addImm(0).addReg(0);
- break;
- }
- case X86::INC8r:
- case X86::INC16r:
- addRegOffset(MIB, InRegLEA, true, 1);
- break;
- case X86::DEC8r:
- case X86::DEC16r:
- addRegOffset(MIB, InRegLEA, true, -1);
- break;
- case X86::ADD8ri:
- case X86::ADD8ri_DB:
- case X86::ADD16ri:
- case X86::ADD16ri8:
- case X86::ADD16ri_DB:
- case X86::ADD16ri8_DB:
- addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
- break;
- case X86::ADD8rr:
- case X86::ADD8rr_DB:
- case X86::ADD16rr:
- case X86::ADD16rr_DB: {
- Src2 = MI.getOperand(2).getReg();
- bool IsKill2 = MI.getOperand(2).isKill();
- assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
- if (Src == Src2) {
- // ADD8rr/ADD16rr killed %reg1028, %reg1028
- // just a single insert_subreg.
- addRegReg(MIB, InRegLEA, true, InRegLEA, false);
- } else {
- if (Subtarget.is64Bit())
- InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
- else
- InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
- // Build and insert into an implicit UNDEF value. This is OK because
- // we will be shifting and then extracting the lower 8/16-bits.
- ImpDef2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF),
- InRegLEA2);
- InsMI2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
- .addReg(InRegLEA2, RegState::Define, SubReg)
- .addReg(Src2, getKillRegState(IsKill2));
- addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
- }
- if (LV && IsKill2 && InsMI2)
- LV->replaceKillInstruction(Src2, MI, *InsMI2);
- break;
- }
- }
- MachineInstr *NewMI = MIB;
- MachineInstr *ExtMI =
- BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
- .addReg(Dest, RegState::Define | getDeadRegState(IsDead))
- .addReg(OutRegLEA, RegState::Kill, SubReg);
- if (LV) {
- // Update live variables.
- LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
- LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
- if (IsKill)
- LV->replaceKillInstruction(Src, MI, *InsMI);
- if (IsDead)
- LV->replaceKillInstruction(Dest, MI, *ExtMI);
- }
- if (LIS) {
- LIS->InsertMachineInstrInMaps(*ImpDef);
- SlotIndex InsIdx = LIS->InsertMachineInstrInMaps(*InsMI);
- if (ImpDef2)
- LIS->InsertMachineInstrInMaps(*ImpDef2);
- SlotIndex Ins2Idx;
- if (InsMI2)
- Ins2Idx = LIS->InsertMachineInstrInMaps(*InsMI2);
- SlotIndex NewIdx = LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
- SlotIndex ExtIdx = LIS->InsertMachineInstrInMaps(*ExtMI);
- LIS->getInterval(InRegLEA);
- LIS->getInterval(OutRegLEA);
- if (InRegLEA2)
- LIS->getInterval(InRegLEA2);
- // Move the use of Src up to InsMI.
- LiveInterval &SrcLI = LIS->getInterval(Src);
- LiveRange::Segment *SrcSeg = SrcLI.getSegmentContaining(NewIdx);
- if (SrcSeg->end == NewIdx.getRegSlot())
- SrcSeg->end = InsIdx.getRegSlot();
- if (InsMI2) {
- // Move the use of Src2 up to InsMI2.
- LiveInterval &Src2LI = LIS->getInterval(Src2);
- LiveRange::Segment *Src2Seg = Src2LI.getSegmentContaining(NewIdx);
- if (Src2Seg->end == NewIdx.getRegSlot())
- Src2Seg->end = Ins2Idx.getRegSlot();
- }
- // Move the definition of Dest down to ExtMI.
- LiveInterval &DestLI = LIS->getInterval(Dest);
- LiveRange::Segment *DestSeg =
- DestLI.getSegmentContaining(NewIdx.getRegSlot());
- assert(DestSeg->start == NewIdx.getRegSlot() &&
- DestSeg->valno->def == NewIdx.getRegSlot());
- DestSeg->start = ExtIdx.getRegSlot();
- DestSeg->valno->def = ExtIdx.getRegSlot();
- }
- return ExtMI;
- }
- /// This method must be implemented by targets that
- /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
- /// may be able to convert a two-address instruction into a true
- /// three-address instruction on demand. This allows the X86 target (for
- /// example) to convert ADD and SHL instructions into LEA instructions if they
- /// would require register copies due to two-addressness.
- ///
- /// This method returns a null pointer if the transformation cannot be
- /// performed, otherwise it returns the new instruction.
- ///
- MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr &MI,
- LiveVariables *LV,
- LiveIntervals *LIS) const {
- // The following opcodes also sets the condition code register(s). Only
- // convert them to equivalent lea if the condition code register def's
- // are dead!
- if (hasLiveCondCodeDef(MI))
- return nullptr;
- MachineFunction &MF = *MI.getParent()->getParent();
- // All instructions input are two-addr instructions. Get the known operands.
- const MachineOperand &Dest = MI.getOperand(0);
- const MachineOperand &Src = MI.getOperand(1);
- // Ideally, operations with undef should be folded before we get here, but we
- // can't guarantee it. Bail out because optimizing undefs is a waste of time.
- // Without this, we have to forward undef state to new register operands to
- // avoid machine verifier errors.
- if (Src.isUndef())
- return nullptr;
- if (MI.getNumOperands() > 2)
- if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
- return nullptr;
- MachineInstr *NewMI = nullptr;
- Register SrcReg, SrcReg2;
- bool Is64Bit = Subtarget.is64Bit();
- bool Is8BitOp = false;
- unsigned MIOpc = MI.getOpcode();
- switch (MIOpc) {
- default: llvm_unreachable("Unreachable!");
- case X86::SHL64ri: {
- assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
- unsigned ShAmt = getTruncatedShiftCount(MI, 2);
- if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
- // LEA can't handle RSP.
- if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass(
- Src.getReg(), &X86::GR64_NOSPRegClass))
- return nullptr;
- NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
- .add(Dest)
- .addReg(0)
- .addImm(1ULL << ShAmt)
- .add(Src)
- .addImm(0)
- .addReg(0);
- break;
- }
- case X86::SHL32ri: {
- assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
- unsigned ShAmt = getTruncatedShiftCount(MI, 2);
- if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
- unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
- // LEA can't handle ESP.
- bool isKill;
- MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
- if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
- ImplicitOp, LV, LIS))
- return nullptr;
- MachineInstrBuilder MIB =
- BuildMI(MF, MI.getDebugLoc(), get(Opc))
- .add(Dest)
- .addReg(0)
- .addImm(1ULL << ShAmt)
- .addReg(SrcReg, getKillRegState(isKill))
- .addImm(0)
- .addReg(0);
- if (ImplicitOp.getReg() != 0)
- MIB.add(ImplicitOp);
- NewMI = MIB;
- break;
- }
- case X86::SHL8ri:
- Is8BitOp = true;
- LLVM_FALLTHROUGH;
- case X86::SHL16ri: {
- assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
- unsigned ShAmt = getTruncatedShiftCount(MI, 2);
- if (!isTruncatedShiftCountForLEA(ShAmt))
- return nullptr;
- return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
- }
- case X86::INC64r:
- case X86::INC32r: {
- assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
- unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r :
- (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
- bool isKill;
- MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
- if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
- ImplicitOp, LV, LIS))
- return nullptr;
- MachineInstrBuilder MIB =
- BuildMI(MF, MI.getDebugLoc(), get(Opc))
- .add(Dest)
- .addReg(SrcReg, getKillRegState(isKill));
- if (ImplicitOp.getReg() != 0)
- MIB.add(ImplicitOp);
- NewMI = addOffset(MIB, 1);
- break;
- }
- case X86::DEC64r:
- case X86::DEC32r: {
- assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
- unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
- : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
- bool isKill;
- MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
- if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
- ImplicitOp, LV, LIS))
- return nullptr;
- MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
- .add(Dest)
- .addReg(SrcReg, getKillRegState(isKill));
- if (ImplicitOp.getReg() != 0)
- MIB.add(ImplicitOp);
- NewMI = addOffset(MIB, -1);
- break;
- }
- case X86::DEC8r:
- case X86::INC8r:
- Is8BitOp = true;
- LLVM_FALLTHROUGH;
- case X86::DEC16r:
- case X86::INC16r:
- return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
- case X86::ADD64rr:
- case X86::ADD64rr_DB:
- case X86::ADD32rr:
- case X86::ADD32rr_DB: {
- assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
- unsigned Opc;
- if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
- Opc = X86::LEA64r;
- else
- Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
- const MachineOperand &Src2 = MI.getOperand(2);
- bool isKill2;
- MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
- if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/false, SrcReg2, isKill2,
- ImplicitOp2, LV, LIS))
- return nullptr;
- bool isKill;
- MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
- if (Src.getReg() == Src2.getReg()) {
- // Don't call classify LEAReg a second time on the same register, in case
- // the first call inserted a COPY from Src2 and marked it as killed.
- isKill = isKill2;
- SrcReg = SrcReg2;
- } else {
- if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
- ImplicitOp, LV, LIS))
- return nullptr;
- }
- MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
- if (ImplicitOp.getReg() != 0)
- MIB.add(ImplicitOp);
- if (ImplicitOp2.getReg() != 0)
- MIB.add(ImplicitOp2);
- NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
- if (LV && Src2.isKill())
- LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
- break;
- }
- case X86::ADD8rr:
- case X86::ADD8rr_DB:
- Is8BitOp = true;
- LLVM_FALLTHROUGH;
- case X86::ADD16rr:
- case X86::ADD16rr_DB:
- return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
- case X86::ADD64ri32:
- case X86::ADD64ri8:
- case X86::ADD64ri32_DB:
- case X86::ADD64ri8_DB:
- assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
- NewMI = addOffset(
- BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
- MI.getOperand(2));
- break;
- case X86::ADD32ri:
- case X86::ADD32ri8:
- case X86::ADD32ri_DB:
- case X86::ADD32ri8_DB: {
- assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
- unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
- bool isKill;
- MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
- if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
- ImplicitOp, LV, LIS))
- return nullptr;
- MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
- .add(Dest)
- .addReg(SrcReg, getKillRegState(isKill));
- if (ImplicitOp.getReg() != 0)
- MIB.add(ImplicitOp);
- NewMI = addOffset(MIB, MI.getOperand(2));
- break;
- }
- case X86::ADD8ri:
- case X86::ADD8ri_DB:
- Is8BitOp = true;
- LLVM_FALLTHROUGH;
- case X86::ADD16ri:
- case X86::ADD16ri8:
- case X86::ADD16ri_DB:
- case X86::ADD16ri8_DB:
- return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
- case X86::SUB8ri:
- case X86::SUB16ri8:
- case X86::SUB16ri:
- /// FIXME: Support these similar to ADD8ri/ADD16ri*.
- return nullptr;
- case X86::SUB32ri8:
- case X86::SUB32ri: {
- if (!MI.getOperand(2).isImm())
- return nullptr;
- int64_t Imm = MI.getOperand(2).getImm();
- if (!isInt<32>(-Imm))
- return nullptr;
- assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
- unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
- bool isKill;
- MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
- if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
- ImplicitOp, LV, LIS))
- return nullptr;
- MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
- .add(Dest)
- .addReg(SrcReg, getKillRegState(isKill));
- if (ImplicitOp.getReg() != 0)
- MIB.add(ImplicitOp);
- NewMI = addOffset(MIB, -Imm);
- break;
- }
- case X86::SUB64ri8:
- case X86::SUB64ri32: {
- if (!MI.getOperand(2).isImm())
- return nullptr;
- int64_t Imm = MI.getOperand(2).getImm();
- if (!isInt<32>(-Imm))
- return nullptr;
- assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
- MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(),
- get(X86::LEA64r)).add(Dest).add(Src);
- NewMI = addOffset(MIB, -Imm);
- break;
- }
- case X86::VMOVDQU8Z128rmk:
- case X86::VMOVDQU8Z256rmk:
- case X86::VMOVDQU8Zrmk:
- case X86::VMOVDQU16Z128rmk:
- case X86::VMOVDQU16Z256rmk:
- case X86::VMOVDQU16Zrmk:
- case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
- case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
- case X86::VMOVDQU32Zrmk: case X86::VMOVDQA32Zrmk:
- case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
- case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
- case X86::VMOVDQU64Zrmk: case X86::VMOVDQA64Zrmk:
- case X86::VMOVUPDZ128rmk: case X86::VMOVAPDZ128rmk:
- case X86::VMOVUPDZ256rmk: case X86::VMOVAPDZ256rmk:
- case X86::VMOVUPDZrmk: case X86::VMOVAPDZrmk:
- case X86::VMOVUPSZ128rmk: case X86::VMOVAPSZ128rmk:
- case X86::VMOVUPSZ256rmk: case X86::VMOVAPSZ256rmk:
- case X86::VMOVUPSZrmk: case X86::VMOVAPSZrmk:
- case X86::VBROADCASTSDZ256rmk:
- case X86::VBROADCASTSDZrmk:
- case X86::VBROADCASTSSZ128rmk:
- case X86::VBROADCASTSSZ256rmk:
- case X86::VBROADCASTSSZrmk:
- case X86::VPBROADCASTDZ128rmk:
- case X86::VPBROADCASTDZ256rmk:
- case X86::VPBROADCASTDZrmk:
- case X86::VPBROADCASTQZ128rmk:
- case X86::VPBROADCASTQZ256rmk:
- case X86::VPBROADCASTQZrmk: {
- unsigned Opc;
- switch (MIOpc) {
- default: llvm_unreachable("Unreachable!");
- case X86::VMOVDQU8Z128rmk: Opc = X86::VPBLENDMBZ128rmk; break;
- case X86::VMOVDQU8Z256rmk: Opc = X86::VPBLENDMBZ256rmk; break;
- case X86::VMOVDQU8Zrmk: Opc = X86::VPBLENDMBZrmk; break;
- case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break;
- case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break;
- case X86::VMOVDQU16Zrmk: Opc = X86::VPBLENDMWZrmk; break;
- case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
- case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
- case X86::VMOVDQU32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
- case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
- case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
- case X86::VMOVDQU64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
- case X86::VMOVUPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
- case X86::VMOVUPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
- case X86::VMOVUPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
- case X86::VMOVUPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
- case X86::VMOVUPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
- case X86::VMOVUPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
- case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
- case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
- case X86::VMOVDQA32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
- case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
- case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
- case X86::VMOVDQA64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
- case X86::VMOVAPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
- case X86::VMOVAPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
- case X86::VMOVAPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
- case X86::VMOVAPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
- case X86::VMOVAPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
- case X86::VMOVAPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
- case X86::VBROADCASTSDZ256rmk: Opc = X86::VBLENDMPDZ256rmbk; break;
- case X86::VBROADCASTSDZrmk: Opc = X86::VBLENDMPDZrmbk; break;
- case X86::VBROADCASTSSZ128rmk: Opc = X86::VBLENDMPSZ128rmbk; break;
- case X86::VBROADCASTSSZ256rmk: Opc = X86::VBLENDMPSZ256rmbk; break;
- case X86::VBROADCASTSSZrmk: Opc = X86::VBLENDMPSZrmbk; break;
- case X86::VPBROADCASTDZ128rmk: Opc = X86::VPBLENDMDZ128rmbk; break;
- case X86::VPBROADCASTDZ256rmk: Opc = X86::VPBLENDMDZ256rmbk; break;
- case X86::VPBROADCASTDZrmk: Opc = X86::VPBLENDMDZrmbk; break;
- case X86::VPBROADCASTQZ128rmk: Opc = X86::VPBLENDMQZ128rmbk; break;
- case X86::VPBROADCASTQZ256rmk: Opc = X86::VPBLENDMQZ256rmbk; break;
- case X86::VPBROADCASTQZrmk: Opc = X86::VPBLENDMQZrmbk; break;
- }
- NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
- .add(Dest)
- .add(MI.getOperand(2))
- .add(Src)
- .add(MI.getOperand(3))
- .add(MI.getOperand(4))
- .add(MI.getOperand(5))
- .add(MI.getOperand(6))
- .add(MI.getOperand(7));
- break;
- }
- case X86::VMOVDQU8Z128rrk:
- case X86::VMOVDQU8Z256rrk:
- case X86::VMOVDQU8Zrrk:
- case X86::VMOVDQU16Z128rrk:
- case X86::VMOVDQU16Z256rrk:
- case X86::VMOVDQU16Zrrk:
- case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
- case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
- case X86::VMOVDQU32Zrrk: case X86::VMOVDQA32Zrrk:
- case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
- case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
- case X86::VMOVDQU64Zrrk: case X86::VMOVDQA64Zrrk:
- case X86::VMOVUPDZ128rrk: case X86::VMOVAPDZ128rrk:
- case X86::VMOVUPDZ256rrk: case X86::VMOVAPDZ256rrk:
- case X86::VMOVUPDZrrk: case X86::VMOVAPDZrrk:
- case X86::VMOVUPSZ128rrk: case X86::VMOVAPSZ128rrk:
- case X86::VMOVUPSZ256rrk: case X86::VMOVAPSZ256rrk:
- case X86::VMOVUPSZrrk: case X86::VMOVAPSZrrk: {
- unsigned Opc;
- switch (MIOpc) {
- default: llvm_unreachable("Unreachable!");
- case X86::VMOVDQU8Z128rrk: Opc = X86::VPBLENDMBZ128rrk; break;
- case X86::VMOVDQU8Z256rrk: Opc = X86::VPBLENDMBZ256rrk; break;
- case X86::VMOVDQU8Zrrk: Opc = X86::VPBLENDMBZrrk; break;
- case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
- case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
- case X86::VMOVDQU16Zrrk: Opc = X86::VPBLENDMWZrrk; break;
- case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
- case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
- case X86::VMOVDQU32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
- case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
- case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
- case X86::VMOVDQU64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
- case X86::VMOVUPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
- case X86::VMOVUPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
- case X86::VMOVUPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
- case X86::VMOVUPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
- case X86::VMOVUPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
- case X86::VMOVUPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
- case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
- case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
- case X86::VMOVDQA32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
- case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
- case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
- case X86::VMOVDQA64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
- case X86::VMOVAPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
- case X86::VMOVAPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
- case X86::VMOVAPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
- case X86::VMOVAPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
- case X86::VMOVAPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
- case X86::VMOVAPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
- }
- NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
- .add(Dest)
- .add(MI.getOperand(2))
- .add(Src)
- .add(MI.getOperand(3));
- break;
- }
- }
- if (!NewMI) return nullptr;
- if (LV) { // Update live variables
- if (Src.isKill())
- LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
- if (Dest.isDead())
- LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
- }
- MachineBasicBlock &MBB = *MI.getParent();
- MBB.insert(MI.getIterator(), NewMI); // Insert the new inst
- if (LIS) {
- LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
- if (SrcReg)
- LIS->getInterval(SrcReg);
- if (SrcReg2)
- LIS->getInterval(SrcReg2);
- }
- return NewMI;
- }
- /// This determines which of three possible cases of a three source commute
- /// the source indexes correspond to taking into account any mask operands.
- /// All prevents commuting a passthru operand. Returns -1 if the commute isn't
- /// possible.
- /// Case 0 - Possible to commute the first and second operands.
- /// Case 1 - Possible to commute the first and third operands.
- /// Case 2 - Possible to commute the second and third operands.
- static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
- unsigned SrcOpIdx2) {
- // Put the lowest index to SrcOpIdx1 to simplify the checks below.
- if (SrcOpIdx1 > SrcOpIdx2)
- std::swap(SrcOpIdx1, SrcOpIdx2);
- unsigned Op1 = 1, Op2 = 2, Op3 = 3;
- if (X86II::isKMasked(TSFlags)) {
- Op2++;
- Op3++;
- }
- if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
- return 0;
- if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
- return 1;
- if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
- return 2;
- llvm_unreachable("Unknown three src commute case.");
- }
- unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
- const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
- const X86InstrFMA3Group &FMA3Group) const {
- unsigned Opc = MI.getOpcode();
- // TODO: Commuting the 1st operand of FMA*_Int requires some additional
- // analysis. The commute optimization is legal only if all users of FMA*_Int
- // use only the lowest element of the FMA*_Int instruction. Such analysis are
- // not implemented yet. So, just return 0 in that case.
- // When such analysis are available this place will be the right place for
- // calling it.
- assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
- "Intrinsic instructions can't commute operand 1");
- // Determine which case this commute is or if it can't be done.
- unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
- SrcOpIdx2);
- assert(Case < 3 && "Unexpected case number!");
- // Define the FMA forms mapping array that helps to map input FMA form
- // to output FMA form to preserve the operation semantics after
- // commuting the operands.
- const unsigned Form132Index = 0;
- const unsigned Form213Index = 1;
- const unsigned Form231Index = 2;
- static const unsigned FormMapping[][3] = {
- // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
- // FMA132 A, C, b; ==> FMA231 C, A, b;
- // FMA213 B, A, c; ==> FMA213 A, B, c;
- // FMA231 C, A, b; ==> FMA132 A, C, b;
- { Form231Index, Form213Index, Form132Index },
- // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
- // FMA132 A, c, B; ==> FMA132 B, c, A;
- // FMA213 B, a, C; ==> FMA231 C, a, B;
- // FMA231 C, a, B; ==> FMA213 B, a, C;
- { Form132Index, Form231Index, Form213Index },
- // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
- // FMA132 a, C, B; ==> FMA213 a, B, C;
- // FMA213 b, A, C; ==> FMA132 b, C, A;
- // FMA231 c, A, B; ==> FMA231 c, B, A;
- { Form213Index, Form132Index, Form231Index }
- };
- unsigned FMAForms[3];
- FMAForms[0] = FMA3Group.get132Opcode();
- FMAForms[1] = FMA3Group.get213Opcode();
- FMAForms[2] = FMA3Group.get231Opcode();
- unsigned FormIndex;
- for (FormIndex = 0; FormIndex < 3; FormIndex++)
- if (Opc == FMAForms[FormIndex])
- break;
- // Everything is ready, just adjust the FMA opcode and return it.
- FormIndex = FormMapping[Case][FormIndex];
- return FMAForms[FormIndex];
- }
- static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
- unsigned SrcOpIdx2) {
- // Determine which case this commute is or if it can't be done.
- unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
- SrcOpIdx2);
- assert(Case < 3 && "Unexpected case value!");
- // For each case we need to swap two pairs of bits in the final immediate.
- static const uint8_t SwapMasks[3][4] = {
- { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
- { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
- { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
- };
- uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
- // Clear out the bits we are swapping.
- uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
- SwapMasks[Case][2] | SwapMasks[Case][3]);
- // If the immediate had a bit of the pair set, then set the opposite bit.
- if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
- if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
- if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
- if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
- MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
- }
- // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
- // commuted.
- static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
- #define VPERM_CASES(Suffix) \
- case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \
- case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \
- case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \
- case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \
- case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \
- case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \
- case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \
- case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \
- case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \
- case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \
- case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \
- case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz:
- #define VPERM_CASES_BROADCAST(Suffix) \
- VPERM_CASES(Suffix) \
- case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \
- case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \
- case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \
- case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
- case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
- case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz:
- switch (Opcode) {
- default: return false;
- VPERM_CASES(B)
- VPERM_CASES_BROADCAST(D)
- VPERM_CASES_BROADCAST(PD)
- VPERM_CASES_BROADCAST(PS)
- VPERM_CASES_BROADCAST(Q)
- VPERM_CASES(W)
- return true;
- }
- #undef VPERM_CASES_BROADCAST
- #undef VPERM_CASES
- }
- // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
- // from the I opcode to the T opcode and vice versa.
- static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
- #define VPERM_CASES(Orig, New) \
- case X86::Orig##128rr: return X86::New##128rr; \
- case X86::Orig##128rrkz: return X86::New##128rrkz; \
- case X86::Orig##128rm: return X86::New##128rm; \
- case X86::Orig##128rmkz: return X86::New##128rmkz; \
- case X86::Orig##256rr: return X86::New##256rr; \
- case X86::Orig##256rrkz: return X86::New##256rrkz; \
- case X86::Orig##256rm: return X86::New##256rm; \
- case X86::Orig##256rmkz: return X86::New##256rmkz; \
- case X86::Orig##rr: return X86::New##rr; \
- case X86::Orig##rrkz: return X86::New##rrkz; \
- case X86::Orig##rm: return X86::New##rm; \
- case X86::Orig##rmkz: return X86::New##rmkz;
- #define VPERM_CASES_BROADCAST(Orig, New) \
- VPERM_CASES(Orig, New) \
- case X86::Orig##128rmb: return X86::New##128rmb; \
- case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
- case X86::Orig##256rmb: return X86::New##256rmb; \
- case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
- case X86::Orig##rmb: return X86::New##rmb; \
- case X86::Orig##rmbkz: return X86::New##rmbkz;
- switch (Opcode) {
- VPERM_CASES(VPERMI2B, VPERMT2B)
- VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D)
- VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
- VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
- VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q)
- VPERM_CASES(VPERMI2W, VPERMT2W)
- VPERM_CASES(VPERMT2B, VPERMI2B)
- VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D)
- VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
- VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
- VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q)
- VPERM_CASES(VPERMT2W, VPERMI2W)
- }
- llvm_unreachable("Unreachable!");
- #undef VPERM_CASES_BROADCAST
- #undef VPERM_CASES
- }
- MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
- unsigned OpIdx1,
- unsigned OpIdx2) const {
- auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
- if (NewMI)
- return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
- return MI;
- };
- switch (MI.getOpcode()) {
- case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
- case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
- case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
- case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
- case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
- case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
- unsigned Opc;
- unsigned Size;
- switch (MI.getOpcode()) {
- default: llvm_unreachable("Unreachable!");
- case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
- case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
- case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
- case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
- case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
- case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
- }
- unsigned Amt = MI.getOperand(3).getImm();
- auto &WorkingMI = cloneIfNew(MI);
- WorkingMI.setDesc(get(Opc));
- WorkingMI.getOperand(3).setImm(Size - Amt);
- return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
- OpIdx1, OpIdx2);
- }
- case X86::PFSUBrr:
- case X86::PFSUBRrr: {
- // PFSUB x, y: x = x - y
- // PFSUBR x, y: x = y - x
- unsigned Opc =
- (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
- auto &WorkingMI = cloneIfNew(MI);
- WorkingMI.setDesc(get(Opc));
- return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
- OpIdx1, OpIdx2);
- }
- case X86::BLENDPDrri:
- case X86::BLENDPSrri:
- case X86::VBLENDPDrri:
- case X86::VBLENDPSrri:
- // If we're optimizing for size, try to use MOVSD/MOVSS.
- if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
- unsigned Mask, Opc;
- switch (MI.getOpcode()) {
- default: llvm_unreachable("Unreachable!");
- case X86::BLENDPDrri: Opc = X86::MOVSDrr; Mask = 0x03; break;
- case X86::BLENDPSrri: Opc = X86::MOVSSrr; Mask = 0x0F; break;
- case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
- case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
- }
- if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
- auto &WorkingMI = cloneIfNew(MI);
- WorkingMI.setDesc(get(Opc));
- WorkingMI.RemoveOperand(3);
- return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
- /*NewMI=*/false,
- OpIdx1, OpIdx2);
- }
- }
- LLVM_FALLTHROUGH;
- case X86::PBLENDWrri:
- case X86::VBLENDPDYrri:
- case X86::VBLENDPSYrri:
- case X86::VPBLENDDrri:
- case X86::VPBLENDWrri:
- case X86::VPBLENDDYrri:
- case X86::VPBLENDWYrri:{
- int8_t Mask;
- switch (MI.getOpcode()) {
- default: llvm_unreachable("Unreachable!");
- case X86::BLENDPDrri: Mask = (int8_t)0x03; break;
- case X86::BLENDPSrri: Mask = (int8_t)0x0F; break;
- case X86::PBLENDWrri: Mask = (int8_t)0xFF; break;
- case X86::VBLENDPDrri: Mask = (int8_t)0x03; break;
- case X86::VBLENDPSrri: Mask = (int8_t)0x0F; break;
- case X86::VBLENDPDYrri: Mask = (int8_t)0x0F; break;
- case X86::VBLENDPSYrri: Mask = (int8_t)0xFF; break;
- case X86::VPBLENDDrri: Mask = (int8_t)0x0F; break;
- case X86::VPBLENDWrri: Mask = (int8_t)0xFF; break;
- case X86::VPBLENDDYrri: Mask = (int8_t)0xFF; break;
- case X86::VPBLENDWYrri: Mask = (int8_t)0xFF; break;
- }
- // Only the least significant bits of Imm are used.
- // Using int8_t to ensure it will be sign extended to the int64_t that
- // setImm takes in order to match isel behavior.
- int8_t Imm = MI.getOperand(3).getImm() & Mask;
- auto &WorkingMI = cloneIfNew(MI);
- WorkingMI.getOperand(3).setImm(Mask ^ Imm);
- return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
- OpIdx1, OpIdx2);
- }
- case X86::INSERTPSrr:
- case X86::VINSERTPSrr:
- case X86::VINSERTPSZrr: {
- unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
- unsigned ZMask = Imm & 15;
- unsigned DstIdx = (Imm >> 4) & 3;
- unsigned SrcIdx = (Imm >> 6) & 3;
- // We can commute insertps if we zero 2 of the elements, the insertion is
- // "inline" and we don't override the insertion with a zero.
- if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
- countPopulation(ZMask) == 2) {
- unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15);
- assert(AltIdx < 4 && "Illegal insertion index");
- unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
- auto &WorkingMI = cloneIfNew(MI);
- WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm);
- return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
- OpIdx1, OpIdx2);
- }
- return nullptr;
- }
- case X86::MOVSDrr:
- case X86::MOVSSrr:
- case X86::VMOVSDrr:
- case X86::VMOVSSrr:{
- // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
- if (Subtarget.hasSSE41()) {
- unsigned Mask, Opc;
- switch (MI.getOpcode()) {
- default: llvm_unreachable("Unreachable!");
- case X86::MOVSDrr: Opc = X86::BLENDPDrri; Mask = 0x02; break;
- case X86::MOVSSrr: Opc = X86::BLENDPSrri; Mask = 0x0E; break;
- case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
- case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
- }
- auto &WorkingMI = cloneIfNew(MI);
- WorkingMI.setDesc(get(Opc));
- WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
- return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
- OpIdx1, OpIdx2);
- }
- // Convert to SHUFPD.
- assert(MI.getOpcode() == X86::MOVSDrr &&
- "Can only commute MOVSDrr without SSE4.1");
- auto &WorkingMI = cloneIfNew(MI);
- WorkingMI.setDesc(get(X86::SHUFPDrri));
- WorkingMI.addOperand(MachineOperand::CreateImm(0x02));
- return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
- OpIdx1, OpIdx2);
- }
- case X86::SHUFPDrri: {
- // Commute to MOVSD.
- assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
- auto &WorkingMI = cloneIfNew(MI);
- WorkingMI.setDesc(get(X86::MOVSDrr));
- WorkingMI.RemoveOperand(3);
- return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
- OpIdx1, OpIdx2);
- }
- case X86::PCLMULQDQrr:
- case X86::VPCLMULQDQrr:
- case X86::VPCLMULQDQYrr:
- case X86::VPCLMULQDQZrr:
- case X86::VPCLMULQDQZ128rr:
- case X86::VPCLMULQDQZ256rr: {
- // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
- // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
- unsigned Imm = MI.getOperand(3).getImm();
- unsigned Src1Hi = Imm & 0x01;
- unsigned Src2Hi = Imm & 0x10;
- auto &WorkingMI = cloneIfNew(MI);
- WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
- return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
- OpIdx1, OpIdx2);
- }
- case X86::VPCMPBZ128rri: case X86::VPCMPUBZ128rri:
- case X86::VPCMPBZ256rri: case X86::VPCMPUBZ256rri:
- case X86::VPCMPBZrri: case X86::VPCMPUBZrri:
- case X86::VPCMPDZ128rri: case X86::VPCMPUDZ128rri:
- case X86::VPCMPDZ256rri: case X86::VPCMPUDZ256rri:
- case X86::VPCMPDZrri: case X86::VPCMPUDZrri:
- case X86::VPCMPQZ128rri: case X86::VPCMPUQZ128rri:
- case X86::VPCMPQZ256rri: case X86::VPCMPUQZ256rri:
- case X86::VPCMPQZrri: case X86::VPCMPUQZrri:
- case X86::VPCMPWZ128rri: case X86::VPCMPUWZ128rri:
- case X86::VPCMPWZ256rri: case X86::VPCMPUWZ256rri:
- case X86::VPCMPWZrri: case X86::VPCMPUWZrri:
- case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
- case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
- case X86::VPCMPBZrrik: case X86::VPCMPUBZrrik:
- case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
- case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
- case X86::VPCMPDZrrik: case X86::VPCMPUDZrrik:
- case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
- case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
- case X86::VPCMPQZrrik: case X86::VPCMPUQZrrik:
- case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
- case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
- case X86::VPCMPWZrrik: case X86::VPCMPUWZrrik: {
- // Flip comparison mode immediate (if necessary).
- unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
- Imm = X86::getSwappedVPCMPImm(Imm);
- auto &WorkingMI = cloneIfNew(MI);
- WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
- return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
- OpIdx1, OpIdx2);
- }
- case X86::VPCOMBri: case X86::VPCOMUBri:
- case X86::VPCOMDri: case X86::VPCOMUDri:
- case X86::VPCOMQri: case X86::VPCOMUQri:
- case X86::VPCOMWri: case X86::VPCOMUWri: {
- // Flip comparison mode immediate (if necessary).
- unsigned Imm = MI.getOperand(3).getImm() & 0x7;
- Imm = X86::getSwappedVPCOMImm(Imm);
- auto &WorkingMI = cloneIfNew(MI);
- WorkingMI.getOperand(3).setImm(Imm);
- return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
- OpIdx1, OpIdx2);
- }
- case X86::VCMPSDZrr:
- case X86::VCMPSSZrr:
- case X86::VCMPPDZrri:
- case X86::VCMPPSZrri:
- case X86::VCMPSHZrr:
- case X86::VCMPPHZrri:
- case X86::VCMPPHZ128rri:
- case X86::VCMPPHZ256rri:
- case X86::VCMPPDZ128rri:
- case X86::VCMPPSZ128rri:
- case X86::VCMPPDZ256rri:
- case X86::VCMPPSZ256rri:
- case X86::VCMPPDZrrik:
- case X86::VCMPPSZrrik:
- case X86::VCMPPDZ128rrik:
- case X86::VCMPPSZ128rrik:
- case X86::VCMPPDZ256rrik:
- case X86::VCMPPSZ256rrik: {
- unsigned Imm =
- MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f;
- Imm = X86::getSwappedVCMPImm(Imm);
- auto &WorkingMI = cloneIfNew(MI);
- WorkingMI.getOperand(MI.getNumExplicitOperands() - 1).setImm(Imm);
- return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
- OpIdx1, OpIdx2);
- }
- case X86::VPERM2F128rr:
- case X86::VPERM2I128rr: {
- // Flip permute source immediate.
- // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
- // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
- int8_t Imm = MI.getOperand(3).getImm() & 0xFF;
- auto &WorkingMI = cloneIfNew(MI);
- WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
- return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
- OpIdx1, OpIdx2);
- }
- case X86::MOVHLPSrr:
- case X86::UNPCKHPDrr:
- case X86::VMOVHLPSrr:
- case X86::VUNPCKHPDrr:
- case X86::VMOVHLPSZrr:
- case X86::VUNPCKHPDZ128rr: {
- assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
- unsigned Opc = MI.getOpcode();
- switch (Opc) {
- default: llvm_unreachable("Unreachable!");
- case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break;
- case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break;
- case X86::VMOVHLPSrr: Opc = X86::VUNPCKHPDrr; break;
- case X86::VUNPCKHPDrr: Opc = X86::VMOVHLPSrr; break;
- case X86::VMOVHLPSZrr: Opc = X86::VUNPCKHPDZ128rr; break;
- case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr; break;
- }
- auto &WorkingMI = cloneIfNew(MI);
- WorkingMI.setDesc(get(Opc));
- return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
- OpIdx1, OpIdx2);
- }
- case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr: {
- auto &WorkingMI = cloneIfNew(MI);
- unsigned OpNo = MI.getDesc().getNumOperands() - 1;
- X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
- WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
- return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
- OpIdx1, OpIdx2);
- }
- case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
- case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
- case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
- case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
- case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
- case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
- case X86::VPTERNLOGDZrrik:
- case X86::VPTERNLOGDZ128rrik:
- case X86::VPTERNLOGDZ256rrik:
- case X86::VPTERNLOGQZrrik:
- case X86::VPTERNLOGQZ128rrik:
- case X86::VPTERNLOGQZ256rrik:
- case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
- case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
- case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
- case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
- case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
- case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
- case X86::VPTERNLOGDZ128rmbi:
- case X86::VPTERNLOGDZ256rmbi:
- case X86::VPTERNLOGDZrmbi:
- case X86::VPTERNLOGQZ128rmbi:
- case X86::VPTERNLOGQZ256rmbi:
- case X86::VPTERNLOGQZrmbi:
- case X86::VPTERNLOGDZ128rmbikz:
- case X86::VPTERNLOGDZ256rmbikz:
- case X86::VPTERNLOGDZrmbikz:
- case X86::VPTERNLOGQZ128rmbikz:
- case X86::VPTERNLOGQZ256rmbikz:
- case X86::VPTERNLOGQZrmbikz: {
- auto &WorkingMI = cloneIfNew(MI);
- commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
- return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
- OpIdx1, OpIdx2);
- }
- default: {
- if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
- unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
- auto &WorkingMI = cloneIfNew(MI);
- WorkingMI.setDesc(get(Opc));
- return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
- OpIdx1, OpIdx2);
- }
- const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
- MI.getDesc().TSFlags);
- if (FMA3Group) {
- unsigned Opc =
- getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
- auto &WorkingMI = cloneIfNew(MI);
- WorkingMI.setDesc(get(Opc));
- return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
- OpIdx1, OpIdx2);
- }
- return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
- }
- }
- }
- bool
- X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
- unsigned &SrcOpIdx1,
- unsigned &SrcOpIdx2,
- bool IsIntrinsic) const {
- uint64_t TSFlags = MI.getDesc().TSFlags;
- unsigned FirstCommutableVecOp = 1;
- unsigned LastCommutableVecOp = 3;
- unsigned KMaskOp = -1U;
- if (X86II::isKMasked(TSFlags)) {
- // For k-zero-masked operations it is Ok to commute the first vector
- // operand. Unless this is an intrinsic instruction.
- // For regular k-masked operations a conservative choice is done as the
- // elements of the first vector operand, for which the corresponding bit
- // in the k-mask operand is set to 0, are copied to the result of the
- // instruction.
- // TODO/FIXME: The commute still may be legal if it is known that the
- // k-mask operand is set to either all ones or all zeroes.
- // It is also Ok to commute the 1st operand if all users of MI use only
- // the elements enabled by the k-mask operand. For example,
- // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
- // : v1[i];
- // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
- // // Ok, to commute v1 in FMADD213PSZrk.
- // The k-mask operand has index = 2 for masked and zero-masked operations.
- KMaskOp = 2;
- // The operand with index = 1 is used as a source for those elements for
- // which the corresponding bit in the k-mask is set to 0.
- if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic)
- FirstCommutableVecOp = 3;
- LastCommutableVecOp++;
- } else if (IsIntrinsic) {
- // Commuting the first operand of an intrinsic instruction isn't possible
- // unless we can prove that only the lowest element of the result is used.
- FirstCommutableVecOp = 2;
- }
- if (isMem(MI, LastCommutableVecOp))
- LastCommutableVecOp--;
- // Only the first RegOpsNum operands are commutable.
- // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
- // that the operand is not specified/fixed.
- if (SrcOpIdx1 != CommuteAnyOperandIndex &&
- (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
- SrcOpIdx1 == KMaskOp))
- return false;
- if (SrcOpIdx2 != CommuteAnyOperandIndex &&
- (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
- SrcOpIdx2 == KMaskOp))
- return false;
- // Look for two different register operands assumed to be commutable
- // regardless of the FMA opcode. The FMA opcode is adjusted later.
- if (SrcOpIdx1 == CommuteAnyOperandIndex ||
- SrcOpIdx2 == CommuteAnyOperandIndex) {
- unsigned CommutableOpIdx2 = SrcOpIdx2;
- // At least one of operands to be commuted is not specified and
- // this method is free to choose appropriate commutable operands.
- if (SrcOpIdx1 == SrcOpIdx2)
- // Both of operands are not fixed. By default set one of commutable
- // operands to the last register operand of the instruction.
- CommutableOpIdx2 = LastCommutableVecOp;
- else if (SrcOpIdx2 == CommuteAnyOperandIndex)
- // Only one of operands is not fixed.
- CommutableOpIdx2 = SrcOpIdx1;
- // CommutableOpIdx2 is well defined now. Let's choose another commutable
- // operand and assign its index to CommutableOpIdx1.
- Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
- unsigned CommutableOpIdx1;
- for (CommutableOpIdx1 = LastCommutableVecOp;
- CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
- // Just ignore and skip the k-mask operand.
- if (CommutableOpIdx1 == KMaskOp)
- continue;
- // The commuted operands must have different registers.
- // Otherwise, the commute transformation does not change anything and
- // is useless then.
- if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
- break;
- }
- // No appropriate commutable operands were found.
- if (CommutableOpIdx1 < FirstCommutableVecOp)
- return false;
- // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
- // to return those values.
- if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
- CommutableOpIdx1, CommutableOpIdx2))
- return false;
- }
- return true;
- }
- bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI,
- unsigned &SrcOpIdx1,
- unsigned &SrcOpIdx2) const {
- const MCInstrDesc &Desc = MI.getDesc();
- if (!Desc.isCommutable())
- return false;
- switch (MI.getOpcode()) {
- case X86::CMPSDrr:
- case X86::CMPSSrr:
- case X86::CMPPDrri:
- case X86::CMPPSrri:
- case X86::VCMPSDrr:
- case X86::VCMPSSrr:
- case X86::VCMPPDrri:
- case X86::VCMPPSrri:
- case X86::VCMPPDYrri:
- case X86::VCMPPSYrri:
- case X86::VCMPSDZrr:
- case X86::VCMPSSZrr:
- case X86::VCMPPDZrri:
- case X86::VCMPPSZrri:
- case X86::VCMPSHZrr:
- case X86::VCMPPHZrri:
- case X86::VCMPPHZ128rri:
- case X86::VCMPPHZ256rri:
- case X86::VCMPPDZ128rri:
- case X86::VCMPPSZ128rri:
- case X86::VCMPPDZ256rri:
- case X86::VCMPPSZ256rri:
- case X86::VCMPPDZrrik:
- case X86::VCMPPSZrrik:
- case X86::VCMPPDZ128rrik:
- case X86::VCMPPSZ128rrik:
- case X86::VCMPPDZ256rrik:
- case X86::VCMPPSZ256rrik: {
- unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
- // Float comparison can be safely commuted for
- // Ordered/Unordered/Equal/NotEqual tests
- unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
- switch (Imm) {
- default:
- // EVEX versions can be commuted.
- if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
- break;
- return false;
- case 0x00: // EQUAL
- case 0x03: // UNORDERED
- case 0x04: // NOT EQUAL
- case 0x07: // ORDERED
- break;
- }
- // The indices of the commutable operands are 1 and 2 (or 2 and 3
- // when masked).
- // Assign them to the returned operand indices here.
- return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
- 2 + OpOffset);
- }
- case X86::MOVSSrr:
- // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
- // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
- // AVX implies sse4.1.
- if (Subtarget.hasSSE41())
- return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
- return false;
- case X86::SHUFPDrri:
- // We can commute this to MOVSD.
- if (MI.getOperand(3).getImm() == 0x02)
- return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
- return false;
- case X86::MOVHLPSrr:
- case X86::UNPCKHPDrr:
- case X86::VMOVHLPSrr:
- case X86::VUNPCKHPDrr:
- case X86::VMOVHLPSZrr:
- case X86::VUNPCKHPDZ128rr:
- if (Subtarget.hasSSE2())
- return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
- return false;
- case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
- case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
- case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
- case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
- case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
- case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
- case X86::VPTERNLOGDZrrik:
- case X86::VPTERNLOGDZ128rrik:
- case X86::VPTERNLOGDZ256rrik:
- case X86::VPTERNLOGQZrrik:
- case X86::VPTERNLOGQZ128rrik:
- case X86::VPTERNLOGQZ256rrik:
- case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
- case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
- case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
- case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
- case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
- case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
- case X86::VPTERNLOGDZ128rmbi:
- case X86::VPTERNLOGDZ256rmbi:
- case X86::VPTERNLOGDZrmbi:
- case X86::VPTERNLOGQZ128rmbi:
- case X86::VPTERNLOGQZ256rmbi:
- case X86::VPTERNLOGQZrmbi:
- case X86::VPTERNLOGDZ128rmbikz:
- case X86::VPTERNLOGDZ256rmbikz:
- case X86::VPTERNLOGDZrmbikz:
- case X86::VPTERNLOGQZ128rmbikz:
- case X86::VPTERNLOGQZ256rmbikz:
- case X86::VPTERNLOGQZrmbikz:
- return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
- case X86::VPDPWSSDYrr:
- case X86::VPDPWSSDrr:
- case X86::VPDPWSSDSYrr:
- case X86::VPDPWSSDSrr:
- case X86::VPDPWSSDZ128r:
- case X86::VPDPWSSDZ128rk:
- case X86::VPDPWSSDZ128rkz:
- case X86::VPDPWSSDZ256r:
- case X86::VPDPWSSDZ256rk:
- case X86::VPDPWSSDZ256rkz:
- case X86::VPDPWSSDZr:
- case X86::VPDPWSSDZrk:
- case X86::VPDPWSSDZrkz:
- case X86::VPDPWSSDSZ128r:
- case X86::VPDPWSSDSZ128rk:
- case X86::VPDPWSSDSZ128rkz:
- case X86::VPDPWSSDSZ256r:
- case X86::VPDPWSSDSZ256rk:
- case X86::VPDPWSSDSZ256rkz:
- case X86::VPDPWSSDSZr:
- case X86::VPDPWSSDSZrk:
- case X86::VPDPWSSDSZrkz:
- case X86::VPMADD52HUQZ128r:
- case X86::VPMADD52HUQZ128rk:
- case X86::VPMADD52HUQZ128rkz:
- case X86::VPMADD52HUQZ256r:
- case X86::VPMADD52HUQZ256rk:
- case X86::VPMADD52HUQZ256rkz:
- case X86::VPMADD52HUQZr:
- case X86::VPMADD52HUQZrk:
- case X86::VPMADD52HUQZrkz:
- case X86::VPMADD52LUQZ128r:
- case X86::VPMADD52LUQZ128rk:
- case X86::VPMADD52LUQZ128rkz:
- case X86::VPMADD52LUQZ256r:
- case X86::VPMADD52LUQZ256rk:
- case X86::VPMADD52LUQZ256rkz:
- case X86::VPMADD52LUQZr:
- case X86::VPMADD52LUQZrk:
- case X86::VPMADD52LUQZrkz:
- case X86::VFMADDCPHZr:
- case X86::VFMADDCPHZrk:
- case X86::VFMADDCPHZrkz:
- case X86::VFMADDCPHZ128r:
- case X86::VFMADDCPHZ128rk:
- case X86::VFMADDCPHZ128rkz:
- case X86::VFMADDCPHZ256r:
- case X86::VFMADDCPHZ256rk:
- case X86::VFMADDCPHZ256rkz:
- case X86::VFMADDCSHZr:
- case X86::VFMADDCSHZrk:
- case X86::VFMADDCSHZrkz: {
- unsigned CommutableOpIdx1 = 2;
- unsigned CommutableOpIdx2 = 3;
- if (X86II::isKMasked(Desc.TSFlags)) {
- // Skip the mask register.
- ++CommutableOpIdx1;
- ++CommutableOpIdx2;
- }
- if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
- CommutableOpIdx1, CommutableOpIdx2))
- return false;
- if (!MI.getOperand(SrcOpIdx1).isReg() ||
- !MI.getOperand(SrcOpIdx2).isReg())
- // No idea.
- return false;
- return true;
- }
- default:
- const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
- MI.getDesc().TSFlags);
- if (FMA3Group)
- return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
- FMA3Group->isIntrinsic());
- // Handled masked instructions since we need to skip over the mask input
- // and the preserved input.
- if (X86II::isKMasked(Desc.TSFlags)) {
- // First assume that the first input is the mask operand and skip past it.
- unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
- unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
- // Check if the first input is tied. If there isn't one then we only
- // need to skip the mask operand which we did above.
- if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
- MCOI::TIED_TO) != -1)) {
- // If this is zero masking instruction with a tied operand, we need to
- // move the first index back to the first input since this must
- // be a 3 input instruction and we want the first two non-mask inputs.
- // Otherwise this is a 2 input instruction with a preserved input and
- // mask, so we need to move the indices to skip one more input.
- if (X86II::isKMergeMasked(Desc.TSFlags)) {
- ++CommutableOpIdx1;
- ++CommutableOpIdx2;
- } else {
- --CommutableOpIdx1;
- }
- }
- if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
- CommutableOpIdx1, CommutableOpIdx2))
- return false;
- if (!MI.getOperand(SrcOpIdx1).isReg() ||
- !MI.getOperand(SrcOpIdx2).isReg())
- // No idea.
- return false;
- return true;
- }
- return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
- }
- return false;
- }
- static bool isConvertibleLEA(MachineInstr *MI) {
- unsigned Opcode = MI->getOpcode();
- if (Opcode != X86::LEA32r && Opcode != X86::LEA64r &&
- Opcode != X86::LEA64_32r)
- return false;
- const MachineOperand &Scale = MI->getOperand(1 + X86::AddrScaleAmt);
- const MachineOperand &Disp = MI->getOperand(1 + X86::AddrDisp);
- const MachineOperand &Segment = MI->getOperand(1 + X86::AddrSegmentReg);
- if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 ||
- Scale.getImm() > 1)
- return false;
- return true;
- }
- bool X86InstrInfo::hasCommutePreference(MachineInstr &MI, bool &Commute) const {
- // Currently we're interested in following sequence only.
- // r3 = lea r1, r2
- // r5 = add r3, r4
- // Both r3 and r4 are killed in add, we hope the add instruction has the
- // operand order
- // r5 = add r4, r3
- // So later in X86FixupLEAs the lea instruction can be rewritten as add.
- unsigned Opcode = MI.getOpcode();
- if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr)
- return false;
- const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
- Register Reg1 = MI.getOperand(1).getReg();
- Register Reg2 = MI.getOperand(2).getReg();
- // Check if Reg1 comes from LEA in the same MBB.
- if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg1)) {
- if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
- Commute = true;
- return true;
- }
- }
- // Check if Reg2 comes from LEA in the same MBB.
- if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg2)) {
- if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
- Commute = false;
- return true;
- }
- }
- return false;
- }
- X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
- switch (MI.getOpcode()) {
- default: return X86::COND_INVALID;
- case X86::JCC_1:
- return static_cast<X86::CondCode>(
- MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
- }
- }
- /// Return condition code of a SETCC opcode.
- X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
- switch (MI.getOpcode()) {
- default: return X86::COND_INVALID;
- case X86::SETCCr: case X86::SETCCm:
- return static_cast<X86::CondCode>(
- MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
- }
- }
- /// Return condition code of a CMov opcode.
- X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
- switch (MI.getOpcode()) {
- default: return X86::COND_INVALID;
- case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr:
- case X86::CMOV16rm: case X86::CMOV32rm: case X86::CMOV64rm:
- return static_cast<X86::CondCode>(
- MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
- }
- }
- /// Return the inverse of the specified condition,
- /// e.g. turning COND_E to COND_NE.
- X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
- switch (CC) {
- default: llvm_unreachable("Illegal condition code!");
- case X86::COND_E: return X86::COND_NE;
- case X86::COND_NE: return X86::COND_E;
- case X86::COND_L: return X86::COND_GE;
- case X86::COND_LE: return X86::COND_G;
- case X86::COND_G: return X86::COND_LE;
- case X86::COND_GE: return X86::COND_L;
- case X86::COND_B: return X86::COND_AE;
- case X86::COND_BE: return X86::COND_A;
- case X86::COND_A: return X86::COND_BE;
- case X86::COND_AE: return X86::COND_B;
- case X86::COND_S: return X86::COND_NS;
- case X86::COND_NS: return X86::COND_S;
- case X86::COND_P: return X86::COND_NP;
- case X86::COND_NP: return X86::COND_P;
- case X86::COND_O: return X86::COND_NO;
- case X86::COND_NO: return X86::COND_O;
- case X86::COND_NE_OR_P: return X86::COND_E_AND_NP;
- case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
- }
- }
- /// Assuming the flags are set by MI(a,b), return the condition code if we
- /// modify the instructions such that flags are set by MI(b,a).
- static X86::CondCode getSwappedCondition(X86::CondCode CC) {
- switch (CC) {
- default: return X86::COND_INVALID;
- case X86::COND_E: return X86::COND_E;
- case X86::COND_NE: return X86::COND_NE;
- case X86::COND_L: return X86::COND_G;
- case X86::COND_LE: return X86::COND_GE;
- case X86::COND_G: return X86::COND_L;
- case X86::COND_GE: return X86::COND_LE;
- case X86::COND_B: return X86::COND_A;
- case X86::COND_BE: return X86::COND_AE;
- case X86::COND_A: return X86::COND_B;
- case X86::COND_AE: return X86::COND_BE;
- }
- }
- std::pair<X86::CondCode, bool>
- X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
- X86::CondCode CC = X86::COND_INVALID;
- bool NeedSwap = false;
- switch (Predicate) {
- default: break;
- // Floating-point Predicates
- case CmpInst::FCMP_UEQ: CC = X86::COND_E; break;
- case CmpInst::FCMP_OLT: NeedSwap = true; LLVM_FALLTHROUGH;
- case CmpInst::FCMP_OGT: CC = X86::COND_A; break;
- case CmpInst::FCMP_OLE: NeedSwap = true; LLVM_FALLTHROUGH;
- case CmpInst::FCMP_OGE: CC = X86::COND_AE; break;
- case CmpInst::FCMP_UGT: NeedSwap = true; LLVM_FALLTHROUGH;
- case CmpInst::FCMP_ULT: CC = X86::COND_B; break;
- case CmpInst::FCMP_UGE: NeedSwap = true; LLVM_FALLTHROUGH;
- case CmpInst::FCMP_ULE: CC = X86::COND_BE; break;
- case CmpInst::FCMP_ONE: CC = X86::COND_NE; break;
- case CmpInst::FCMP_UNO: CC = X86::COND_P; break;
- case CmpInst::FCMP_ORD: CC = X86::COND_NP; break;
- case CmpInst::FCMP_OEQ: LLVM_FALLTHROUGH;
- case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
- // Integer Predicates
- case CmpInst::ICMP_EQ: CC = X86::COND_E; break;
- case CmpInst::ICMP_NE: CC = X86::COND_NE; break;
- case CmpInst::ICMP_UGT: CC = X86::COND_A; break;
- case CmpInst::ICMP_UGE: CC = X86::COND_AE; break;
- case CmpInst::ICMP_ULT: CC = X86::COND_B; break;
- case CmpInst::ICMP_ULE: CC = X86::COND_BE; break;
- case CmpInst::ICMP_SGT: CC = X86::COND_G; break;
- case CmpInst::ICMP_SGE: CC = X86::COND_GE; break;
- case CmpInst::ICMP_SLT: CC = X86::COND_L; break;
- case CmpInst::ICMP_SLE: CC = X86::COND_LE; break;
- }
- return std::make_pair(CC, NeedSwap);
- }
- /// Return a cmov opcode for the given register size in bytes, and operand type.
- unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
- switch(RegBytes) {
- default: llvm_unreachable("Illegal register size!");
- case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
- case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
- case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr;
- }
- }
- /// Get the VPCMP immediate for the given condition.
- unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
- switch (CC) {
- default: llvm_unreachable("Unexpected SETCC condition");
- case ISD::SETNE: return 4;
- case ISD::SETEQ: return 0;
- case ISD::SETULT:
- case ISD::SETLT: return 1;
- case ISD::SETUGT:
- case ISD::SETGT: return 6;
- case ISD::SETUGE:
- case ISD::SETGE: return 5;
- case ISD::SETULE:
- case ISD::SETLE: return 2;
- }
- }
- /// Get the VPCMP immediate if the operands are swapped.
- unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
- switch (Imm) {
- default: llvm_unreachable("Unreachable!");
- case 0x01: Imm = 0x06; break; // LT -> NLE
- case 0x02: Imm = 0x05; break; // LE -> NLT
- case 0x05: Imm = 0x02; break; // NLT -> LE
- case 0x06: Imm = 0x01; break; // NLE -> LT
- case 0x00: // EQ
- case 0x03: // FALSE
- case 0x04: // NE
- case 0x07: // TRUE
- break;
- }
- return Imm;
- }
- /// Get the VPCOM immediate if the operands are swapped.
- unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
- switch (Imm) {
- default: llvm_unreachable("Unreachable!");
- case 0x00: Imm = 0x02; break; // LT -> GT
- case 0x01: Imm = 0x03; break; // LE -> GE
- case 0x02: Imm = 0x00; break; // GT -> LT
- case 0x03: Imm = 0x01; break; // GE -> LE
- case 0x04: // EQ
- case 0x05: // NE
- case 0x06: // FALSE
- case 0x07: // TRUE
- break;
- }
- return Imm;
- }
- /// Get the VCMP immediate if the operands are swapped.
- unsigned X86::getSwappedVCMPImm(unsigned Imm) {
- // Only need the lower 2 bits to distinquish.
- switch (Imm & 0x3) {
- default: llvm_unreachable("Unreachable!");
- case 0x00: case 0x03:
- // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
- break;
- case 0x01: case 0x02:
- // Need to toggle bits 3:0. Bit 4 stays the same.
- Imm ^= 0xf;
- break;
- }
- return Imm;
- }
- /// Return true if the Reg is X87 register.
- static bool isX87Reg(unsigned Reg) {
- return (Reg == X86::FPCW || Reg == X86::FPSW ||
- (Reg >= X86::ST0 && Reg <= X86::ST7));
- }
- /// check if the instruction is X87 instruction
- bool X86::isX87Instruction(MachineInstr &MI) {
- for (const MachineOperand &MO : MI.operands()) {
- if (!MO.isReg())
- continue;
- if (isX87Reg(MO.getReg()))
- return true;
- }
- return false;
- }
- bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
- switch (MI.getOpcode()) {
- case X86::TCRETURNdi:
- case X86::TCRETURNri:
- case X86::TCRETURNmi:
- case X86::TCRETURNdi64:
- case X86::TCRETURNri64:
- case X86::TCRETURNmi64:
- return true;
- default:
- return false;
- }
- }
- bool X86InstrInfo::canMakeTailCallConditional(
- SmallVectorImpl<MachineOperand> &BranchCond,
- const MachineInstr &TailCall) const {
- if (TailCall.getOpcode() != X86::TCRETURNdi &&
- TailCall.getOpcode() != X86::TCRETURNdi64) {
- // Only direct calls can be done with a conditional branch.
- return false;
- }
- const MachineFunction *MF = TailCall.getParent()->getParent();
- if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
- // Conditional tail calls confuse the Win64 unwinder.
- return false;
- }
- assert(BranchCond.size() == 1);
- if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
- // Can't make a conditional tail call with this condition.
- return false;
- }
- const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
- if (X86FI->getTCReturnAddrDelta() != 0 ||
- TailCall.getOperand(1).getImm() != 0) {
- // A conditional tail call cannot do any stack adjustment.
- return false;
- }
- return true;
- }
- void X86InstrInfo::replaceBranchWithTailCall(
- MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
- const MachineInstr &TailCall) const {
- assert(canMakeTailCallConditional(BranchCond, TailCall));
- MachineBasicBlock::iterator I = MBB.end();
- while (I != MBB.begin()) {
- --I;
- if (I->isDebugInstr())
- continue;
- if (!I->isBranch())
- assert(0 && "Can't find the branch to replace!");
- X86::CondCode CC = X86::getCondFromBranch(*I);
- assert(BranchCond.size() == 1);
- if (CC != BranchCond[0].getImm())
- continue;
- break;
- }
- unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
- : X86::TCRETURNdi64cc;
- auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
- MIB->addOperand(TailCall.getOperand(0)); // Destination.
- MIB.addImm(0); // Stack offset (not used).
- MIB->addOperand(BranchCond[0]); // Condition.
- MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
- // Add implicit uses and defs of all live regs potentially clobbered by the
- // call. This way they still appear live across the call.
- LivePhysRegs LiveRegs(getRegisterInfo());
- LiveRegs.addLiveOuts(MBB);
- SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
- LiveRegs.stepForward(*MIB, Clobbers);
- for (const auto &C : Clobbers) {
- MIB.addReg(C.first, RegState::Implicit);
- MIB.addReg(C.first, RegState::Implicit | RegState::Define);
- }
- I->eraseFromParent();
- }
- // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
- // not be a fallthrough MBB now due to layout changes). Return nullptr if the
- // fallthrough MBB cannot be identified.
- static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
- MachineBasicBlock *TBB) {
- // Look for non-EHPad successors other than TBB. If we find exactly one, it
- // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
- // and fallthrough MBB. If we find more than one, we cannot identify the
- // fallthrough MBB and should return nullptr.
- MachineBasicBlock *FallthroughBB = nullptr;
- for (MachineBasicBlock *Succ : MBB->successors()) {
- if (Succ->isEHPad() || (Succ == TBB && FallthroughBB))
- continue;
- // Return a nullptr if we found more than one fallthrough successor.
- if (FallthroughBB && FallthroughBB != TBB)
- return nullptr;
- FallthroughBB = Succ;
- }
- return FallthroughBB;
- }
- bool X86InstrInfo::AnalyzeBranchImpl(
- MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
- SmallVectorImpl<MachineOperand> &Cond,
- SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
- // Start from the bottom of the block and work up, examining the
- // terminator instructions.
- MachineBasicBlock::iterator I = MBB.end();
- MachineBasicBlock::iterator UnCondBrIter = MBB.end();
- while (I != MBB.begin()) {
- --I;
- if (I->isDebugInstr())
- continue;
- // Working from the bottom, when we see a non-terminator instruction, we're
- // done.
- if (!isUnpredicatedTerminator(*I))
- break;
- // A terminator that isn't a branch can't easily be handled by this
- // analysis.
- if (!I->isBranch())
- return true;
- // Handle unconditional branches.
- if (I->getOpcode() == X86::JMP_1) {
- UnCondBrIter = I;
- if (!AllowModify) {
- TBB = I->getOperand(0).getMBB();
- continue;
- }
- // If the block has any instructions after a JMP, delete them.
- while (std::next(I) != MBB.end())
- std::next(I)->eraseFromParent();
- Cond.clear();
- FBB = nullptr;
- // Delete the JMP if it's equivalent to a fall-through.
- if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
- TBB = nullptr;
- I->eraseFromParent();
- I = MBB.end();
- UnCondBrIter = MBB.end();
- continue;
- }
- // TBB is used to indicate the unconditional destination.
- TBB = I->getOperand(0).getMBB();
- continue;
- }
- // Handle conditional branches.
- X86::CondCode BranchCode = X86::getCondFromBranch(*I);
- if (BranchCode == X86::COND_INVALID)
- return true; // Can't handle indirect branch.
- // In practice we should never have an undef eflags operand, if we do
- // abort here as we are not prepared to preserve the flag.
- if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
- return true;
- // Working from the bottom, handle the first conditional branch.
- if (Cond.empty()) {
- MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
- if (AllowModify && UnCondBrIter != MBB.end() &&
- MBB.isLayoutSuccessor(TargetBB)) {
- // If we can modify the code and it ends in something like:
- //
- // jCC L1
- // jmp L2
- // L1:
- // ...
- // L2:
- //
- // Then we can change this to:
- //
- // jnCC L2
- // L1:
- // ...
- // L2:
- //
- // Which is a bit more efficient.
- // We conditionally jump to the fall-through block.
- BranchCode = GetOppositeBranchCondition(BranchCode);
- MachineBasicBlock::iterator OldInst = I;
- BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JCC_1))
- .addMBB(UnCondBrIter->getOperand(0).getMBB())
- .addImm(BranchCode);
- BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
- .addMBB(TargetBB);
- OldInst->eraseFromParent();
- UnCondBrIter->eraseFromParent();
- // Restart the analysis.
- UnCondBrIter = MBB.end();
- I = MBB.end();
- continue;
- }
- FBB = TBB;
- TBB = I->getOperand(0).getMBB();
- Cond.push_back(MachineOperand::CreateImm(BranchCode));
- CondBranches.push_back(&*I);
- continue;
- }
- // Handle subsequent conditional branches. Only handle the case where all
- // conditional branches branch to the same destination and their condition
- // opcodes fit one of the special multi-branch idioms.
- assert(Cond.size() == 1);
- assert(TBB);
- // If the conditions are the same, we can leave them alone.
- X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
- auto NewTBB = I->getOperand(0).getMBB();
- if (OldBranchCode == BranchCode && TBB == NewTBB)
- continue;
- // If they differ, see if they fit one of the known patterns. Theoretically,
- // we could handle more patterns here, but we shouldn't expect to see them
- // if instruction selection has done a reasonable job.
- if (TBB == NewTBB &&
- ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
- (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
- BranchCode = X86::COND_NE_OR_P;
- } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
- (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
- if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
- return true;
- // X86::COND_E_AND_NP usually has two different branch destinations.
- //
- // JP B1
- // JE B2
- // JMP B1
- // B1:
- // B2:
- //
- // Here this condition branches to B2 only if NP && E. It has another
- // equivalent form:
- //
- // JNE B1
- // JNP B2
- // JMP B1
- // B1:
- // B2:
- //
- // Similarly it branches to B2 only if E && NP. That is why this condition
- // is named with COND_E_AND_NP.
- BranchCode = X86::COND_E_AND_NP;
- } else
- return true;
- // Update the MachineOperand.
- Cond[0].setImm(BranchCode);
- CondBranches.push_back(&*I);
- }
- return false;
- }
- bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
- MachineBasicBlock *&TBB,
- MachineBasicBlock *&FBB,
- SmallVectorImpl<MachineOperand> &Cond,
- bool AllowModify) const {
- SmallVector<MachineInstr *, 4> CondBranches;
- return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
- }
- bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
- MachineBranchPredicate &MBP,
- bool AllowModify) const {
- using namespace std::placeholders;
- SmallVector<MachineOperand, 4> Cond;
- SmallVector<MachineInstr *, 4> CondBranches;
- if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
- AllowModify))
- return true;
- if (Cond.size() != 1)
- return true;
- assert(MBP.TrueDest && "expected!");
- if (!MBP.FalseDest)
- MBP.FalseDest = MBB.getNextNode();
- const TargetRegisterInfo *TRI = &getRegisterInfo();
- MachineInstr *ConditionDef = nullptr;
- bool SingleUseCondition = true;
- for (MachineInstr &MI : llvm::drop_begin(llvm::reverse(MBB))) {
- if (MI.modifiesRegister(X86::EFLAGS, TRI)) {
- ConditionDef = &MI;
- break;
- }
- if (MI.readsRegister(X86::EFLAGS, TRI))
- SingleUseCondition = false;
- }
- if (!ConditionDef)
- return true;
- if (SingleUseCondition) {
- for (auto *Succ : MBB.successors())
- if (Succ->isLiveIn(X86::EFLAGS))
- SingleUseCondition = false;
- }
- MBP.ConditionDef = ConditionDef;
- MBP.SingleUseCondition = SingleUseCondition;
- // Currently we only recognize the simple pattern:
- //
- // test %reg, %reg
- // je %label
- //
- const unsigned TestOpcode =
- Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
- if (ConditionDef->getOpcode() == TestOpcode &&
- ConditionDef->getNumOperands() == 3 &&
- ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
- (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
- MBP.LHS = ConditionDef->getOperand(0);
- MBP.RHS = MachineOperand::CreateImm(0);
- MBP.Predicate = Cond[0].getImm() == X86::COND_NE
- ? MachineBranchPredicate::PRED_NE
- : MachineBranchPredicate::PRED_EQ;
- return false;
- }
- return true;
- }
- unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
- int *BytesRemoved) const {
- assert(!BytesRemoved && "code size not handled");
- MachineBasicBlock::iterator I = MBB.end();
- unsigned Count = 0;
- while (I != MBB.begin()) {
- --I;
- if (I->isDebugInstr())
- continue;
- if (I->getOpcode() != X86::JMP_1 &&
- X86::getCondFromBranch(*I) == X86::COND_INVALID)
- break;
- // Remove the branch.
- I->eraseFromParent();
- I = MBB.end();
- ++Count;
- }
- return Count;
- }
- unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
- MachineBasicBlock *TBB,
- MachineBasicBlock *FBB,
- ArrayRef<MachineOperand> Cond,
- const DebugLoc &DL,
- int *BytesAdded) const {
- // Shouldn't be a fall through.
- assert(TBB && "insertBranch must not be told to insert a fallthrough");
- assert((Cond.size() == 1 || Cond.size() == 0) &&
- "X86 branch conditions have one component!");
- assert(!BytesAdded && "code size not handled");
- if (Cond.empty()) {
- // Unconditional branch?
- assert(!FBB && "Unconditional branch with multiple successors!");
- BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
- return 1;
- }
- // If FBB is null, it is implied to be a fall-through block.
- bool FallThru = FBB == nullptr;
- // Conditional branch.
- unsigned Count = 0;
- X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
- switch (CC) {
- case X86::COND_NE_OR_P:
- // Synthesize NE_OR_P with two branches.
- BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
- ++Count;
- BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
- ++Count;
- break;
- case X86::COND_E_AND_NP:
- // Use the next block of MBB as FBB if it is null.
- if (FBB == nullptr) {
- FBB = getFallThroughMBB(&MBB, TBB);
- assert(FBB && "MBB cannot be the last block in function when the false "
- "body is a fall-through.");
- }
- // Synthesize COND_E_AND_NP with two branches.
- BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
- ++Count;
- BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
- ++Count;
- break;
- default: {
- BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
- ++Count;
- }
- }
- if (!FallThru) {
- // Two-way Conditional branch. Insert the second branch.
- BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
- ++Count;
- }
- return Count;
- }
- bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
- ArrayRef<MachineOperand> Cond,
- Register DstReg, Register TrueReg,
- Register FalseReg, int &CondCycles,
- int &TrueCycles, int &FalseCycles) const {
- // Not all subtargets have cmov instructions.
- if (!Subtarget.hasCMov())
- return false;
- if (Cond.size() != 1)
- return false;
- // We cannot do the composite conditions, at least not in SSA form.
- if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
- return false;
- // Check register classes.
- const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
- const TargetRegisterClass *RC =
- RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
- if (!RC)
- return false;
- // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
- if (X86::GR16RegClass.hasSubClassEq(RC) ||
- X86::GR32RegClass.hasSubClassEq(RC) ||
- X86::GR64RegClass.hasSubClassEq(RC)) {
- // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
- // Bridge. Probably Ivy Bridge as well.
- CondCycles = 2;
- TrueCycles = 2;
- FalseCycles = 2;
- return true;
- }
- // Can't do vectors.
- return false;
- }
- void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I,
- const DebugLoc &DL, Register DstReg,
- ArrayRef<MachineOperand> Cond, Register TrueReg,
- Register FalseReg) const {
- MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
- const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
- const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
- assert(Cond.size() == 1 && "Invalid Cond array");
- unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
- false /*HasMemoryOperand*/);
- BuildMI(MBB, I, DL, get(Opc), DstReg)
- .addReg(FalseReg)
- .addReg(TrueReg)
- .addImm(Cond[0].getImm());
- }
- /// Test if the given register is a physical h register.
- static bool isHReg(unsigned Reg) {
- return X86::GR8_ABCD_HRegClass.contains(Reg);
- }
- // Try and copy between VR128/VR64 and GR64 registers.
- static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
- const X86Subtarget &Subtarget) {
- bool HasAVX = Subtarget.hasAVX();
- bool HasAVX512 = Subtarget.hasAVX512();
- // SrcReg(MaskReg) -> DestReg(GR64)
- // SrcReg(MaskReg) -> DestReg(GR32)
- // All KMASK RegClasses hold the same k registers, can be tested against anyone.
- if (X86::VK16RegClass.contains(SrcReg)) {
- if (X86::GR64RegClass.contains(DestReg)) {
- assert(Subtarget.hasBWI());
- return X86::KMOVQrk;
- }
- if (X86::GR32RegClass.contains(DestReg))
- return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
- }
- // SrcReg(GR64) -> DestReg(MaskReg)
- // SrcReg(GR32) -> DestReg(MaskReg)
- // All KMASK RegClasses hold the same k registers, can be tested against anyone.
- if (X86::VK16RegClass.contains(DestReg)) {
- if (X86::GR64RegClass.contains(SrcReg)) {
- assert(Subtarget.hasBWI());
- return X86::KMOVQkr;
- }
- if (X86::GR32RegClass.contains(SrcReg))
- return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
- }
- // SrcReg(VR128) -> DestReg(GR64)
- // SrcReg(VR64) -> DestReg(GR64)
- // SrcReg(GR64) -> DestReg(VR128)
- // SrcReg(GR64) -> DestReg(VR64)
- if (X86::GR64RegClass.contains(DestReg)) {
- if (X86::VR128XRegClass.contains(SrcReg))
- // Copy from a VR128 register to a GR64 register.
- return HasAVX512 ? X86::VMOVPQIto64Zrr :
- HasAVX ? X86::VMOVPQIto64rr :
- X86::MOVPQIto64rr;
- if (X86::VR64RegClass.contains(SrcReg))
- // Copy from a VR64 register to a GR64 register.
- return X86::MMX_MOVD64from64rr;
- } else if (X86::GR64RegClass.contains(SrcReg)) {
- // Copy from a GR64 register to a VR128 register.
- if (X86::VR128XRegClass.contains(DestReg))
- return HasAVX512 ? X86::VMOV64toPQIZrr :
- HasAVX ? X86::VMOV64toPQIrr :
- X86::MOV64toPQIrr;
- // Copy from a GR64 register to a VR64 register.
- if (X86::VR64RegClass.contains(DestReg))
- return X86::MMX_MOVD64to64rr;
- }
- // SrcReg(VR128) -> DestReg(GR32)
- // SrcReg(GR32) -> DestReg(VR128)
- if (X86::GR32RegClass.contains(DestReg) &&
- X86::VR128XRegClass.contains(SrcReg))
- // Copy from a VR128 register to a GR32 register.
- return HasAVX512 ? X86::VMOVPDI2DIZrr :
- HasAVX ? X86::VMOVPDI2DIrr :
- X86::MOVPDI2DIrr;
- if (X86::VR128XRegClass.contains(DestReg) &&
- X86::GR32RegClass.contains(SrcReg))
- // Copy from a VR128 register to a VR128 register.
- return HasAVX512 ? X86::VMOVDI2PDIZrr :
- HasAVX ? X86::VMOVDI2PDIrr :
- X86::MOVDI2PDIrr;
- return 0;
- }
- void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI,
- const DebugLoc &DL, MCRegister DestReg,
- MCRegister SrcReg, bool KillSrc) const {
- // First deal with the normal symmetric copies.
- bool HasAVX = Subtarget.hasAVX();
- bool HasVLX = Subtarget.hasVLX();
- unsigned Opc = 0;
- if (X86::GR64RegClass.contains(DestReg, SrcReg))
- Opc = X86::MOV64rr;
- else if (X86::GR32RegClass.contains(DestReg, SrcReg))
- Opc = X86::MOV32rr;
- else if (X86::GR16RegClass.contains(DestReg, SrcReg))
- Opc = X86::MOV16rr;
- else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
- // Copying to or from a physical H register on x86-64 requires a NOREX
- // move. Otherwise use a normal move.
- if ((isHReg(DestReg) || isHReg(SrcReg)) &&
- Subtarget.is64Bit()) {
- Opc = X86::MOV8rr_NOREX;
- // Both operands must be encodable without an REX prefix.
- assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
- "8-bit H register can not be copied outside GR8_NOREX");
- } else
- Opc = X86::MOV8rr;
- }
- else if (X86::VR64RegClass.contains(DestReg, SrcReg))
- Opc = X86::MMX_MOVQ64rr;
- else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
- if (HasVLX)
- Opc = X86::VMOVAPSZ128rr;
- else if (X86::VR128RegClass.contains(DestReg, SrcReg))
- Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
- else {
- // If this an extended register and we don't have VLX we need to use a
- // 512-bit move.
- Opc = X86::VMOVAPSZrr;
- const TargetRegisterInfo *TRI = &getRegisterInfo();
- DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
- &X86::VR512RegClass);
- SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
- &X86::VR512RegClass);
- }
- } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
- if (HasVLX)
- Opc = X86::VMOVAPSZ256rr;
- else if (X86::VR256RegClass.contains(DestReg, SrcReg))
- Opc = X86::VMOVAPSYrr;
- else {
- // If this an extended register and we don't have VLX we need to use a
- // 512-bit move.
- Opc = X86::VMOVAPSZrr;
- const TargetRegisterInfo *TRI = &getRegisterInfo();
- DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
- &X86::VR512RegClass);
- SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
- &X86::VR512RegClass);
- }
- } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
- Opc = X86::VMOVAPSZrr;
- // All KMASK RegClasses hold the same k registers, can be tested against anyone.
- else if (X86::VK16RegClass.contains(DestReg, SrcReg))
- Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
- if (!Opc)
- Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
- if (Opc) {
- BuildMI(MBB, MI, DL, get(Opc), DestReg)
- .addReg(SrcReg, getKillRegState(KillSrc));
- return;
- }
- if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
- // FIXME: We use a fatal error here because historically LLVM has tried
- // lower some of these physreg copies and we want to ensure we get
- // reasonable bug reports if someone encounters a case no other testing
- // found. This path should be removed after the LLVM 7 release.
- report_fatal_error("Unable to copy EFLAGS physical register!");
- }
- LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
- << RI.getName(DestReg) << '\n');
- report_fatal_error("Cannot emit physreg copy instruction");
- }
- Optional<DestSourcePair>
- X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
- if (MI.isMoveReg())
- return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
- return None;
- }
- static unsigned getLoadStoreRegOpcode(Register Reg,
- const TargetRegisterClass *RC,
- bool IsStackAligned,
- const X86Subtarget &STI, bool load) {
- bool HasAVX = STI.hasAVX();
- bool HasAVX512 = STI.hasAVX512();
- bool HasVLX = STI.hasVLX();
- switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
- default:
- llvm_unreachable("Unknown spill size");
- case 1:
- assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
- if (STI.is64Bit())
- // Copying to or from a physical H register on x86-64 requires a NOREX
- // move. Otherwise use a normal move.
- if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
- return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
- return load ? X86::MOV8rm : X86::MOV8mr;
- case 2:
- if (X86::VK16RegClass.hasSubClassEq(RC))
- return load ? X86::KMOVWkm : X86::KMOVWmk;
- if (X86::FR16XRegClass.hasSubClassEq(RC)) {
- assert(STI.hasFP16());
- return load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr;
- }
- assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
- return load ? X86::MOV16rm : X86::MOV16mr;
- case 4:
- if (X86::GR32RegClass.hasSubClassEq(RC))
- return load ? X86::MOV32rm : X86::MOV32mr;
- if (X86::FR32XRegClass.hasSubClassEq(RC))
- return load ?
- (HasAVX512 ? X86::VMOVSSZrm_alt :
- HasAVX ? X86::VMOVSSrm_alt :
- X86::MOVSSrm_alt) :
- (HasAVX512 ? X86::VMOVSSZmr :
- HasAVX ? X86::VMOVSSmr :
- X86::MOVSSmr);
- if (X86::RFP32RegClass.hasSubClassEq(RC))
- return load ? X86::LD_Fp32m : X86::ST_Fp32m;
- if (X86::VK32RegClass.hasSubClassEq(RC)) {
- assert(STI.hasBWI() && "KMOVD requires BWI");
- return load ? X86::KMOVDkm : X86::KMOVDmk;
- }
- // All of these mask pair classes have the same spill size, the same kind
- // of kmov instructions can be used with all of them.
- if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
- X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
- X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
- X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
- X86::VK16PAIRRegClass.hasSubClassEq(RC))
- return load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
- llvm_unreachable("Unknown 4-byte regclass");
- case 8:
- if (X86::GR64RegClass.hasSubClassEq(RC))
- return load ? X86::MOV64rm : X86::MOV64mr;
- if (X86::FR64XRegClass.hasSubClassEq(RC))
- return load ?
- (HasAVX512 ? X86::VMOVSDZrm_alt :
- HasAVX ? X86::VMOVSDrm_alt :
- X86::MOVSDrm_alt) :
- (HasAVX512 ? X86::VMOVSDZmr :
- HasAVX ? X86::VMOVSDmr :
- X86::MOVSDmr);
- if (X86::VR64RegClass.hasSubClassEq(RC))
- return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
- if (X86::RFP64RegClass.hasSubClassEq(RC))
- return load ? X86::LD_Fp64m : X86::ST_Fp64m;
- if (X86::VK64RegClass.hasSubClassEq(RC)) {
- assert(STI.hasBWI() && "KMOVQ requires BWI");
- return load ? X86::KMOVQkm : X86::KMOVQmk;
- }
- llvm_unreachable("Unknown 8-byte regclass");
- case 10:
- assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
- return load ? X86::LD_Fp80m : X86::ST_FpP80m;
- case 16: {
- if (X86::VR128XRegClass.hasSubClassEq(RC)) {
- // If stack is realigned we can use aligned stores.
- if (IsStackAligned)
- return load ?
- (HasVLX ? X86::VMOVAPSZ128rm :
- HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
- HasAVX ? X86::VMOVAPSrm :
- X86::MOVAPSrm):
- (HasVLX ? X86::VMOVAPSZ128mr :
- HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
- HasAVX ? X86::VMOVAPSmr :
- X86::MOVAPSmr);
- else
- return load ?
- (HasVLX ? X86::VMOVUPSZ128rm :
- HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
- HasAVX ? X86::VMOVUPSrm :
- X86::MOVUPSrm):
- (HasVLX ? X86::VMOVUPSZ128mr :
- HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
- HasAVX ? X86::VMOVUPSmr :
- X86::MOVUPSmr);
- }
- llvm_unreachable("Unknown 16-byte regclass");
- }
- case 32:
- assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
- // If stack is realigned we can use aligned stores.
- if (IsStackAligned)
- return load ?
- (HasVLX ? X86::VMOVAPSZ256rm :
- HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
- X86::VMOVAPSYrm) :
- (HasVLX ? X86::VMOVAPSZ256mr :
- HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
- X86::VMOVAPSYmr);
- else
- return load ?
- (HasVLX ? X86::VMOVUPSZ256rm :
- HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
- X86::VMOVUPSYrm) :
- (HasVLX ? X86::VMOVUPSZ256mr :
- HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
- X86::VMOVUPSYmr);
- case 64:
- assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
- assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
- if (IsStackAligned)
- return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
- else
- return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
- }
- }
- Optional<ExtAddrMode>
- X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI,
- const TargetRegisterInfo *TRI) const {
- const MCInstrDesc &Desc = MemI.getDesc();
- int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
- if (MemRefBegin < 0)
- return None;
- MemRefBegin += X86II::getOperandBias(Desc);
- auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg);
- if (!BaseOp.isReg()) // Can be an MO_FrameIndex
- return None;
- const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp);
- // Displacement can be symbolic
- if (!DispMO.isImm())
- return None;
- ExtAddrMode AM;
- AM.BaseReg = BaseOp.getReg();
- AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg();
- AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm();
- AM.Displacement = DispMO.getImm();
- return AM;
- }
- bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI,
- const Register Reg,
- int64_t &ImmVal) const {
- if (MI.getOpcode() != X86::MOV32ri && MI.getOpcode() != X86::MOV64ri)
- return false;
- // Mov Src can be a global address.
- if (!MI.getOperand(1).isImm() || MI.getOperand(0).getReg() != Reg)
- return false;
- ImmVal = MI.getOperand(1).getImm();
- return true;
- }
- bool X86InstrInfo::preservesZeroValueInReg(
- const MachineInstr *MI, const Register NullValueReg,
- const TargetRegisterInfo *TRI) const {
- if (!MI->modifiesRegister(NullValueReg, TRI))
- return true;
- switch (MI->getOpcode()) {
- // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax
- // X.
- case X86::SHR64ri:
- case X86::SHR32ri:
- case X86::SHL64ri:
- case X86::SHL32ri:
- assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() &&
- "expected for shift opcode!");
- return MI->getOperand(0).getReg() == NullValueReg &&
- MI->getOperand(1).getReg() == NullValueReg;
- // Zero extend of a sub-reg of NullValueReg into itself does not change the
- // null value.
- case X86::MOV32rr:
- return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) {
- return TRI->isSubRegisterEq(NullValueReg, MO.getReg());
- });
- default:
- return false;
- }
- llvm_unreachable("Should be handled above!");
- }
- bool X86InstrInfo::getMemOperandsWithOffsetWidth(
- const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps,
- int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
- const TargetRegisterInfo *TRI) const {
- const MCInstrDesc &Desc = MemOp.getDesc();
- int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
- if (MemRefBegin < 0)
- return false;
- MemRefBegin += X86II::getOperandBias(Desc);
- const MachineOperand *BaseOp =
- &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
- if (!BaseOp->isReg()) // Can be an MO_FrameIndex
- return false;
- if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
- return false;
- if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
- X86::NoRegister)
- return false;
- const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
- // Displacement can be symbolic
- if (!DispMO.isImm())
- return false;
- Offset = DispMO.getImm();
- if (!BaseOp->isReg())
- return false;
- OffsetIsScalable = false;
- // FIXME: Relying on memoperands() may not be right thing to do here. Check
- // with X86 maintainers, and fix it accordingly. For now, it is ok, since
- // there is no use of `Width` for X86 back-end at the moment.
- Width =
- !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0;
- BaseOps.push_back(BaseOp);
- return true;
- }
- static unsigned getStoreRegOpcode(Register SrcReg,
- const TargetRegisterClass *RC,
- bool IsStackAligned,
- const X86Subtarget &STI) {
- return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false);
- }
- static unsigned getLoadRegOpcode(Register DestReg,
- const TargetRegisterClass *RC,
- bool IsStackAligned, const X86Subtarget &STI) {
- return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true);
- }
- void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI,
- Register SrcReg, bool isKill, int FrameIdx,
- const TargetRegisterClass *RC,
- const TargetRegisterInfo *TRI) const {
- const MachineFunction &MF = *MBB.getParent();
- const MachineFrameInfo &MFI = MF.getFrameInfo();
- assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
- "Stack slot too small for store");
- if (RC->getID() == X86::TILERegClassID) {
- unsigned Opc = X86::TILESTORED;
- // tilestored %tmm, (%sp, %idx)
- MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
- Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
- BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
- MachineInstr *NewMI =
- addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
- .addReg(SrcReg, getKillRegState(isKill));
- MachineOperand &MO = NewMI->getOperand(2);
- MO.setReg(VirtReg);
- MO.setIsKill(true);
- } else {
- unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
- bool isAligned =
- (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
- (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
- unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
- addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
- .addReg(SrcReg, getKillRegState(isKill));
- }
- }
- void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI,
- Register DestReg, int FrameIdx,
- const TargetRegisterClass *RC,
- const TargetRegisterInfo *TRI) const {
- if (RC->getID() == X86::TILERegClassID) {
- unsigned Opc = X86::TILELOADD;
- // tileloadd (%sp, %idx), %tmm
- MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
- Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
- MachineInstr *NewMI =
- BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
- NewMI = addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
- FrameIdx);
- MachineOperand &MO = NewMI->getOperand(3);
- MO.setReg(VirtReg);
- MO.setIsKill(true);
- } else {
- const MachineFunction &MF = *MBB.getParent();
- const MachineFrameInfo &MFI = MF.getFrameInfo();
- unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
- bool isAligned =
- (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
- (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
- unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
- addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
- FrameIdx);
- }
- }
- bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
- Register &SrcReg2, int64_t &CmpMask,
- int64_t &CmpValue) const {
- switch (MI.getOpcode()) {
- default: break;
- case X86::CMP64ri32:
- case X86::CMP64ri8:
- case X86::CMP32ri:
- case X86::CMP32ri8:
- case X86::CMP16ri:
- case X86::CMP16ri8:
- case X86::CMP8ri:
- SrcReg = MI.getOperand(0).getReg();
- SrcReg2 = 0;
- if (MI.getOperand(1).isImm()) {
- CmpMask = ~0;
- CmpValue = MI.getOperand(1).getImm();
- } else {
- CmpMask = CmpValue = 0;
- }
- return true;
- // A SUB can be used to perform comparison.
- case X86::SUB64rm:
- case X86::SUB32rm:
- case X86::SUB16rm:
- case X86::SUB8rm:
- SrcReg = MI.getOperand(1).getReg();
- SrcReg2 = 0;
- CmpMask = 0;
- CmpValue = 0;
- return true;
- case X86::SUB64rr:
- case X86::SUB32rr:
- case X86::SUB16rr:
- case X86::SUB8rr:
- SrcReg = MI.getOperand(1).getReg();
- SrcReg2 = MI.getOperand(2).getReg();
- CmpMask = 0;
- CmpValue = 0;
- return true;
- case X86::SUB64ri32:
- case X86::SUB64ri8:
- case X86::SUB32ri:
- case X86::SUB32ri8:
- case X86::SUB16ri:
- case X86::SUB16ri8:
- case X86::SUB8ri:
- SrcReg = MI.getOperand(1).getReg();
- SrcReg2 = 0;
- if (MI.getOperand(2).isImm()) {
- CmpMask = ~0;
- CmpValue = MI.getOperand(2).getImm();
- } else {
- CmpMask = CmpValue = 0;
- }
- return true;
- case X86::CMP64rr:
- case X86::CMP32rr:
- case X86::CMP16rr:
- case X86::CMP8rr:
- SrcReg = MI.getOperand(0).getReg();
- SrcReg2 = MI.getOperand(1).getReg();
- CmpMask = 0;
- CmpValue = 0;
- return true;
- case X86::TEST8rr:
- case X86::TEST16rr:
- case X86::TEST32rr:
- case X86::TEST64rr:
- SrcReg = MI.getOperand(0).getReg();
- if (MI.getOperand(1).getReg() != SrcReg)
- return false;
- // Compare against zero.
- SrcReg2 = 0;
- CmpMask = ~0;
- CmpValue = 0;
- return true;
- }
- return false;
- }
- bool X86InstrInfo::isRedundantFlagInstr(const MachineInstr &FlagI,
- Register SrcReg, Register SrcReg2,
- int64_t ImmMask, int64_t ImmValue,
- const MachineInstr &OI, bool *IsSwapped,
- int64_t *ImmDelta) const {
- switch (OI.getOpcode()) {
- case X86::CMP64rr:
- case X86::CMP32rr:
- case X86::CMP16rr:
- case X86::CMP8rr:
- case X86::SUB64rr:
- case X86::SUB32rr:
- case X86::SUB16rr:
- case X86::SUB8rr: {
- Register OISrcReg;
- Register OISrcReg2;
- int64_t OIMask;
- int64_t OIValue;
- if (!analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) ||
- OIMask != ImmMask || OIValue != ImmValue)
- return false;
- if (SrcReg == OISrcReg && SrcReg2 == OISrcReg2) {
- *IsSwapped = false;
- return true;
- }
- if (SrcReg == OISrcReg2 && SrcReg2 == OISrcReg) {
- *IsSwapped = true;
- return true;
- }
- return false;
- }
- case X86::CMP64ri32:
- case X86::CMP64ri8:
- case X86::CMP32ri:
- case X86::CMP32ri8:
- case X86::CMP16ri:
- case X86::CMP16ri8:
- case X86::CMP8ri:
- case X86::SUB64ri32:
- case X86::SUB64ri8:
- case X86::SUB32ri:
- case X86::SUB32ri8:
- case X86::SUB16ri:
- case X86::SUB16ri8:
- case X86::SUB8ri:
- case X86::TEST64rr:
- case X86::TEST32rr:
- case X86::TEST16rr:
- case X86::TEST8rr: {
- if (ImmMask != 0) {
- Register OISrcReg;
- Register OISrcReg2;
- int64_t OIMask;
- int64_t OIValue;
- if (analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) &&
- SrcReg == OISrcReg && ImmMask == OIMask) {
- if (OIValue == ImmValue) {
- *ImmDelta = 0;
- return true;
- } else if (static_cast<uint64_t>(ImmValue) ==
- static_cast<uint64_t>(OIValue) - 1) {
- *ImmDelta = -1;
- return true;
- } else if (static_cast<uint64_t>(ImmValue) ==
- static_cast<uint64_t>(OIValue) + 1) {
- *ImmDelta = 1;
- return true;
- } else {
- return false;
- }
- }
- }
- return FlagI.isIdenticalTo(OI);
- }
- default:
- return false;
- }
- }
- /// Check whether the definition can be converted
- /// to remove a comparison against zero.
- inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag,
- bool &ClearsOverflowFlag) {
- NoSignFlag = false;
- ClearsOverflowFlag = false;
- switch (MI.getOpcode()) {
- default: return false;
- // The shift instructions only modify ZF if their shift count is non-zero.
- // N.B.: The processor truncates the shift count depending on the encoding.
- case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri:
- case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri:
- return getTruncatedShiftCount(MI, 2) != 0;
- // Some left shift instructions can be turned into LEA instructions but only
- // if their flags aren't used. Avoid transforming such instructions.
- case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{
- unsigned ShAmt = getTruncatedShiftCount(MI, 2);
- if (isTruncatedShiftCountForLEA(ShAmt)) return false;
- return ShAmt != 0;
- }
- case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
- case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
- return getTruncatedShiftCount(MI, 3) != 0;
- case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
- case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8:
- case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr:
- case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
- case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
- case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r:
- case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
- case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8:
- case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
- case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
- case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
- case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r:
- case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
- case X86::ADC32ri8: case X86::ADC16ri: case X86::ADC16ri8:
- case X86::ADC8ri: case X86::ADC64rr: case X86::ADC32rr:
- case X86::ADC16rr: case X86::ADC8rr: case X86::ADC64rm:
- case X86::ADC32rm: case X86::ADC16rm: case X86::ADC8rm:
- case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
- case X86::SBB32ri8: case X86::SBB16ri: case X86::SBB16ri8:
- case X86::SBB8ri: case X86::SBB64rr: case X86::SBB32rr:
- case X86::SBB16rr: case X86::SBB8rr: case X86::SBB64rm:
- case X86::SBB32rm: case X86::SBB16rm: case X86::SBB8rm:
- case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
- case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1:
- case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1:
- case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1:
- case X86::LZCNT16rr: case X86::LZCNT16rm:
- case X86::LZCNT32rr: case X86::LZCNT32rm:
- case X86::LZCNT64rr: case X86::LZCNT64rm:
- case X86::POPCNT16rr:case X86::POPCNT16rm:
- case X86::POPCNT32rr:case X86::POPCNT32rm:
- case X86::POPCNT64rr:case X86::POPCNT64rm:
- case X86::TZCNT16rr: case X86::TZCNT16rm:
- case X86::TZCNT32rr: case X86::TZCNT32rm:
- case X86::TZCNT64rr: case X86::TZCNT64rm:
- return true;
- case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
- case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8:
- case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
- case X86::AND16rr: case X86::AND8rr: case X86::AND64rm:
- case X86::AND32rm: case X86::AND16rm: case X86::AND8rm:
- case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
- case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8:
- case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr:
- case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm:
- case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm:
- case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri:
- case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8:
- case X86::OR8ri: case X86::OR64rr: case X86::OR32rr:
- case X86::OR16rr: case X86::OR8rr: case X86::OR64rm:
- case X86::OR32rm: case X86::OR16rm: case X86::OR8rm:
- case X86::ANDN32rr: case X86::ANDN32rm:
- case X86::ANDN64rr: case X86::ANDN64rm:
- case X86::BLSI32rr: case X86::BLSI32rm:
- case X86::BLSI64rr: case X86::BLSI64rm:
- case X86::BLSMSK32rr: case X86::BLSMSK32rm:
- case X86::BLSMSK64rr: case X86::BLSMSK64rm:
- case X86::BLSR32rr: case X86::BLSR32rm:
- case X86::BLSR64rr: case X86::BLSR64rm:
- case X86::BLCFILL32rr: case X86::BLCFILL32rm:
- case X86::BLCFILL64rr: case X86::BLCFILL64rm:
- case X86::BLCI32rr: case X86::BLCI32rm:
- case X86::BLCI64rr: case X86::BLCI64rm:
- case X86::BLCIC32rr: case X86::BLCIC32rm:
- case X86::BLCIC64rr: case X86::BLCIC64rm:
- case X86::BLCMSK32rr: case X86::BLCMSK32rm:
- case X86::BLCMSK64rr: case X86::BLCMSK64rm:
- case X86::BLCS32rr: case X86::BLCS32rm:
- case X86::BLCS64rr: case X86::BLCS64rm:
- case X86::BLSFILL32rr: case X86::BLSFILL32rm:
- case X86::BLSFILL64rr: case X86::BLSFILL64rm:
- case X86::BLSIC32rr: case X86::BLSIC32rm:
- case X86::BLSIC64rr: case X86::BLSIC64rm:
- case X86::BZHI32rr: case X86::BZHI32rm:
- case X86::BZHI64rr: case X86::BZHI64rm:
- case X86::T1MSKC32rr: case X86::T1MSKC32rm:
- case X86::T1MSKC64rr: case X86::T1MSKC64rm:
- case X86::TZMSK32rr: case X86::TZMSK32rm:
- case X86::TZMSK64rr: case X86::TZMSK64rm:
- // These instructions clear the overflow flag just like TEST.
- // FIXME: These are not the only instructions in this switch that clear the
- // overflow flag.
- ClearsOverflowFlag = true;
- return true;
- case X86::BEXTR32rr: case X86::BEXTR64rr:
- case X86::BEXTR32rm: case X86::BEXTR64rm:
- case X86::BEXTRI32ri: case X86::BEXTRI32mi:
- case X86::BEXTRI64ri: case X86::BEXTRI64mi:
- // BEXTR doesn't update the sign flag so we can't use it. It does clear
- // the overflow flag, but that's not useful without the sign flag.
- NoSignFlag = true;
- return true;
- }
- }
- /// Check whether the use can be converted to remove a comparison against zero.
- static X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
- switch (MI.getOpcode()) {
- default: return X86::COND_INVALID;
- case X86::NEG8r:
- case X86::NEG16r:
- case X86::NEG32r:
- case X86::NEG64r:
- return X86::COND_AE;
- case X86::LZCNT16rr:
- case X86::LZCNT32rr:
- case X86::LZCNT64rr:
- return X86::COND_B;
- case X86::POPCNT16rr:
- case X86::POPCNT32rr:
- case X86::POPCNT64rr:
- return X86::COND_E;
- case X86::TZCNT16rr:
- case X86::TZCNT32rr:
- case X86::TZCNT64rr:
- return X86::COND_B;
- case X86::BSF16rr:
- case X86::BSF32rr:
- case X86::BSF64rr:
- case X86::BSR16rr:
- case X86::BSR32rr:
- case X86::BSR64rr:
- return X86::COND_E;
- case X86::BLSI32rr:
- case X86::BLSI64rr:
- return X86::COND_AE;
- case X86::BLSR32rr:
- case X86::BLSR64rr:
- case X86::BLSMSK32rr:
- case X86::BLSMSK64rr:
- return X86::COND_B;
- // TODO: TBM instructions.
- }
- }
- /// Check if there exists an earlier instruction that
- /// operates on the same source operands and sets flags in the same way as
- /// Compare; remove Compare if possible.
- bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
- Register SrcReg2, int64_t CmpMask,
- int64_t CmpValue,
- const MachineRegisterInfo *MRI) const {
- // Check whether we can replace SUB with CMP.
- switch (CmpInstr.getOpcode()) {
- default: break;
- case X86::SUB64ri32:
- case X86::SUB64ri8:
- case X86::SUB32ri:
- case X86::SUB32ri8:
- case X86::SUB16ri:
- case X86::SUB16ri8:
- case X86::SUB8ri:
- case X86::SUB64rm:
- case X86::SUB32rm:
- case X86::SUB16rm:
- case X86::SUB8rm:
- case X86::SUB64rr:
- case X86::SUB32rr:
- case X86::SUB16rr:
- case X86::SUB8rr: {
- if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
- return false;
- // There is no use of the destination register, we can replace SUB with CMP.
- unsigned NewOpcode = 0;
- switch (CmpInstr.getOpcode()) {
- default: llvm_unreachable("Unreachable!");
- case X86::SUB64rm: NewOpcode = X86::CMP64rm; break;
- case X86::SUB32rm: NewOpcode = X86::CMP32rm; break;
- case X86::SUB16rm: NewOpcode = X86::CMP16rm; break;
- case X86::SUB8rm: NewOpcode = X86::CMP8rm; break;
- case X86::SUB64rr: NewOpcode = X86::CMP64rr; break;
- case X86::SUB32rr: NewOpcode = X86::CMP32rr; break;
- case X86::SUB16rr: NewOpcode = X86::CMP16rr; break;
- case X86::SUB8rr: NewOpcode = X86::CMP8rr; break;
- case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
- case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break;
- case X86::SUB32ri: NewOpcode = X86::CMP32ri; break;
- case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break;
- case X86::SUB16ri: NewOpcode = X86::CMP16ri; break;
- case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break;
- case X86::SUB8ri: NewOpcode = X86::CMP8ri; break;
- }
- CmpInstr.setDesc(get(NewOpcode));
- CmpInstr.RemoveOperand(0);
- // Mutating this instruction invalidates any debug data associated with it.
- CmpInstr.dropDebugNumber();
- // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
- if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
- NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
- return false;
- }
- }
- // The following code tries to remove the comparison by re-using EFLAGS
- // from earlier instructions.
- bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
- // Transformation currently requires SSA values.
- if (SrcReg2.isPhysical())
- return false;
- MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
- assert(SrcRegDef && "Must have a definition (SSA)");
- MachineInstr *MI = nullptr;
- MachineInstr *Sub = nullptr;
- MachineInstr *Movr0Inst = nullptr;
- bool NoSignFlag = false;
- bool ClearsOverflowFlag = false;
- bool ShouldUpdateCC = false;
- bool IsSwapped = false;
- X86::CondCode NewCC = X86::COND_INVALID;
- int64_t ImmDelta = 0;
- // Search backward from CmpInstr for the next instruction defining EFLAGS.
- const TargetRegisterInfo *TRI = &getRegisterInfo();
- MachineBasicBlock &CmpMBB = *CmpInstr.getParent();
- MachineBasicBlock::reverse_iterator From =
- std::next(MachineBasicBlock::reverse_iterator(CmpInstr));
- for (MachineBasicBlock *MBB = &CmpMBB;;) {
- for (MachineInstr &Inst : make_range(From, MBB->rend())) {
- // Try to use EFLAGS from the instruction defining %SrcReg. Example:
- // %eax = addl ...
- // ... // EFLAGS not changed
- // testl %eax, %eax // <-- can be removed
- if (&Inst == SrcRegDef) {
- if (IsCmpZero &&
- isDefConvertible(Inst, NoSignFlag, ClearsOverflowFlag)) {
- MI = &Inst;
- break;
- }
- // Cannot find other candidates before definition of SrcReg.
- return false;
- }
- if (Inst.modifiesRegister(X86::EFLAGS, TRI)) {
- // Try to use EFLAGS produced by an instruction reading %SrcReg.
- // Example:
- // %eax = ...
- // ...
- // popcntl %eax
- // ... // EFLAGS not changed
- // testl %eax, %eax // <-- can be removed
- if (IsCmpZero) {
- NewCC = isUseDefConvertible(Inst);
- if (NewCC != X86::COND_INVALID && Inst.getOperand(1).isReg() &&
- Inst.getOperand(1).getReg() == SrcReg) {
- ShouldUpdateCC = true;
- MI = &Inst;
- break;
- }
- }
- // Try to use EFLAGS from an instruction with similar flag results.
- // Example:
- // sub x, y or cmp x, y
- // ... // EFLAGS not changed
- // cmp x, y // <-- can be removed
- if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, CmpValue,
- Inst, &IsSwapped, &ImmDelta)) {
- Sub = &Inst;
- break;
- }
- // MOV32r0 is implemented with xor which clobbers condition code. It is
- // safe to move up, if the definition to EFLAGS is dead and earlier
- // instructions do not read or write EFLAGS.
- if (!Movr0Inst && Inst.getOpcode() == X86::MOV32r0 &&
- Inst.registerDefIsDead(X86::EFLAGS, TRI)) {
- Movr0Inst = &Inst;
- continue;
- }
- // Cannot do anything for any other EFLAG changes.
- return false;
- }
- }
- if (MI || Sub)
- break;
- // Reached begin of basic block. Continue in predecessor if there is
- // exactly one.
- if (MBB->pred_size() != 1)
- return false;
- MBB = *MBB->pred_begin();
- From = MBB->rbegin();
- }
- // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
- // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
- // If we are done with the basic block, we need to check whether EFLAGS is
- // live-out.
- bool FlagsMayLiveOut = true;
- SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate;
- MachineBasicBlock::iterator AfterCmpInstr =
- std::next(MachineBasicBlock::iterator(CmpInstr));
- for (MachineInstr &Instr : make_range(AfterCmpInstr, CmpMBB.end())) {
- bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
- bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
- // We should check the usage if this instruction uses and updates EFLAGS.
- if (!UseEFLAGS && ModifyEFLAGS) {
- // It is safe to remove CmpInstr if EFLAGS is updated again.
- FlagsMayLiveOut = false;
- break;
- }
- if (!UseEFLAGS && !ModifyEFLAGS)
- continue;
- // EFLAGS is used by this instruction.
- X86::CondCode OldCC = X86::COND_INVALID;
- if (MI || IsSwapped || ImmDelta != 0) {
- // We decode the condition code from opcode.
- if (Instr.isBranch())
- OldCC = X86::getCondFromBranch(Instr);
- else {
- OldCC = X86::getCondFromSETCC(Instr);
- if (OldCC == X86::COND_INVALID)
- OldCC = X86::getCondFromCMov(Instr);
- }
- if (OldCC == X86::COND_INVALID) return false;
- }
- X86::CondCode ReplacementCC = X86::COND_INVALID;
- if (MI) {
- switch (OldCC) {
- default: break;
- case X86::COND_A: case X86::COND_AE:
- case X86::COND_B: case X86::COND_BE:
- // CF is used, we can't perform this optimization.
- return false;
- case X86::COND_G: case X86::COND_GE:
- case X86::COND_L: case X86::COND_LE:
- case X86::COND_O: case X86::COND_NO:
- // If OF is used, the instruction needs to clear it like CmpZero does.
- if (!ClearsOverflowFlag)
- return false;
- break;
- case X86::COND_S: case X86::COND_NS:
- // If SF is used, but the instruction doesn't update the SF, then we
- // can't do the optimization.
- if (NoSignFlag)
- return false;
- break;
- }
- // If we're updating the condition code check if we have to reverse the
- // condition.
- if (ShouldUpdateCC)
- switch (OldCC) {
- default:
- return false;
- case X86::COND_E:
- ReplacementCC = NewCC;
- break;
- case X86::COND_NE:
- ReplacementCC = GetOppositeBranchCondition(NewCC);
- break;
- }
- } else if (IsSwapped) {
- // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
- // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
- // We swap the condition code and synthesize the new opcode.
- ReplacementCC = getSwappedCondition(OldCC);
- if (ReplacementCC == X86::COND_INVALID)
- return false;
- ShouldUpdateCC = true;
- } else if (ImmDelta != 0) {
- unsigned BitWidth = TRI->getRegSizeInBits(*MRI->getRegClass(SrcReg));
- // Shift amount for min/max constants to adjust for 8/16/32 instruction
- // sizes.
- switch (OldCC) {
- case X86::COND_L: // x <s (C + 1) --> x <=s C
- if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
- return false;
- ReplacementCC = X86::COND_LE;
- break;
- case X86::COND_B: // x <u (C + 1) --> x <=u C
- if (ImmDelta != 1 || CmpValue == 0)
- return false;
- ReplacementCC = X86::COND_BE;
- break;
- case X86::COND_GE: // x >=s (C + 1) --> x >s C
- if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
- return false;
- ReplacementCC = X86::COND_G;
- break;
- case X86::COND_AE: // x >=u (C + 1) --> x >u C
- if (ImmDelta != 1 || CmpValue == 0)
- return false;
- ReplacementCC = X86::COND_A;
- break;
- case X86::COND_G: // x >s (C - 1) --> x >=s C
- if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
- return false;
- ReplacementCC = X86::COND_GE;
- break;
- case X86::COND_A: // x >u (C - 1) --> x >=u C
- if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
- return false;
- ReplacementCC = X86::COND_AE;
- break;
- case X86::COND_LE: // x <=s (C - 1) --> x <s C
- if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
- return false;
- ReplacementCC = X86::COND_L;
- break;
- case X86::COND_BE: // x <=u (C - 1) --> x <u C
- if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
- return false;
- ReplacementCC = X86::COND_B;
- break;
- default:
- return false;
- }
- ShouldUpdateCC = true;
- }
- if (ShouldUpdateCC && ReplacementCC != OldCC) {
- // Push the MachineInstr to OpsToUpdate.
- // If it is safe to remove CmpInstr, the condition code of these
- // instructions will be modified.
- OpsToUpdate.push_back(std::make_pair(&Instr, ReplacementCC));
- }
- if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
- // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
- FlagsMayLiveOut = false;
- break;
- }
- }
- // If we have to update users but EFLAGS is live-out abort, since we cannot
- // easily find all of the users.
- if ((MI != nullptr || ShouldUpdateCC) && FlagsMayLiveOut) {
- for (MachineBasicBlock *Successor : CmpMBB.successors())
- if (Successor->isLiveIn(X86::EFLAGS))
- return false;
- }
- // The instruction to be updated is either Sub or MI.
- assert((MI == nullptr || Sub == nullptr) && "Should not have Sub and MI set");
- Sub = MI != nullptr ? MI : Sub;
- MachineBasicBlock *SubBB = Sub->getParent();
- // Move Movr0Inst to the appropriate place before Sub.
- if (Movr0Inst) {
- // Only move within the same block so we don't accidentally move to a
- // block with higher execution frequency.
- if (&CmpMBB != SubBB)
- return false;
- // Look backwards until we find a def that doesn't use the current EFLAGS.
- MachineBasicBlock::reverse_iterator InsertI = Sub,
- InsertE = Sub->getParent()->rend();
- for (; InsertI != InsertE; ++InsertI) {
- MachineInstr *Instr = &*InsertI;
- if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
- Instr->modifiesRegister(X86::EFLAGS, TRI)) {
- Movr0Inst->getParent()->remove(Movr0Inst);
- Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
- Movr0Inst);
- break;
- }
- }
- if (InsertI == InsertE)
- return false;
- }
- // Make sure Sub instruction defines EFLAGS and mark the def live.
- MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS);
- assert(FlagDef && "Unable to locate a def EFLAGS operand");
- FlagDef->setIsDead(false);
- CmpInstr.eraseFromParent();
- // Modify the condition code of instructions in OpsToUpdate.
- for (auto &Op : OpsToUpdate) {
- Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
- .setImm(Op.second);
- }
- // Add EFLAGS to block live-ins between CmpBB and block of flags producer.
- for (MachineBasicBlock *MBB = &CmpMBB; MBB != SubBB;
- MBB = *MBB->pred_begin()) {
- assert(MBB->pred_size() == 1 && "Expected exactly one predecessor");
- if (!MBB->isLiveIn(X86::EFLAGS))
- MBB->addLiveIn(X86::EFLAGS);
- }
- return true;
- }
- /// Try to remove the load by folding it to a register
- /// operand at the use. We fold the load instructions if load defines a virtual
- /// register, the virtual register is used once in the same BB, and the
- /// instructions in-between do not load or store, and have no side effects.
- MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
- const MachineRegisterInfo *MRI,
- Register &FoldAsLoadDefReg,
- MachineInstr *&DefMI) const {
- // Check whether we can move DefMI here.
- DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
- assert(DefMI);
- bool SawStore = false;
- if (!DefMI->isSafeToMove(nullptr, SawStore))
- return nullptr;
- // Collect information about virtual register operands of MI.
- SmallVector<unsigned, 1> SrcOperandIds;
- for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI.getOperand(i);
- if (!MO.isReg())
- continue;
- Register Reg = MO.getReg();
- if (Reg != FoldAsLoadDefReg)
- continue;
- // Do not fold if we have a subreg use or a def.
- if (MO.getSubReg() || MO.isDef())
- return nullptr;
- SrcOperandIds.push_back(i);
- }
- if (SrcOperandIds.empty())
- return nullptr;
- // Check whether we can fold the def into SrcOperandId.
- if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
- FoldAsLoadDefReg = 0;
- return FoldMI;
- }
- return nullptr;
- }
- /// Expand a single-def pseudo instruction to a two-addr
- /// instruction with two undef reads of the register being defined.
- /// This is used for mapping:
- /// %xmm4 = V_SET0
- /// to:
- /// %xmm4 = PXORrr undef %xmm4, undef %xmm4
- ///
- static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
- const MCInstrDesc &Desc) {
- assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
- Register Reg = MIB.getReg(0);
- MIB->setDesc(Desc);
- // MachineInstr::addOperand() will insert explicit operands before any
- // implicit operands.
- MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
- // But we don't trust that.
- assert(MIB.getReg(1) == Reg &&
- MIB.getReg(2) == Reg && "Misplaced operand");
- return true;
- }
- /// Expand a single-def pseudo instruction to a two-addr
- /// instruction with two %k0 reads.
- /// This is used for mapping:
- /// %k4 = K_SET1
- /// to:
- /// %k4 = KXNORrr %k0, %k0
- static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc,
- Register Reg) {
- assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
- MIB->setDesc(Desc);
- MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
- return true;
- }
- static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
- bool MinusOne) {
- MachineBasicBlock &MBB = *MIB->getParent();
- const DebugLoc &DL = MIB->getDebugLoc();
- Register Reg = MIB.getReg(0);
- // Insert the XOR.
- BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
- .addReg(Reg, RegState::Undef)
- .addReg(Reg, RegState::Undef);
- // Turn the pseudo into an INC or DEC.
- MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
- MIB.addReg(Reg);
- return true;
- }
- static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
- const TargetInstrInfo &TII,
- const X86Subtarget &Subtarget) {
- MachineBasicBlock &MBB = *MIB->getParent();
- const DebugLoc &DL = MIB->getDebugLoc();
- int64_t Imm = MIB->getOperand(1).getImm();
- assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
- MachineBasicBlock::iterator I = MIB.getInstr();
- int StackAdjustment;
- if (Subtarget.is64Bit()) {
- assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
- MIB->getOpcode() == X86::MOV32ImmSExti8);
- // Can't use push/pop lowering if the function might write to the red zone.
- X86MachineFunctionInfo *X86FI =
- MBB.getParent()->getInfo<X86MachineFunctionInfo>();
- if (X86FI->getUsesRedZone()) {
- MIB->setDesc(TII.get(MIB->getOpcode() ==
- X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
- return true;
- }
- // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
- // widen the register if necessary.
- StackAdjustment = 8;
- BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
- MIB->setDesc(TII.get(X86::POP64r));
- MIB->getOperand(0)
- .setReg(getX86SubSuperRegister(MIB.getReg(0), 64));
- } else {
- assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
- StackAdjustment = 4;
- BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
- MIB->setDesc(TII.get(X86::POP32r));
- }
- MIB->RemoveOperand(1);
- MIB->addImplicitDefUseOperands(*MBB.getParent());
- // Build CFI if necessary.
- MachineFunction &MF = *MBB.getParent();
- const X86FrameLowering *TFL = Subtarget.getFrameLowering();
- bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
- bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
- bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
- if (EmitCFI) {
- TFL->BuildCFI(MBB, I, DL,
- MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
- TFL->BuildCFI(MBB, std::next(I), DL,
- MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
- }
- return true;
- }
- // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
- // code sequence is needed for other targets.
- static void expandLoadStackGuard(MachineInstrBuilder &MIB,
- const TargetInstrInfo &TII) {
- MachineBasicBlock &MBB = *MIB->getParent();
- const DebugLoc &DL = MIB->getDebugLoc();
- Register Reg = MIB.getReg(0);
- const GlobalValue *GV =
- cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
- auto Flags = MachineMemOperand::MOLoad |
- MachineMemOperand::MODereferenceable |
- MachineMemOperand::MOInvariant;
- MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
- MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8));
- MachineBasicBlock::iterator I = MIB.getInstr();
- BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
- .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
- .addMemOperand(MMO);
- MIB->setDebugLoc(DL);
- MIB->setDesc(TII.get(X86::MOV64rm));
- MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
- }
- static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
- MachineBasicBlock &MBB = *MIB->getParent();
- MachineFunction &MF = *MBB.getParent();
- const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
- const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
- unsigned XorOp =
- MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
- MIB->setDesc(TII.get(XorOp));
- MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
- return true;
- }
- // This is used to handle spills for 128/256-bit registers when we have AVX512,
- // but not VLX. If it uses an extended register we need to use an instruction
- // that loads the lower 128/256-bit, but is available with only AVX512F.
- static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
- const TargetRegisterInfo *TRI,
- const MCInstrDesc &LoadDesc,
- const MCInstrDesc &BroadcastDesc,
- unsigned SubIdx) {
- Register DestReg = MIB.getReg(0);
- // Check if DestReg is XMM16-31 or YMM16-31.
- if (TRI->getEncodingValue(DestReg) < 16) {
- // We can use a normal VEX encoded load.
- MIB->setDesc(LoadDesc);
- } else {
- // Use a 128/256-bit VBROADCAST instruction.
- MIB->setDesc(BroadcastDesc);
- // Change the destination to a 512-bit register.
- DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
- MIB->getOperand(0).setReg(DestReg);
- }
- return true;
- }
- // This is used to handle spills for 128/256-bit registers when we have AVX512,
- // but not VLX. If it uses an extended register we need to use an instruction
- // that stores the lower 128/256-bit, but is available with only AVX512F.
- static bool expandNOVLXStore(MachineInstrBuilder &MIB,
- const TargetRegisterInfo *TRI,
- const MCInstrDesc &StoreDesc,
- const MCInstrDesc &ExtractDesc,
- unsigned SubIdx) {
- Register SrcReg = MIB.getReg(X86::AddrNumOperands);
- // Check if DestReg is XMM16-31 or YMM16-31.
- if (TRI->getEncodingValue(SrcReg) < 16) {
- // We can use a normal VEX encoded store.
- MIB->setDesc(StoreDesc);
- } else {
- // Use a VEXTRACTF instruction.
- MIB->setDesc(ExtractDesc);
- // Change the destination to a 512-bit register.
- SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
- MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
- MIB.addImm(0x0); // Append immediate to extract from the lower bits.
- }
- return true;
- }
- static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
- MIB->setDesc(Desc);
- int64_t ShiftAmt = MIB->getOperand(2).getImm();
- // Temporarily remove the immediate so we can add another source register.
- MIB->RemoveOperand(2);
- // Add the register. Don't copy the kill flag if there is one.
- MIB.addReg(MIB.getReg(1),
- getUndefRegState(MIB->getOperand(1).isUndef()));
- // Add back the immediate.
- MIB.addImm(ShiftAmt);
- return true;
- }
- bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
- bool HasAVX = Subtarget.hasAVX();
- MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
- switch (MI.getOpcode()) {
- case X86::MOV32r0:
- return Expand2AddrUndef(MIB, get(X86::XOR32rr));
- case X86::MOV32r1:
- return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
- case X86::MOV32r_1:
- return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
- case X86::MOV32ImmSExti8:
- case X86::MOV64ImmSExti8:
- return ExpandMOVImmSExti8(MIB, *this, Subtarget);
- case X86::SETB_C32r:
- return Expand2AddrUndef(MIB, get(X86::SBB32rr));
- case X86::SETB_C64r:
- return Expand2AddrUndef(MIB, get(X86::SBB64rr));
- case X86::MMX_SET0:
- return Expand2AddrUndef(MIB, get(X86::MMX_PXORrr));
- case X86::V_SET0:
- case X86::FsFLD0SS:
- case X86::FsFLD0SD:
- case X86::FsFLD0F128:
- return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
- case X86::AVX_SET0: {
- assert(HasAVX && "AVX not supported");
- const TargetRegisterInfo *TRI = &getRegisterInfo();
- Register SrcReg = MIB.getReg(0);
- Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
- MIB->getOperand(0).setReg(XReg);
- Expand2AddrUndef(MIB, get(X86::VXORPSrr));
- MIB.addReg(SrcReg, RegState::ImplicitDefine);
- return true;
- }
- case X86::AVX512_128_SET0:
- case X86::AVX512_FsFLD0SH:
- case X86::AVX512_FsFLD0SS:
- case X86::AVX512_FsFLD0SD:
- case X86::AVX512_FsFLD0F128: {
- bool HasVLX = Subtarget.hasVLX();
- Register SrcReg = MIB.getReg(0);
- const TargetRegisterInfo *TRI = &getRegisterInfo();
- if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
- return Expand2AddrUndef(MIB,
- get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
- // Extended register without VLX. Use a larger XOR.
- SrcReg =
- TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
- MIB->getOperand(0).setReg(SrcReg);
- return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
- }
- case X86::AVX512_256_SET0:
- case X86::AVX512_512_SET0: {
- bool HasVLX = Subtarget.hasVLX();
- Register SrcReg = MIB.getReg(0);
- const TargetRegisterInfo *TRI = &getRegisterInfo();
- if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
- Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
- MIB->getOperand(0).setReg(XReg);
- Expand2AddrUndef(MIB,
- get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
- MIB.addReg(SrcReg, RegState::ImplicitDefine);
- return true;
- }
- if (MI.getOpcode() == X86::AVX512_256_SET0) {
- // No VLX so we must reference a zmm.
- unsigned ZReg =
- TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
- MIB->getOperand(0).setReg(ZReg);
- }
- return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
- }
- case X86::V_SETALLONES:
- return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
- case X86::AVX2_SETALLONES:
- return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
- case X86::AVX1_SETALLONES: {
- Register Reg = MIB.getReg(0);
- // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
- MIB->setDesc(get(X86::VCMPPSYrri));
- MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
- return true;
- }
- case X86::AVX512_512_SETALLONES: {
- Register Reg = MIB.getReg(0);
- MIB->setDesc(get(X86::VPTERNLOGDZrri));
- // VPTERNLOGD needs 3 register inputs and an immediate.
- // 0xff will return 1s for any input.
- MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
- .addReg(Reg, RegState::Undef).addImm(0xff);
- return true;
- }
- case X86::AVX512_512_SEXT_MASK_32:
- case X86::AVX512_512_SEXT_MASK_64: {
- Register Reg = MIB.getReg(0);
- Register MaskReg = MIB.getReg(1);
- unsigned MaskState = getRegState(MIB->getOperand(1));
- unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
- X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
- MI.RemoveOperand(1);
- MIB->setDesc(get(Opc));
- // VPTERNLOG needs 3 register inputs and an immediate.
- // 0xff will return 1s for any input.
- MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
- .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
- return true;
- }
- case X86::VMOVAPSZ128rm_NOVLX:
- return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
- get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
- case X86::VMOVUPSZ128rm_NOVLX:
- return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
- get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
- case X86::VMOVAPSZ256rm_NOVLX:
- return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
- get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
- case X86::VMOVUPSZ256rm_NOVLX:
- return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
- get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
- case X86::VMOVAPSZ128mr_NOVLX:
- return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
- get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
- case X86::VMOVUPSZ128mr_NOVLX:
- return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
- get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
- case X86::VMOVAPSZ256mr_NOVLX:
- return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
- get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
- case X86::VMOVUPSZ256mr_NOVLX:
- return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
- get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
- case X86::MOV32ri64: {
- Register Reg = MIB.getReg(0);
- Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
- MI.setDesc(get(X86::MOV32ri));
- MIB->getOperand(0).setReg(Reg32);
- MIB.addReg(Reg, RegState::ImplicitDefine);
- return true;
- }
- // KNL does not recognize dependency-breaking idioms for mask registers,
- // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
- // Using %k0 as the undef input register is a performance heuristic based
- // on the assumption that %k0 is used less frequently than the other mask
- // registers, since it is not usable as a write mask.
- // FIXME: A more advanced approach would be to choose the best input mask
- // register based on context.
- case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
- case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
- case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
- case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
- case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
- case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
- case TargetOpcode::LOAD_STACK_GUARD:
- expandLoadStackGuard(MIB, *this);
- return true;
- case X86::XOR64_FP:
- case X86::XOR32_FP:
- return expandXorFP(MIB, *this);
- case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8));
- case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8));
- case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8));
- case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8));
- case X86::ADD8rr_DB: MIB->setDesc(get(X86::OR8rr)); break;
- case X86::ADD16rr_DB: MIB->setDesc(get(X86::OR16rr)); break;
- case X86::ADD32rr_DB: MIB->setDesc(get(X86::OR32rr)); break;
- case X86::ADD64rr_DB: MIB->setDesc(get(X86::OR64rr)); break;
- case X86::ADD8ri_DB: MIB->setDesc(get(X86::OR8ri)); break;
- case X86::ADD16ri_DB: MIB->setDesc(get(X86::OR16ri)); break;
- case X86::ADD32ri_DB: MIB->setDesc(get(X86::OR32ri)); break;
- case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break;
- case X86::ADD16ri8_DB: MIB->setDesc(get(X86::OR16ri8)); break;
- case X86::ADD32ri8_DB: MIB->setDesc(get(X86::OR32ri8)); break;
- case X86::ADD64ri8_DB: MIB->setDesc(get(X86::OR64ri8)); break;
- }
- return false;
- }
- /// Return true for all instructions that only update
- /// the first 32 or 64-bits of the destination register and leave the rest
- /// unmodified. This can be used to avoid folding loads if the instructions
- /// only update part of the destination register, and the non-updated part is
- /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
- /// instructions breaks the partial register dependency and it can improve
- /// performance. e.g.:
- ///
- /// movss (%rdi), %xmm0
- /// cvtss2sd %xmm0, %xmm0
- ///
- /// Instead of
- /// cvtss2sd (%rdi), %xmm0
- ///
- /// FIXME: This should be turned into a TSFlags.
- ///
- static bool hasPartialRegUpdate(unsigned Opcode,
- const X86Subtarget &Subtarget,
- bool ForLoadFold = false) {
- switch (Opcode) {
- case X86::CVTSI2SSrr:
- case X86::CVTSI2SSrm:
- case X86::CVTSI642SSrr:
- case X86::CVTSI642SSrm:
- case X86::CVTSI2SDrr:
- case X86::CVTSI2SDrm:
- case X86::CVTSI642SDrr:
- case X86::CVTSI642SDrm:
- // Load folding won't effect the undef register update since the input is
- // a GPR.
- return !ForLoadFold;
- case X86::CVTSD2SSrr:
- case X86::CVTSD2SSrm:
- case X86::CVTSS2SDrr:
- case X86::CVTSS2SDrm:
- case X86::MOVHPDrm:
- case X86::MOVHPSrm:
- case X86::MOVLPDrm:
- case X86::MOVLPSrm:
- case X86::RCPSSr:
- case X86::RCPSSm:
- case X86::RCPSSr_Int:
- case X86::RCPSSm_Int:
- case X86::ROUNDSDr:
- case X86::ROUNDSDm:
- case X86::ROUNDSSr:
- case X86::ROUNDSSm:
- case X86::RSQRTSSr:
- case X86::RSQRTSSm:
- case X86::RSQRTSSr_Int:
- case X86::RSQRTSSm_Int:
- case X86::SQRTSSr:
- case X86::SQRTSSm:
- case X86::SQRTSSr_Int:
- case X86::SQRTSSm_Int:
- case X86::SQRTSDr:
- case X86::SQRTSDm:
- case X86::SQRTSDr_Int:
- case X86::SQRTSDm_Int:
- return true;
- // GPR
- case X86::POPCNT32rm:
- case X86::POPCNT32rr:
- case X86::POPCNT64rm:
- case X86::POPCNT64rr:
- return Subtarget.hasPOPCNTFalseDeps();
- case X86::LZCNT32rm:
- case X86::LZCNT32rr:
- case X86::LZCNT64rm:
- case X86::LZCNT64rr:
- case X86::TZCNT32rm:
- case X86::TZCNT32rr:
- case X86::TZCNT64rm:
- case X86::TZCNT64rr:
- return Subtarget.hasLZCNTFalseDeps();
- }
- return false;
- }
- /// Inform the BreakFalseDeps pass how many idle
- /// instructions we would like before a partial register update.
- unsigned X86InstrInfo::getPartialRegUpdateClearance(
- const MachineInstr &MI, unsigned OpNum,
- const TargetRegisterInfo *TRI) const {
- if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
- return 0;
- // If MI is marked as reading Reg, the partial register update is wanted.
- const MachineOperand &MO = MI.getOperand(0);
- Register Reg = MO.getReg();
- if (Reg.isVirtual()) {
- if (MO.readsReg() || MI.readsVirtualRegister(Reg))
- return 0;
- } else {
- if (MI.readsRegister(Reg, TRI))
- return 0;
- }
- // If any instructions in the clearance range are reading Reg, insert a
- // dependency breaking instruction, which is inexpensive and is likely to
- // be hidden in other instruction's cycles.
- return PartialRegUpdateClearance;
- }
- // Return true for any instruction the copies the high bits of the first source
- // operand into the unused high bits of the destination operand.
- // Also returns true for instructions that have two inputs where one may
- // be undef and we want it to use the same register as the other input.
- static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum,
- bool ForLoadFold = false) {
- // Set the OpNum parameter to the first source operand.
- switch (Opcode) {
- case X86::MMX_PUNPCKHBWrr:
- case X86::MMX_PUNPCKHWDrr:
- case X86::MMX_PUNPCKHDQrr:
- case X86::MMX_PUNPCKLBWrr:
- case X86::MMX_PUNPCKLWDrr:
- case X86::MMX_PUNPCKLDQrr:
- case X86::MOVHLPSrr:
- case X86::PACKSSWBrr:
- case X86::PACKUSWBrr:
- case X86::PACKSSDWrr:
- case X86::PACKUSDWrr:
- case X86::PUNPCKHBWrr:
- case X86::PUNPCKLBWrr:
- case X86::PUNPCKHWDrr:
- case X86::PUNPCKLWDrr:
- case X86::PUNPCKHDQrr:
- case X86::PUNPCKLDQrr:
- case X86::PUNPCKHQDQrr:
- case X86::PUNPCKLQDQrr:
- case X86::SHUFPDrri:
- case X86::SHUFPSrri:
- // These instructions are sometimes used with an undef first or second
- // source. Return true here so BreakFalseDeps will assign this source to the
- // same register as the first source to avoid a false dependency.
- // Operand 1 of these instructions is tied so they're separate from their
- // VEX counterparts.
- return OpNum == 2 && !ForLoadFold;
- case X86::VMOVLHPSrr:
- case X86::VMOVLHPSZrr:
- case X86::VPACKSSWBrr:
- case X86::VPACKUSWBrr:
- case X86::VPACKSSDWrr:
- case X86::VPACKUSDWrr:
- case X86::VPACKSSWBZ128rr:
- case X86::VPACKUSWBZ128rr:
- case X86::VPACKSSDWZ128rr:
- case X86::VPACKUSDWZ128rr:
- case X86::VPERM2F128rr:
- case X86::VPERM2I128rr:
- case X86::VSHUFF32X4Z256rri:
- case X86::VSHUFF32X4Zrri:
- case X86::VSHUFF64X2Z256rri:
- case X86::VSHUFF64X2Zrri:
- case X86::VSHUFI32X4Z256rri:
- case X86::VSHUFI32X4Zrri:
- case X86::VSHUFI64X2Z256rri:
- case X86::VSHUFI64X2Zrri:
- case X86::VPUNPCKHBWrr:
- case X86::VPUNPCKLBWrr:
- case X86::VPUNPCKHBWYrr:
- case X86::VPUNPCKLBWYrr:
- case X86::VPUNPCKHBWZ128rr:
- case X86::VPUNPCKLBWZ128rr:
- case X86::VPUNPCKHBWZ256rr:
- case X86::VPUNPCKLBWZ256rr:
- case X86::VPUNPCKHBWZrr:
- case X86::VPUNPCKLBWZrr:
- case X86::VPUNPCKHWDrr:
- case X86::VPUNPCKLWDrr:
- case X86::VPUNPCKHWDYrr:
- case X86::VPUNPCKLWDYrr:
- case X86::VPUNPCKHWDZ128rr:
- case X86::VPUNPCKLWDZ128rr:
- case X86::VPUNPCKHWDZ256rr:
- case X86::VPUNPCKLWDZ256rr:
- case X86::VPUNPCKHWDZrr:
- case X86::VPUNPCKLWDZrr:
- case X86::VPUNPCKHDQrr:
- case X86::VPUNPCKLDQrr:
- case X86::VPUNPCKHDQYrr:
- case X86::VPUNPCKLDQYrr:
- case X86::VPUNPCKHDQZ128rr:
- case X86::VPUNPCKLDQZ128rr:
- case X86::VPUNPCKHDQZ256rr:
- case X86::VPUNPCKLDQZ256rr:
- case X86::VPUNPCKHDQZrr:
- case X86::VPUNPCKLDQZrr:
- case X86::VPUNPCKHQDQrr:
- case X86::VPUNPCKLQDQrr:
- case X86::VPUNPCKHQDQYrr:
- case X86::VPUNPCKLQDQYrr:
- case X86::VPUNPCKHQDQZ128rr:
- case X86::VPUNPCKLQDQZ128rr:
- case X86::VPUNPCKHQDQZ256rr:
- case X86::VPUNPCKLQDQZ256rr:
- case X86::VPUNPCKHQDQZrr:
- case X86::VPUNPCKLQDQZrr:
- // These instructions are sometimes used with an undef first or second
- // source. Return true here so BreakFalseDeps will assign this source to the
- // same register as the first source to avoid a false dependency.
- return (OpNum == 1 || OpNum == 2) && !ForLoadFold;
- case X86::VCVTSI2SSrr:
- case X86::VCVTSI2SSrm:
- case X86::VCVTSI2SSrr_Int:
- case X86::VCVTSI2SSrm_Int:
- case X86::VCVTSI642SSrr:
- case X86::VCVTSI642SSrm:
- case X86::VCVTSI642SSrr_Int:
- case X86::VCVTSI642SSrm_Int:
- case X86::VCVTSI2SDrr:
- case X86::VCVTSI2SDrm:
- case X86::VCVTSI2SDrr_Int:
- case X86::VCVTSI2SDrm_Int:
- case X86::VCVTSI642SDrr:
- case X86::VCVTSI642SDrm:
- case X86::VCVTSI642SDrr_Int:
- case X86::VCVTSI642SDrm_Int:
- // AVX-512
- case X86::VCVTSI2SSZrr:
- case X86::VCVTSI2SSZrm:
- case X86::VCVTSI2SSZrr_Int:
- case X86::VCVTSI2SSZrrb_Int:
- case X86::VCVTSI2SSZrm_Int:
- case X86::VCVTSI642SSZrr:
- case X86::VCVTSI642SSZrm:
- case X86::VCVTSI642SSZrr_Int:
- case X86::VCVTSI642SSZrrb_Int:
- case X86::VCVTSI642SSZrm_Int:
- case X86::VCVTSI2SDZrr:
- case X86::VCVTSI2SDZrm:
- case X86::VCVTSI2SDZrr_Int:
- case X86::VCVTSI2SDZrm_Int:
- case X86::VCVTSI642SDZrr:
- case X86::VCVTSI642SDZrm:
- case X86::VCVTSI642SDZrr_Int:
- case X86::VCVTSI642SDZrrb_Int:
- case X86::VCVTSI642SDZrm_Int:
- case X86::VCVTUSI2SSZrr:
- case X86::VCVTUSI2SSZrm:
- case X86::VCVTUSI2SSZrr_Int:
- case X86::VCVTUSI2SSZrrb_Int:
- case X86::VCVTUSI2SSZrm_Int:
- case X86::VCVTUSI642SSZrr:
- case X86::VCVTUSI642SSZrm:
- case X86::VCVTUSI642SSZrr_Int:
- case X86::VCVTUSI642SSZrrb_Int:
- case X86::VCVTUSI642SSZrm_Int:
- case X86::VCVTUSI2SDZrr:
- case X86::VCVTUSI2SDZrm:
- case X86::VCVTUSI2SDZrr_Int:
- case X86::VCVTUSI2SDZrm_Int:
- case X86::VCVTUSI642SDZrr:
- case X86::VCVTUSI642SDZrm:
- case X86::VCVTUSI642SDZrr_Int:
- case X86::VCVTUSI642SDZrrb_Int:
- case X86::VCVTUSI642SDZrm_Int:
- case X86::VCVTSI2SHZrr:
- case X86::VCVTSI2SHZrm:
- case X86::VCVTSI2SHZrr_Int:
- case X86::VCVTSI2SHZrrb_Int:
- case X86::VCVTSI2SHZrm_Int:
- case X86::VCVTSI642SHZrr:
- case X86::VCVTSI642SHZrm:
- case X86::VCVTSI642SHZrr_Int:
- case X86::VCVTSI642SHZrrb_Int:
- case X86::VCVTSI642SHZrm_Int:
- case X86::VCVTUSI2SHZrr:
- case X86::VCVTUSI2SHZrm:
- case X86::VCVTUSI2SHZrr_Int:
- case X86::VCVTUSI2SHZrrb_Int:
- case X86::VCVTUSI2SHZrm_Int:
- case X86::VCVTUSI642SHZrr:
- case X86::VCVTUSI642SHZrm:
- case X86::VCVTUSI642SHZrr_Int:
- case X86::VCVTUSI642SHZrrb_Int:
- case X86::VCVTUSI642SHZrm_Int:
- // Load folding won't effect the undef register update since the input is
- // a GPR.
- return OpNum == 1 && !ForLoadFold;
- case X86::VCVTSD2SSrr:
- case X86::VCVTSD2SSrm:
- case X86::VCVTSD2SSrr_Int:
- case X86::VCVTSD2SSrm_Int:
- case X86::VCVTSS2SDrr:
- case X86::VCVTSS2SDrm:
- case X86::VCVTSS2SDrr_Int:
- case X86::VCVTSS2SDrm_Int:
- case X86::VRCPSSr:
- case X86::VRCPSSr_Int:
- case X86::VRCPSSm:
- case X86::VRCPSSm_Int:
- case X86::VROUNDSDr:
- case X86::VROUNDSDm:
- case X86::VROUNDSDr_Int:
- case X86::VROUNDSDm_Int:
- case X86::VROUNDSSr:
- case X86::VROUNDSSm:
- case X86::VROUNDSSr_Int:
- case X86::VROUNDSSm_Int:
- case X86::VRSQRTSSr:
- case X86::VRSQRTSSr_Int:
- case X86::VRSQRTSSm:
- case X86::VRSQRTSSm_Int:
- case X86::VSQRTSSr:
- case X86::VSQRTSSr_Int:
- case X86::VSQRTSSm:
- case X86::VSQRTSSm_Int:
- case X86::VSQRTSDr:
- case X86::VSQRTSDr_Int:
- case X86::VSQRTSDm:
- case X86::VSQRTSDm_Int:
- // AVX-512
- case X86::VCVTSD2SSZrr:
- case X86::VCVTSD2SSZrr_Int:
- case X86::VCVTSD2SSZrrb_Int:
- case X86::VCVTSD2SSZrm:
- case X86::VCVTSD2SSZrm_Int:
- case X86::VCVTSS2SDZrr:
- case X86::VCVTSS2SDZrr_Int:
- case X86::VCVTSS2SDZrrb_Int:
- case X86::VCVTSS2SDZrm:
- case X86::VCVTSS2SDZrm_Int:
- case X86::VGETEXPSDZr:
- case X86::VGETEXPSDZrb:
- case X86::VGETEXPSDZm:
- case X86::VGETEXPSSZr:
- case X86::VGETEXPSSZrb:
- case X86::VGETEXPSSZm:
- case X86::VGETMANTSDZrri:
- case X86::VGETMANTSDZrrib:
- case X86::VGETMANTSDZrmi:
- case X86::VGETMANTSSZrri:
- case X86::VGETMANTSSZrrib:
- case X86::VGETMANTSSZrmi:
- case X86::VRNDSCALESDZr:
- case X86::VRNDSCALESDZr_Int:
- case X86::VRNDSCALESDZrb_Int:
- case X86::VRNDSCALESDZm:
- case X86::VRNDSCALESDZm_Int:
- case X86::VRNDSCALESSZr:
- case X86::VRNDSCALESSZr_Int:
- case X86::VRNDSCALESSZrb_Int:
- case X86::VRNDSCALESSZm:
- case X86::VRNDSCALESSZm_Int:
- case X86::VRCP14SDZrr:
- case X86::VRCP14SDZrm:
- case X86::VRCP14SSZrr:
- case X86::VRCP14SSZrm:
- case X86::VRCPSHZrr:
- case X86::VRCPSHZrm:
- case X86::VRSQRTSHZrr:
- case X86::VRSQRTSHZrm:
- case X86::VREDUCESHZrmi:
- case X86::VREDUCESHZrri:
- case X86::VREDUCESHZrrib:
- case X86::VGETEXPSHZr:
- case X86::VGETEXPSHZrb:
- case X86::VGETEXPSHZm:
- case X86::VGETMANTSHZrri:
- case X86::VGETMANTSHZrrib:
- case X86::VGETMANTSHZrmi:
- case X86::VRNDSCALESHZr:
- case X86::VRNDSCALESHZr_Int:
- case X86::VRNDSCALESHZrb_Int:
- case X86::VRNDSCALESHZm:
- case X86::VRNDSCALESHZm_Int:
- case X86::VSQRTSHZr:
- case X86::VSQRTSHZr_Int:
- case X86::VSQRTSHZrb_Int:
- case X86::VSQRTSHZm:
- case X86::VSQRTSHZm_Int:
- case X86::VRCP28SDZr:
- case X86::VRCP28SDZrb:
- case X86::VRCP28SDZm:
- case X86::VRCP28SSZr:
- case X86::VRCP28SSZrb:
- case X86::VRCP28SSZm:
- case X86::VREDUCESSZrmi:
- case X86::VREDUCESSZrri:
- case X86::VREDUCESSZrrib:
- case X86::VRSQRT14SDZrr:
- case X86::VRSQRT14SDZrm:
- case X86::VRSQRT14SSZrr:
- case X86::VRSQRT14SSZrm:
- case X86::VRSQRT28SDZr:
- case X86::VRSQRT28SDZrb:
- case X86::VRSQRT28SDZm:
- case X86::VRSQRT28SSZr:
- case X86::VRSQRT28SSZrb:
- case X86::VRSQRT28SSZm:
- case X86::VSQRTSSZr:
- case X86::VSQRTSSZr_Int:
- case X86::VSQRTSSZrb_Int:
- case X86::VSQRTSSZm:
- case X86::VSQRTSSZm_Int:
- case X86::VSQRTSDZr:
- case X86::VSQRTSDZr_Int:
- case X86::VSQRTSDZrb_Int:
- case X86::VSQRTSDZm:
- case X86::VSQRTSDZm_Int:
- case X86::VCVTSD2SHZrr:
- case X86::VCVTSD2SHZrr_Int:
- case X86::VCVTSD2SHZrrb_Int:
- case X86::VCVTSD2SHZrm:
- case X86::VCVTSD2SHZrm_Int:
- case X86::VCVTSS2SHZrr:
- case X86::VCVTSS2SHZrr_Int:
- case X86::VCVTSS2SHZrrb_Int:
- case X86::VCVTSS2SHZrm:
- case X86::VCVTSS2SHZrm_Int:
- case X86::VCVTSH2SDZrr:
- case X86::VCVTSH2SDZrr_Int:
- case X86::VCVTSH2SDZrrb_Int:
- case X86::VCVTSH2SDZrm:
- case X86::VCVTSH2SDZrm_Int:
- case X86::VCVTSH2SSZrr:
- case X86::VCVTSH2SSZrr_Int:
- case X86::VCVTSH2SSZrrb_Int:
- case X86::VCVTSH2SSZrm:
- case X86::VCVTSH2SSZrm_Int:
- return OpNum == 1;
- case X86::VMOVSSZrrk:
- case X86::VMOVSDZrrk:
- return OpNum == 3 && !ForLoadFold;
- case X86::VMOVSSZrrkz:
- case X86::VMOVSDZrrkz:
- return OpNum == 2 && !ForLoadFold;
- }
- return false;
- }
- /// Inform the BreakFalseDeps pass how many idle instructions we would like
- /// before certain undef register reads.
- ///
- /// This catches the VCVTSI2SD family of instructions:
- ///
- /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
- ///
- /// We should to be careful *not* to catch VXOR idioms which are presumably
- /// handled specially in the pipeline:
- ///
- /// vxorps undef %xmm1, undef %xmm1, %xmm1
- ///
- /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
- /// high bits that are passed-through are not live.
- unsigned
- X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
- const TargetRegisterInfo *TRI) const {
- const MachineOperand &MO = MI.getOperand(OpNum);
- if (Register::isPhysicalRegister(MO.getReg()) &&
- hasUndefRegUpdate(MI.getOpcode(), OpNum))
- return UndefRegClearance;
- return 0;
- }
- void X86InstrInfo::breakPartialRegDependency(
- MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
- Register Reg = MI.getOperand(OpNum).getReg();
- // If MI kills this register, the false dependence is already broken.
- if (MI.killsRegister(Reg, TRI))
- return;
- if (X86::VR128RegClass.contains(Reg)) {
- // These instructions are all floating point domain, so xorps is the best
- // choice.
- unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
- BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
- .addReg(Reg, RegState::Undef)
- .addReg(Reg, RegState::Undef);
- MI.addRegisterKilled(Reg, TRI, true);
- } else if (X86::VR256RegClass.contains(Reg)) {
- // Use vxorps to clear the full ymm register.
- // It wants to read and write the xmm sub-register.
- Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
- BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
- .addReg(XReg, RegState::Undef)
- .addReg(XReg, RegState::Undef)
- .addReg(Reg, RegState::ImplicitDefine);
- MI.addRegisterKilled(Reg, TRI, true);
- } else if (X86::GR64RegClass.contains(Reg)) {
- // Using XOR32rr because it has shorter encoding and zeros up the upper bits
- // as well.
- Register XReg = TRI->getSubReg(Reg, X86::sub_32bit);
- BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
- .addReg(XReg, RegState::Undef)
- .addReg(XReg, RegState::Undef)
- .addReg(Reg, RegState::ImplicitDefine);
- MI.addRegisterKilled(Reg, TRI, true);
- } else if (X86::GR32RegClass.contains(Reg)) {
- BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
- .addReg(Reg, RegState::Undef)
- .addReg(Reg, RegState::Undef);
- MI.addRegisterKilled(Reg, TRI, true);
- }
- }
- static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
- int PtrOffset = 0) {
- unsigned NumAddrOps = MOs.size();
- if (NumAddrOps < 4) {
- // FrameIndex only - add an immediate offset (whether its zero or not).
- for (unsigned i = 0; i != NumAddrOps; ++i)
- MIB.add(MOs[i]);
- addOffset(MIB, PtrOffset);
- } else {
- // General Memory Addressing - we need to add any offset to an existing
- // offset.
- assert(MOs.size() == 5 && "Unexpected memory operand list length");
- for (unsigned i = 0; i != NumAddrOps; ++i) {
- const MachineOperand &MO = MOs[i];
- if (i == 3 && PtrOffset != 0) {
- MIB.addDisp(MO, PtrOffset);
- } else {
- MIB.add(MO);
- }
- }
- }
- }
- static void updateOperandRegConstraints(MachineFunction &MF,
- MachineInstr &NewMI,
- const TargetInstrInfo &TII) {
- MachineRegisterInfo &MRI = MF.getRegInfo();
- const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
- for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
- MachineOperand &MO = NewMI.getOperand(Idx);
- // We only need to update constraints on virtual register operands.
- if (!MO.isReg())
- continue;
- Register Reg = MO.getReg();
- if (!Reg.isVirtual())
- continue;
- auto *NewRC = MRI.constrainRegClass(
- Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
- if (!NewRC) {
- LLVM_DEBUG(
- dbgs() << "WARNING: Unable to update register constraint for operand "
- << Idx << " of instruction:\n";
- NewMI.dump(); dbgs() << "\n");
- }
- }
- }
- static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
- ArrayRef<MachineOperand> MOs,
- MachineBasicBlock::iterator InsertPt,
- MachineInstr &MI,
- const TargetInstrInfo &TII) {
- // Create the base instruction with the memory operand as the first part.
- // Omit the implicit operands, something BuildMI can't do.
- MachineInstr *NewMI =
- MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
- MachineInstrBuilder MIB(MF, NewMI);
- addOperands(MIB, MOs);
- // Loop over the rest of the ri operands, converting them over.
- unsigned NumOps = MI.getDesc().getNumOperands() - 2;
- for (unsigned i = 0; i != NumOps; ++i) {
- MachineOperand &MO = MI.getOperand(i + 2);
- MIB.add(MO);
- }
- for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), NumOps + 2))
- MIB.add(MO);
- updateOperandRegConstraints(MF, *NewMI, TII);
- MachineBasicBlock *MBB = InsertPt->getParent();
- MBB->insert(InsertPt, NewMI);
- return MIB;
- }
- static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
- unsigned OpNo, ArrayRef<MachineOperand> MOs,
- MachineBasicBlock::iterator InsertPt,
- MachineInstr &MI, const TargetInstrInfo &TII,
- int PtrOffset = 0) {
- // Omit the implicit operands, something BuildMI can't do.
- MachineInstr *NewMI =
- MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
- MachineInstrBuilder MIB(MF, NewMI);
- for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI.getOperand(i);
- if (i == OpNo) {
- assert(MO.isReg() && "Expected to fold into reg operand!");
- addOperands(MIB, MOs, PtrOffset);
- } else {
- MIB.add(MO);
- }
- }
- updateOperandRegConstraints(MF, *NewMI, TII);
- // Copy the NoFPExcept flag from the instruction we're fusing.
- if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
- NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept);
- MachineBasicBlock *MBB = InsertPt->getParent();
- MBB->insert(InsertPt, NewMI);
- return MIB;
- }
- static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
- ArrayRef<MachineOperand> MOs,
- MachineBasicBlock::iterator InsertPt,
- MachineInstr &MI) {
- MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
- MI.getDebugLoc(), TII.get(Opcode));
- addOperands(MIB, MOs);
- return MIB.addImm(0);
- }
- MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
- MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
- ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
- unsigned Size, Align Alignment) const {
- switch (MI.getOpcode()) {
- case X86::INSERTPSrr:
- case X86::VINSERTPSrr:
- case X86::VINSERTPSZrr:
- // Attempt to convert the load of inserted vector into a fold load
- // of a single float.
- if (OpNum == 2) {
- unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
- unsigned ZMask = Imm & 15;
- unsigned DstIdx = (Imm >> 4) & 3;
- unsigned SrcIdx = (Imm >> 6) & 3;
- const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
- const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
- unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
- if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(4)) {
- int PtrOffset = SrcIdx * 4;
- unsigned NewImm = (DstIdx << 4) | ZMask;
- unsigned NewOpCode =
- (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
- (MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm :
- X86::INSERTPSrm;
- MachineInstr *NewMI =
- FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
- NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
- return NewMI;
- }
- }
- break;
- case X86::MOVHLPSrr:
- case X86::VMOVHLPSrr:
- case X86::VMOVHLPSZrr:
- // Move the upper 64-bits of the second operand to the lower 64-bits.
- // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
- // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
- if (OpNum == 2) {
- const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
- const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
- unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
- if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) {
- unsigned NewOpCode =
- (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
- (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm :
- X86::MOVLPSrm;
- MachineInstr *NewMI =
- FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
- return NewMI;
- }
- }
- break;
- case X86::UNPCKLPDrr:
- // If we won't be able to fold this to the memory form of UNPCKL, use
- // MOVHPD instead. Done as custom because we can't have this in the load
- // table twice.
- if (OpNum == 2) {
- const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
- const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
- unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
- if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) {
- MachineInstr *NewMI =
- FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
- return NewMI;
- }
- }
- break;
- }
- return nullptr;
- }
- static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
- MachineInstr &MI) {
- if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/true) ||
- !MI.getOperand(1).isReg())
- return false;
- // The are two cases we need to handle depending on where in the pipeline
- // the folding attempt is being made.
- // -Register has the undef flag set.
- // -Register is produced by the IMPLICIT_DEF instruction.
- if (MI.getOperand(1).isUndef())
- return true;
- MachineRegisterInfo &RegInfo = MF.getRegInfo();
- MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
- return VRegDef && VRegDef->isImplicitDef();
- }
- MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
- MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
- ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
- unsigned Size, Align Alignment, bool AllowCommute) const {
- bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
- bool isTwoAddrFold = false;
- // For CPUs that favor the register form of a call or push,
- // do not fold loads into calls or pushes, unless optimizing for size
- // aggressively.
- if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
- (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
- MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
- MI.getOpcode() == X86::PUSH64r))
- return nullptr;
- // Avoid partial and undef register update stalls unless optimizing for size.
- if (!MF.getFunction().hasOptSize() &&
- (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
- shouldPreventUndefRegUpdateMemFold(MF, MI)))
- return nullptr;
- unsigned NumOps = MI.getDesc().getNumOperands();
- bool isTwoAddr =
- NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
- // FIXME: AsmPrinter doesn't know how to handle
- // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
- if (MI.getOpcode() == X86::ADD32ri &&
- MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
- return nullptr;
- // GOTTPOFF relocation loads can only be folded into add instructions.
- // FIXME: Need to exclude other relocations that only support specific
- // instructions.
- if (MOs.size() == X86::AddrNumOperands &&
- MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
- MI.getOpcode() != X86::ADD64rr)
- return nullptr;
- MachineInstr *NewMI = nullptr;
- // Attempt to fold any custom cases we have.
- if (MachineInstr *CustomMI = foldMemoryOperandCustom(
- MF, MI, OpNum, MOs, InsertPt, Size, Alignment))
- return CustomMI;
- const X86MemoryFoldTableEntry *I = nullptr;
- // Folding a memory location into the two-address part of a two-address
- // instruction is different than folding it other places. It requires
- // replacing the *two* registers with the memory location.
- if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
- MI.getOperand(1).isReg() &&
- MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
- I = lookupTwoAddrFoldTable(MI.getOpcode());
- isTwoAddrFold = true;
- } else {
- if (OpNum == 0) {
- if (MI.getOpcode() == X86::MOV32r0) {
- NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
- if (NewMI)
- return NewMI;
- }
- }
- I = lookupFoldTable(MI.getOpcode(), OpNum);
- }
- if (I != nullptr) {
- unsigned Opcode = I->DstOp;
- bool FoldedLoad =
- isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_LOAD) || OpNum > 0;
- bool FoldedStore =
- isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_STORE);
- MaybeAlign MinAlign =
- decodeMaybeAlign((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT);
- if (MinAlign && Alignment < *MinAlign)
- return nullptr;
- bool NarrowToMOV32rm = false;
- if (Size) {
- const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
- const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
- &RI, MF);
- unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
- // Check if it's safe to fold the load. If the size of the object is
- // narrower than the load width, then it's not.
- // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
- if (FoldedLoad && Size < RCSize) {
- // If this is a 64-bit load, but the spill slot is 32, then we can do
- // a 32-bit load which is implicitly zero-extended. This likely is
- // due to live interval analysis remat'ing a load from stack slot.
- if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
- return nullptr;
- if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
- return nullptr;
- Opcode = X86::MOV32rm;
- NarrowToMOV32rm = true;
- }
- // For stores, make sure the size of the object is equal to the size of
- // the store. If the object is larger, the extra bits would be garbage. If
- // the object is smaller we might overwrite another object or fault.
- if (FoldedStore && Size != RCSize)
- return nullptr;
- }
- if (isTwoAddrFold)
- NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
- else
- NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
- if (NarrowToMOV32rm) {
- // If this is the special case where we use a MOV32rm to load a 32-bit
- // value and zero-extend the top bits. Change the destination register
- // to a 32-bit one.
- Register DstReg = NewMI->getOperand(0).getReg();
- if (DstReg.isPhysical())
- NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
- else
- NewMI->getOperand(0).setSubReg(X86::sub_32bit);
- }
- return NewMI;
- }
- // If the instruction and target operand are commutable, commute the
- // instruction and try again.
- if (AllowCommute) {
- unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
- if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
- bool HasDef = MI.getDesc().getNumDefs();
- Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
- Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
- Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
- bool Tied1 =
- 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
- bool Tied2 =
- 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
- // If either of the commutable operands are tied to the destination
- // then we can not commute + fold.
- if ((HasDef && Reg0 == Reg1 && Tied1) ||
- (HasDef && Reg0 == Reg2 && Tied2))
- return nullptr;
- MachineInstr *CommutedMI =
- commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
- if (!CommutedMI) {
- // Unable to commute.
- return nullptr;
- }
- if (CommutedMI != &MI) {
- // New instruction. We can't fold from this.
- CommutedMI->eraseFromParent();
- return nullptr;
- }
- // Attempt to fold with the commuted version of the instruction.
- NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size,
- Alignment, /*AllowCommute=*/false);
- if (NewMI)
- return NewMI;
- // Folding failed again - undo the commute before returning.
- MachineInstr *UncommutedMI =
- commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
- if (!UncommutedMI) {
- // Unable to commute.
- return nullptr;
- }
- if (UncommutedMI != &MI) {
- // New instruction. It doesn't need to be kept.
- UncommutedMI->eraseFromParent();
- return nullptr;
- }
- // Return here to prevent duplicate fuse failure report.
- return nullptr;
- }
- }
- // No fusion
- if (PrintFailedFusing && !MI.isCopy())
- dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
- return nullptr;
- }
- MachineInstr *
- X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
- ArrayRef<unsigned> Ops,
- MachineBasicBlock::iterator InsertPt,
- int FrameIndex, LiveIntervals *LIS,
- VirtRegMap *VRM) const {
- // Check switch flag
- if (NoFusing)
- return nullptr;
- // Avoid partial and undef register update stalls unless optimizing for size.
- if (!MF.getFunction().hasOptSize() &&
- (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
- shouldPreventUndefRegUpdateMemFold(MF, MI)))
- return nullptr;
- // Don't fold subreg spills, or reloads that use a high subreg.
- for (auto Op : Ops) {
- MachineOperand &MO = MI.getOperand(Op);
- auto SubReg = MO.getSubReg();
- if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
- return nullptr;
- }
- const MachineFrameInfo &MFI = MF.getFrameInfo();
- unsigned Size = MFI.getObjectSize(FrameIndex);
- Align Alignment = MFI.getObjectAlign(FrameIndex);
- // If the function stack isn't realigned we don't want to fold instructions
- // that need increased alignment.
- if (!RI.hasStackRealignment(MF))
- Alignment =
- std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign());
- if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
- unsigned NewOpc = 0;
- unsigned RCSize = 0;
- switch (MI.getOpcode()) {
- default: return nullptr;
- case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
- case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
- case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
- case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
- }
- // Check if it's safe to fold the load. If the size of the object is
- // narrower than the load width, then it's not.
- if (Size < RCSize)
- return nullptr;
- // Change to CMPXXri r, 0 first.
- MI.setDesc(get(NewOpc));
- MI.getOperand(1).ChangeToImmediate(0);
- } else if (Ops.size() != 1)
- return nullptr;
- return foldMemoryOperandImpl(MF, MI, Ops[0],
- MachineOperand::CreateFI(FrameIndex), InsertPt,
- Size, Alignment, /*AllowCommute=*/true);
- }
- /// Check if \p LoadMI is a partial register load that we can't fold into \p MI
- /// because the latter uses contents that wouldn't be defined in the folded
- /// version. For instance, this transformation isn't legal:
- /// movss (%rdi), %xmm0
- /// addps %xmm0, %xmm0
- /// ->
- /// addps (%rdi), %xmm0
- ///
- /// But this one is:
- /// movss (%rdi), %xmm0
- /// addss %xmm0, %xmm0
- /// ->
- /// addss (%rdi), %xmm0
- ///
- static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
- const MachineInstr &UserMI,
- const MachineFunction &MF) {
- unsigned Opc = LoadMI.getOpcode();
- unsigned UserOpc = UserMI.getOpcode();
- const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
- const TargetRegisterClass *RC =
- MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
- unsigned RegSize = TRI.getRegSizeInBits(*RC);
- if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
- Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
- Opc == X86::VMOVSSZrm_alt) &&
- RegSize > 32) {
- // These instructions only load 32 bits, we can't fold them if the
- // destination register is wider than 32 bits (4 bytes), and its user
- // instruction isn't scalar (SS).
- switch (UserOpc) {
- case X86::CVTSS2SDrr_Int:
- case X86::VCVTSS2SDrr_Int:
- case X86::VCVTSS2SDZrr_Int:
- case X86::VCVTSS2SDZrr_Intk:
- case X86::VCVTSS2SDZrr_Intkz:
- case X86::CVTSS2SIrr_Int: case X86::CVTSS2SI64rr_Int:
- case X86::VCVTSS2SIrr_Int: case X86::VCVTSS2SI64rr_Int:
- case X86::VCVTSS2SIZrr_Int: case X86::VCVTSS2SI64Zrr_Int:
- case X86::CVTTSS2SIrr_Int: case X86::CVTTSS2SI64rr_Int:
- case X86::VCVTTSS2SIrr_Int: case X86::VCVTTSS2SI64rr_Int:
- case X86::VCVTTSS2SIZrr_Int: case X86::VCVTTSS2SI64Zrr_Int:
- case X86::VCVTSS2USIZrr_Int: case X86::VCVTSS2USI64Zrr_Int:
- case X86::VCVTTSS2USIZrr_Int: case X86::VCVTTSS2USI64Zrr_Int:
- case X86::RCPSSr_Int: case X86::VRCPSSr_Int:
- case X86::RSQRTSSr_Int: case X86::VRSQRTSSr_Int:
- case X86::ROUNDSSr_Int: case X86::VROUNDSSr_Int:
- case X86::COMISSrr_Int: case X86::VCOMISSrr_Int: case X86::VCOMISSZrr_Int:
- case X86::UCOMISSrr_Int:case X86::VUCOMISSrr_Int:case X86::VUCOMISSZrr_Int:
- case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
- case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
- case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
- case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
- case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
- case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
- case X86::SQRTSSr_Int: case X86::VSQRTSSr_Int: case X86::VSQRTSSZr_Int:
- case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
- case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
- case X86::VCMPSSZrr_Intk:
- case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
- case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
- case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
- case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
- case X86::VSQRTSSZr_Intk: case X86::VSQRTSSZr_Intkz:
- case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
- case X86::VFMADDSS4rr_Int: case X86::VFNMADDSS4rr_Int:
- case X86::VFMSUBSS4rr_Int: case X86::VFNMSUBSS4rr_Int:
- case X86::VFMADD132SSr_Int: case X86::VFNMADD132SSr_Int:
- case X86::VFMADD213SSr_Int: case X86::VFNMADD213SSr_Int:
- case X86::VFMADD231SSr_Int: case X86::VFNMADD231SSr_Int:
- case X86::VFMSUB132SSr_Int: case X86::VFNMSUB132SSr_Int:
- case X86::VFMSUB213SSr_Int: case X86::VFNMSUB213SSr_Int:
- case X86::VFMSUB231SSr_Int: case X86::VFNMSUB231SSr_Int:
- case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
- case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
- case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
- case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
- case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
- case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
- case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
- case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
- case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
- case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
- case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
- case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
- case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
- case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
- case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
- case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
- case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
- case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
- case X86::VFIXUPIMMSSZrri:
- case X86::VFIXUPIMMSSZrrik:
- case X86::VFIXUPIMMSSZrrikz:
- case X86::VFPCLASSSSZrr:
- case X86::VFPCLASSSSZrrk:
- case X86::VGETEXPSSZr:
- case X86::VGETEXPSSZrk:
- case X86::VGETEXPSSZrkz:
- case X86::VGETMANTSSZrri:
- case X86::VGETMANTSSZrrik:
- case X86::VGETMANTSSZrrikz:
- case X86::VRANGESSZrri:
- case X86::VRANGESSZrrik:
- case X86::VRANGESSZrrikz:
- case X86::VRCP14SSZrr:
- case X86::VRCP14SSZrrk:
- case X86::VRCP14SSZrrkz:
- case X86::VRCP28SSZr:
- case X86::VRCP28SSZrk:
- case X86::VRCP28SSZrkz:
- case X86::VREDUCESSZrri:
- case X86::VREDUCESSZrrik:
- case X86::VREDUCESSZrrikz:
- case X86::VRNDSCALESSZr_Int:
- case X86::VRNDSCALESSZr_Intk:
- case X86::VRNDSCALESSZr_Intkz:
- case X86::VRSQRT14SSZrr:
- case X86::VRSQRT14SSZrrk:
- case X86::VRSQRT14SSZrrkz:
- case X86::VRSQRT28SSZr:
- case X86::VRSQRT28SSZrk:
- case X86::VRSQRT28SSZrkz:
- case X86::VSCALEFSSZrr:
- case X86::VSCALEFSSZrrk:
- case X86::VSCALEFSSZrrkz:
- return false;
- default:
- return true;
- }
- }
- if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
- Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
- Opc == X86::VMOVSDZrm_alt) &&
- RegSize > 64) {
- // These instructions only load 64 bits, we can't fold them if the
- // destination register is wider than 64 bits (8 bytes), and its user
- // instruction isn't scalar (SD).
- switch (UserOpc) {
- case X86::CVTSD2SSrr_Int:
- case X86::VCVTSD2SSrr_Int:
- case X86::VCVTSD2SSZrr_Int:
- case X86::VCVTSD2SSZrr_Intk:
- case X86::VCVTSD2SSZrr_Intkz:
- case X86::CVTSD2SIrr_Int: case X86::CVTSD2SI64rr_Int:
- case X86::VCVTSD2SIrr_Int: case X86::VCVTSD2SI64rr_Int:
- case X86::VCVTSD2SIZrr_Int: case X86::VCVTSD2SI64Zrr_Int:
- case X86::CVTTSD2SIrr_Int: case X86::CVTTSD2SI64rr_Int:
- case X86::VCVTTSD2SIrr_Int: case X86::VCVTTSD2SI64rr_Int:
- case X86::VCVTTSD2SIZrr_Int: case X86::VCVTTSD2SI64Zrr_Int:
- case X86::VCVTSD2USIZrr_Int: case X86::VCVTSD2USI64Zrr_Int:
- case X86::VCVTTSD2USIZrr_Int: case X86::VCVTTSD2USI64Zrr_Int:
- case X86::ROUNDSDr_Int: case X86::VROUNDSDr_Int:
- case X86::COMISDrr_Int: case X86::VCOMISDrr_Int: case X86::VCOMISDZrr_Int:
- case X86::UCOMISDrr_Int:case X86::VUCOMISDrr_Int:case X86::VUCOMISDZrr_Int:
- case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
- case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
- case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
- case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
- case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
- case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
- case X86::SQRTSDr_Int: case X86::VSQRTSDr_Int: case X86::VSQRTSDZr_Int:
- case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
- case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
- case X86::VCMPSDZrr_Intk:
- case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
- case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
- case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
- case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
- case X86::VSQRTSDZr_Intk: case X86::VSQRTSDZr_Intkz:
- case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
- case X86::VFMADDSD4rr_Int: case X86::VFNMADDSD4rr_Int:
- case X86::VFMSUBSD4rr_Int: case X86::VFNMSUBSD4rr_Int:
- case X86::VFMADD132SDr_Int: case X86::VFNMADD132SDr_Int:
- case X86::VFMADD213SDr_Int: case X86::VFNMADD213SDr_Int:
- case X86::VFMADD231SDr_Int: case X86::VFNMADD231SDr_Int:
- case X86::VFMSUB132SDr_Int: case X86::VFNMSUB132SDr_Int:
- case X86::VFMSUB213SDr_Int: case X86::VFNMSUB213SDr_Int:
- case X86::VFMSUB231SDr_Int: case X86::VFNMSUB231SDr_Int:
- case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
- case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
- case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
- case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
- case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
- case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
- case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
- case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
- case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
- case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
- case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
- case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
- case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
- case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
- case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
- case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
- case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
- case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
- case X86::VFIXUPIMMSDZrri:
- case X86::VFIXUPIMMSDZrrik:
- case X86::VFIXUPIMMSDZrrikz:
- case X86::VFPCLASSSDZrr:
- case X86::VFPCLASSSDZrrk:
- case X86::VGETEXPSDZr:
- case X86::VGETEXPSDZrk:
- case X86::VGETEXPSDZrkz:
- case X86::VGETMANTSDZrri:
- case X86::VGETMANTSDZrrik:
- case X86::VGETMANTSDZrrikz:
- case X86::VRANGESDZrri:
- case X86::VRANGESDZrrik:
- case X86::VRANGESDZrrikz:
- case X86::VRCP14SDZrr:
- case X86::VRCP14SDZrrk:
- case X86::VRCP14SDZrrkz:
- case X86::VRCP28SDZr:
- case X86::VRCP28SDZrk:
- case X86::VRCP28SDZrkz:
- case X86::VREDUCESDZrri:
- case X86::VREDUCESDZrrik:
- case X86::VREDUCESDZrrikz:
- case X86::VRNDSCALESDZr_Int:
- case X86::VRNDSCALESDZr_Intk:
- case X86::VRNDSCALESDZr_Intkz:
- case X86::VRSQRT14SDZrr:
- case X86::VRSQRT14SDZrrk:
- case X86::VRSQRT14SDZrrkz:
- case X86::VRSQRT28SDZr:
- case X86::VRSQRT28SDZrk:
- case X86::VRSQRT28SDZrkz:
- case X86::VSCALEFSDZrr:
- case X86::VSCALEFSDZrrk:
- case X86::VSCALEFSDZrrkz:
- return false;
- default:
- return true;
- }
- }
- if ((Opc == X86::VMOVSHZrm || Opc == X86::VMOVSHZrm_alt) && RegSize > 16) {
- // These instructions only load 16 bits, we can't fold them if the
- // destination register is wider than 16 bits (2 bytes), and its user
- // instruction isn't scalar (SH).
- switch (UserOpc) {
- case X86::VADDSHZrr_Int:
- case X86::VCMPSHZrr_Int:
- case X86::VDIVSHZrr_Int:
- case X86::VMAXSHZrr_Int:
- case X86::VMINSHZrr_Int:
- case X86::VMULSHZrr_Int:
- case X86::VSUBSHZrr_Int:
- case X86::VADDSHZrr_Intk: case X86::VADDSHZrr_Intkz:
- case X86::VCMPSHZrr_Intk:
- case X86::VDIVSHZrr_Intk: case X86::VDIVSHZrr_Intkz:
- case X86::VMAXSHZrr_Intk: case X86::VMAXSHZrr_Intkz:
- case X86::VMINSHZrr_Intk: case X86::VMINSHZrr_Intkz:
- case X86::VMULSHZrr_Intk: case X86::VMULSHZrr_Intkz:
- case X86::VSUBSHZrr_Intk: case X86::VSUBSHZrr_Intkz:
- case X86::VFMADD132SHZr_Int: case X86::VFNMADD132SHZr_Int:
- case X86::VFMADD213SHZr_Int: case X86::VFNMADD213SHZr_Int:
- case X86::VFMADD231SHZr_Int: case X86::VFNMADD231SHZr_Int:
- case X86::VFMSUB132SHZr_Int: case X86::VFNMSUB132SHZr_Int:
- case X86::VFMSUB213SHZr_Int: case X86::VFNMSUB213SHZr_Int:
- case X86::VFMSUB231SHZr_Int: case X86::VFNMSUB231SHZr_Int:
- case X86::VFMADD132SHZr_Intk: case X86::VFNMADD132SHZr_Intk:
- case X86::VFMADD213SHZr_Intk: case X86::VFNMADD213SHZr_Intk:
- case X86::VFMADD231SHZr_Intk: case X86::VFNMADD231SHZr_Intk:
- case X86::VFMSUB132SHZr_Intk: case X86::VFNMSUB132SHZr_Intk:
- case X86::VFMSUB213SHZr_Intk: case X86::VFNMSUB213SHZr_Intk:
- case X86::VFMSUB231SHZr_Intk: case X86::VFNMSUB231SHZr_Intk:
- case X86::VFMADD132SHZr_Intkz: case X86::VFNMADD132SHZr_Intkz:
- case X86::VFMADD213SHZr_Intkz: case X86::VFNMADD213SHZr_Intkz:
- case X86::VFMADD231SHZr_Intkz: case X86::VFNMADD231SHZr_Intkz:
- case X86::VFMSUB132SHZr_Intkz: case X86::VFNMSUB132SHZr_Intkz:
- case X86::VFMSUB213SHZr_Intkz: case X86::VFNMSUB213SHZr_Intkz:
- case X86::VFMSUB231SHZr_Intkz: case X86::VFNMSUB231SHZr_Intkz:
- return false;
- default:
- return true;
- }
- }
- return false;
- }
- MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
- MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
- MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
- LiveIntervals *LIS) const {
- // TODO: Support the case where LoadMI loads a wide register, but MI
- // only uses a subreg.
- for (auto Op : Ops) {
- if (MI.getOperand(Op).getSubReg())
- return nullptr;
- }
- // If loading from a FrameIndex, fold directly from the FrameIndex.
- unsigned NumOps = LoadMI.getDesc().getNumOperands();
- int FrameIndex;
- if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
- if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
- return nullptr;
- return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
- }
- // Check switch flag
- if (NoFusing) return nullptr;
- // Avoid partial and undef register update stalls unless optimizing for size.
- if (!MF.getFunction().hasOptSize() &&
- (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
- shouldPreventUndefRegUpdateMemFold(MF, MI)))
- return nullptr;
- // Determine the alignment of the load.
- Align Alignment;
- if (LoadMI.hasOneMemOperand())
- Alignment = (*LoadMI.memoperands_begin())->getAlign();
- else
- switch (LoadMI.getOpcode()) {
- case X86::AVX512_512_SET0:
- case X86::AVX512_512_SETALLONES:
- Alignment = Align(64);
- break;
- case X86::AVX2_SETALLONES:
- case X86::AVX1_SETALLONES:
- case X86::AVX_SET0:
- case X86::AVX512_256_SET0:
- Alignment = Align(32);
- break;
- case X86::V_SET0:
- case X86::V_SETALLONES:
- case X86::AVX512_128_SET0:
- case X86::FsFLD0F128:
- case X86::AVX512_FsFLD0F128:
- Alignment = Align(16);
- break;
- case X86::MMX_SET0:
- case X86::FsFLD0SD:
- case X86::AVX512_FsFLD0SD:
- Alignment = Align(8);
- break;
- case X86::FsFLD0SS:
- case X86::AVX512_FsFLD0SS:
- Alignment = Align(4);
- break;
- case X86::AVX512_FsFLD0SH:
- Alignment = Align(2);
- break;
- default:
- return nullptr;
- }
- if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
- unsigned NewOpc = 0;
- switch (MI.getOpcode()) {
- default: return nullptr;
- case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
- case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
- case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
- case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
- }
- // Change to CMPXXri r, 0 first.
- MI.setDesc(get(NewOpc));
- MI.getOperand(1).ChangeToImmediate(0);
- } else if (Ops.size() != 1)
- return nullptr;
- // Make sure the subregisters match.
- // Otherwise we risk changing the size of the load.
- if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
- return nullptr;
- SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
- switch (LoadMI.getOpcode()) {
- case X86::MMX_SET0:
- case X86::V_SET0:
- case X86::V_SETALLONES:
- case X86::AVX2_SETALLONES:
- case X86::AVX1_SETALLONES:
- case X86::AVX_SET0:
- case X86::AVX512_128_SET0:
- case X86::AVX512_256_SET0:
- case X86::AVX512_512_SET0:
- case X86::AVX512_512_SETALLONES:
- case X86::AVX512_FsFLD0SH:
- case X86::FsFLD0SD:
- case X86::AVX512_FsFLD0SD:
- case X86::FsFLD0SS:
- case X86::AVX512_FsFLD0SS:
- case X86::FsFLD0F128:
- case X86::AVX512_FsFLD0F128: {
- // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
- // Create a constant-pool entry and operands to load from it.
- // Medium and large mode can't fold loads this way.
- if (MF.getTarget().getCodeModel() != CodeModel::Small &&
- MF.getTarget().getCodeModel() != CodeModel::Kernel)
- return nullptr;
- // x86-32 PIC requires a PIC base register for constant pools.
- unsigned PICBase = 0;
- // Since we're using Small or Kernel code model, we can always use
- // RIP-relative addressing for a smaller encoding.
- if (Subtarget.is64Bit()) {
- PICBase = X86::RIP;
- } else if (MF.getTarget().isPositionIndependent()) {
- // FIXME: PICBase = getGlobalBaseReg(&MF);
- // This doesn't work for several reasons.
- // 1. GlobalBaseReg may have been spilled.
- // 2. It may not be live at MI.
- return nullptr;
- }
- // Create a constant-pool entry.
- MachineConstantPool &MCP = *MF.getConstantPool();
- Type *Ty;
- unsigned Opc = LoadMI.getOpcode();
- if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
- Ty = Type::getFloatTy(MF.getFunction().getContext());
- else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
- Ty = Type::getDoubleTy(MF.getFunction().getContext());
- else if (Opc == X86::FsFLD0F128 || Opc == X86::AVX512_FsFLD0F128)
- Ty = Type::getFP128Ty(MF.getFunction().getContext());
- else if (Opc == X86::AVX512_FsFLD0SH)
- Ty = Type::getHalfTy(MF.getFunction().getContext());
- else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
- Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
- 16);
- else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
- Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
- Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
- 8);
- else if (Opc == X86::MMX_SET0)
- Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
- 2);
- else
- Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
- 4);
- bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
- Opc == X86::AVX512_512_SETALLONES ||
- Opc == X86::AVX1_SETALLONES);
- const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
- Constant::getNullValue(Ty);
- unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
- // Create operands to load from the constant pool entry.
- MOs.push_back(MachineOperand::CreateReg(PICBase, false));
- MOs.push_back(MachineOperand::CreateImm(1));
- MOs.push_back(MachineOperand::CreateReg(0, false));
- MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
- MOs.push_back(MachineOperand::CreateReg(0, false));
- break;
- }
- default: {
- if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
- return nullptr;
- // Folding a normal load. Just copy the load's address operands.
- MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
- LoadMI.operands_begin() + NumOps);
- break;
- }
- }
- return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
- /*Size=*/0, Alignment, /*AllowCommute=*/true);
- }
- static SmallVector<MachineMemOperand *, 2>
- extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
- SmallVector<MachineMemOperand *, 2> LoadMMOs;
- for (MachineMemOperand *MMO : MMOs) {
- if (!MMO->isLoad())
- continue;
- if (!MMO->isStore()) {
- // Reuse the MMO.
- LoadMMOs.push_back(MMO);
- } else {
- // Clone the MMO and unset the store flag.
- LoadMMOs.push_back(MF.getMachineMemOperand(
- MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
- }
- }
- return LoadMMOs;
- }
- static SmallVector<MachineMemOperand *, 2>
- extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
- SmallVector<MachineMemOperand *, 2> StoreMMOs;
- for (MachineMemOperand *MMO : MMOs) {
- if (!MMO->isStore())
- continue;
- if (!MMO->isLoad()) {
- // Reuse the MMO.
- StoreMMOs.push_back(MMO);
- } else {
- // Clone the MMO and unset the load flag.
- StoreMMOs.push_back(MF.getMachineMemOperand(
- MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
- }
- }
- return StoreMMOs;
- }
- static unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry *I,
- const TargetRegisterClass *RC,
- const X86Subtarget &STI) {
- assert(STI.hasAVX512() && "Expected at least AVX512!");
- unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC);
- assert((SpillSize == 64 || STI.hasVLX()) &&
- "Can't broadcast less than 64 bytes without AVX512VL!");
- switch (I->Flags & TB_BCAST_MASK) {
- default: llvm_unreachable("Unexpected broadcast type!");
- case TB_BCAST_D:
- switch (SpillSize) {
- default: llvm_unreachable("Unknown spill size");
- case 16: return X86::VPBROADCASTDZ128rm;
- case 32: return X86::VPBROADCASTDZ256rm;
- case 64: return X86::VPBROADCASTDZrm;
- }
- break;
- case TB_BCAST_Q:
- switch (SpillSize) {
- default: llvm_unreachable("Unknown spill size");
- case 16: return X86::VPBROADCASTQZ128rm;
- case 32: return X86::VPBROADCASTQZ256rm;
- case 64: return X86::VPBROADCASTQZrm;
- }
- break;
- case TB_BCAST_SS:
- switch (SpillSize) {
- default: llvm_unreachable("Unknown spill size");
- case 16: return X86::VBROADCASTSSZ128rm;
- case 32: return X86::VBROADCASTSSZ256rm;
- case 64: return X86::VBROADCASTSSZrm;
- }
- break;
- case TB_BCAST_SD:
- switch (SpillSize) {
- default: llvm_unreachable("Unknown spill size");
- case 16: return X86::VMOVDDUPZ128rm;
- case 32: return X86::VBROADCASTSDZ256rm;
- case 64: return X86::VBROADCASTSDZrm;
- }
- break;
- }
- }
- bool X86InstrInfo::unfoldMemoryOperand(
- MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
- bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
- const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
- if (I == nullptr)
- return false;
- unsigned Opc = I->DstOp;
- unsigned Index = I->Flags & TB_INDEX_MASK;
- bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
- bool FoldedStore = I->Flags & TB_FOLDED_STORE;
- bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
- if (UnfoldLoad && !FoldedLoad)
- return false;
- UnfoldLoad &= FoldedLoad;
- if (UnfoldStore && !FoldedStore)
- return false;
- UnfoldStore &= FoldedStore;
- const MCInstrDesc &MCID = get(Opc);
- const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
- const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
- // TODO: Check if 32-byte or greater accesses are slow too?
- if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
- Subtarget.isUnalignedMem16Slow())
- // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
- // conservatively assume the address is unaligned. That's bad for
- // performance.
- return false;
- SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
- SmallVector<MachineOperand,2> BeforeOps;
- SmallVector<MachineOperand,2> AfterOps;
- SmallVector<MachineOperand,4> ImpOps;
- for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
- MachineOperand &Op = MI.getOperand(i);
- if (i >= Index && i < Index + X86::AddrNumOperands)
- AddrOps.push_back(Op);
- else if (Op.isReg() && Op.isImplicit())
- ImpOps.push_back(Op);
- else if (i < Index)
- BeforeOps.push_back(Op);
- else if (i > Index)
- AfterOps.push_back(Op);
- }
- // Emit the load or broadcast instruction.
- if (UnfoldLoad) {
- auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
- unsigned Opc;
- if (FoldedBCast) {
- Opc = getBroadcastOpcode(I, RC, Subtarget);
- } else {
- unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
- bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
- Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget);
- }
- DebugLoc DL;
- MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg);
- for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
- MIB.add(AddrOps[i]);
- MIB.setMemRefs(MMOs);
- NewMIs.push_back(MIB);
- if (UnfoldStore) {
- // Address operands cannot be marked isKill.
- for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
- MachineOperand &MO = NewMIs[0]->getOperand(i);
- if (MO.isReg())
- MO.setIsKill(false);
- }
- }
- }
- // Emit the data processing instruction.
- MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
- MachineInstrBuilder MIB(MF, DataMI);
- if (FoldedStore)
- MIB.addReg(Reg, RegState::Define);
- for (MachineOperand &BeforeOp : BeforeOps)
- MIB.add(BeforeOp);
- if (FoldedLoad)
- MIB.addReg(Reg);
- for (MachineOperand &AfterOp : AfterOps)
- MIB.add(AfterOp);
- for (MachineOperand &ImpOp : ImpOps) {
- MIB.addReg(ImpOp.getReg(),
- getDefRegState(ImpOp.isDef()) |
- RegState::Implicit |
- getKillRegState(ImpOp.isKill()) |
- getDeadRegState(ImpOp.isDead()) |
- getUndefRegState(ImpOp.isUndef()));
- }
- // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
- switch (DataMI->getOpcode()) {
- default: break;
- case X86::CMP64ri32:
- case X86::CMP64ri8:
- case X86::CMP32ri:
- case X86::CMP32ri8:
- case X86::CMP16ri:
- case X86::CMP16ri8:
- case X86::CMP8ri: {
- MachineOperand &MO0 = DataMI->getOperand(0);
- MachineOperand &MO1 = DataMI->getOperand(1);
- if (MO1.isImm() && MO1.getImm() == 0) {
- unsigned NewOpc;
- switch (DataMI->getOpcode()) {
- default: llvm_unreachable("Unreachable!");
- case X86::CMP64ri8:
- case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
- case X86::CMP32ri8:
- case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
- case X86::CMP16ri8:
- case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
- case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
- }
- DataMI->setDesc(get(NewOpc));
- MO1.ChangeToRegister(MO0.getReg(), false);
- }
- }
- }
- NewMIs.push_back(DataMI);
- // Emit the store instruction.
- if (UnfoldStore) {
- const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
- auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
- unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16);
- bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
- unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget);
- DebugLoc DL;
- MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
- for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
- MIB.add(AddrOps[i]);
- MIB.addReg(Reg, RegState::Kill);
- MIB.setMemRefs(MMOs);
- NewMIs.push_back(MIB);
- }
- return true;
- }
- bool
- X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
- SmallVectorImpl<SDNode*> &NewNodes) const {
- if (!N->isMachineOpcode())
- return false;
- const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
- if (I == nullptr)
- return false;
- unsigned Opc = I->DstOp;
- unsigned Index = I->Flags & TB_INDEX_MASK;
- bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
- bool FoldedStore = I->Flags & TB_FOLDED_STORE;
- bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
- const MCInstrDesc &MCID = get(Opc);
- MachineFunction &MF = DAG.getMachineFunction();
- const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
- const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
- unsigned NumDefs = MCID.NumDefs;
- std::vector<SDValue> AddrOps;
- std::vector<SDValue> BeforeOps;
- std::vector<SDValue> AfterOps;
- SDLoc dl(N);
- unsigned NumOps = N->getNumOperands();
- for (unsigned i = 0; i != NumOps-1; ++i) {
- SDValue Op = N->getOperand(i);
- if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
- AddrOps.push_back(Op);
- else if (i < Index-NumDefs)
- BeforeOps.push_back(Op);
- else if (i > Index-NumDefs)
- AfterOps.push_back(Op);
- }
- SDValue Chain = N->getOperand(NumOps-1);
- AddrOps.push_back(Chain);
- // Emit the load instruction.
- SDNode *Load = nullptr;
- if (FoldedLoad) {
- EVT VT = *TRI.legalclasstypes_begin(*RC);
- auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
- if (MMOs.empty() && RC == &X86::VR128RegClass &&
- Subtarget.isUnalignedMem16Slow())
- // Do not introduce a slow unaligned load.
- return false;
- // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
- // memory access is slow above.
- unsigned Opc;
- if (FoldedBCast) {
- Opc = getBroadcastOpcode(I, RC, Subtarget);
- } else {
- unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
- bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
- Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget);
- }
- Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps);
- NewNodes.push_back(Load);
- // Preserve memory reference information.
- DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
- }
- // Emit the data processing instruction.
- std::vector<EVT> VTs;
- const TargetRegisterClass *DstRC = nullptr;
- if (MCID.getNumDefs() > 0) {
- DstRC = getRegClass(MCID, 0, &RI, MF);
- VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
- }
- for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
- EVT VT = N->getValueType(i);
- if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
- VTs.push_back(VT);
- }
- if (Load)
- BeforeOps.push_back(SDValue(Load, 0));
- llvm::append_range(BeforeOps, AfterOps);
- // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
- switch (Opc) {
- default: break;
- case X86::CMP64ri32:
- case X86::CMP64ri8:
- case X86::CMP32ri:
- case X86::CMP32ri8:
- case X86::CMP16ri:
- case X86::CMP16ri8:
- case X86::CMP8ri:
- if (isNullConstant(BeforeOps[1])) {
- switch (Opc) {
- default: llvm_unreachable("Unreachable!");
- case X86::CMP64ri8:
- case X86::CMP64ri32: Opc = X86::TEST64rr; break;
- case X86::CMP32ri8:
- case X86::CMP32ri: Opc = X86::TEST32rr; break;
- case X86::CMP16ri8:
- case X86::CMP16ri: Opc = X86::TEST16rr; break;
- case X86::CMP8ri: Opc = X86::TEST8rr; break;
- }
- BeforeOps[1] = BeforeOps[0];
- }
- }
- SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
- NewNodes.push_back(NewNode);
- // Emit the store instruction.
- if (FoldedStore) {
- AddrOps.pop_back();
- AddrOps.push_back(SDValue(NewNode, 0));
- AddrOps.push_back(Chain);
- auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
- if (MMOs.empty() && RC == &X86::VR128RegClass &&
- Subtarget.isUnalignedMem16Slow())
- // Do not introduce a slow unaligned store.
- return false;
- // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
- // memory access is slow above.
- unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
- bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
- SDNode *Store =
- DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
- dl, MVT::Other, AddrOps);
- NewNodes.push_back(Store);
- // Preserve memory reference information.
- DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
- }
- return true;
- }
- unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
- bool UnfoldLoad, bool UnfoldStore,
- unsigned *LoadRegIndex) const {
- const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
- if (I == nullptr)
- return 0;
- bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
- bool FoldedStore = I->Flags & TB_FOLDED_STORE;
- if (UnfoldLoad && !FoldedLoad)
- return 0;
- if (UnfoldStore && !FoldedStore)
- return 0;
- if (LoadRegIndex)
- *LoadRegIndex = I->Flags & TB_INDEX_MASK;
- return I->DstOp;
- }
- bool
- X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
- int64_t &Offset1, int64_t &Offset2) const {
- if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
- return false;
- unsigned Opc1 = Load1->getMachineOpcode();
- unsigned Opc2 = Load2->getMachineOpcode();
- switch (Opc1) {
- default: return false;
- case X86::MOV8rm:
- case X86::MOV16rm:
- case X86::MOV32rm:
- case X86::MOV64rm:
- case X86::LD_Fp32m:
- case X86::LD_Fp64m:
- case X86::LD_Fp80m:
- case X86::MOVSSrm:
- case X86::MOVSSrm_alt:
- case X86::MOVSDrm:
- case X86::MOVSDrm_alt:
- case X86::MMX_MOVD64rm:
- case X86::MMX_MOVQ64rm:
- case X86::MOVAPSrm:
- case X86::MOVUPSrm:
- case X86::MOVAPDrm:
- case X86::MOVUPDrm:
- case X86::MOVDQArm:
- case X86::MOVDQUrm:
- // AVX load instructions
- case X86::VMOVSSrm:
- case X86::VMOVSSrm_alt:
- case X86::VMOVSDrm:
- case X86::VMOVSDrm_alt:
- case X86::VMOVAPSrm:
- case X86::VMOVUPSrm:
- case X86::VMOVAPDrm:
- case X86::VMOVUPDrm:
- case X86::VMOVDQArm:
- case X86::VMOVDQUrm:
- case X86::VMOVAPSYrm:
- case X86::VMOVUPSYrm:
- case X86::VMOVAPDYrm:
- case X86::VMOVUPDYrm:
- case X86::VMOVDQAYrm:
- case X86::VMOVDQUYrm:
- // AVX512 load instructions
- case X86::VMOVSSZrm:
- case X86::VMOVSSZrm_alt:
- case X86::VMOVSDZrm:
- case X86::VMOVSDZrm_alt:
- case X86::VMOVAPSZ128rm:
- case X86::VMOVUPSZ128rm:
- case X86::VMOVAPSZ128rm_NOVLX:
- case X86::VMOVUPSZ128rm_NOVLX:
- case X86::VMOVAPDZ128rm:
- case X86::VMOVUPDZ128rm:
- case X86::VMOVDQU8Z128rm:
- case X86::VMOVDQU16Z128rm:
- case X86::VMOVDQA32Z128rm:
- case X86::VMOVDQU32Z128rm:
- case X86::VMOVDQA64Z128rm:
- case X86::VMOVDQU64Z128rm:
- case X86::VMOVAPSZ256rm:
- case X86::VMOVUPSZ256rm:
- case X86::VMOVAPSZ256rm_NOVLX:
- case X86::VMOVUPSZ256rm_NOVLX:
- case X86::VMOVAPDZ256rm:
- case X86::VMOVUPDZ256rm:
- case X86::VMOVDQU8Z256rm:
- case X86::VMOVDQU16Z256rm:
- case X86::VMOVDQA32Z256rm:
- case X86::VMOVDQU32Z256rm:
- case X86::VMOVDQA64Z256rm:
- case X86::VMOVDQU64Z256rm:
- case X86::VMOVAPSZrm:
- case X86::VMOVUPSZrm:
- case X86::VMOVAPDZrm:
- case X86::VMOVUPDZrm:
- case X86::VMOVDQU8Zrm:
- case X86::VMOVDQU16Zrm:
- case X86::VMOVDQA32Zrm:
- case X86::VMOVDQU32Zrm:
- case X86::VMOVDQA64Zrm:
- case X86::VMOVDQU64Zrm:
- case X86::KMOVBkm:
- case X86::KMOVWkm:
- case X86::KMOVDkm:
- case X86::KMOVQkm:
- break;
- }
- switch (Opc2) {
- default: return false;
- case X86::MOV8rm:
- case X86::MOV16rm:
- case X86::MOV32rm:
- case X86::MOV64rm:
- case X86::LD_Fp32m:
- case X86::LD_Fp64m:
- case X86::LD_Fp80m:
- case X86::MOVSSrm:
- case X86::MOVSSrm_alt:
- case X86::MOVSDrm:
- case X86::MOVSDrm_alt:
- case X86::MMX_MOVD64rm:
- case X86::MMX_MOVQ64rm:
- case X86::MOVAPSrm:
- case X86::MOVUPSrm:
- case X86::MOVAPDrm:
- case X86::MOVUPDrm:
- case X86::MOVDQArm:
- case X86::MOVDQUrm:
- // AVX load instructions
- case X86::VMOVSSrm:
- case X86::VMOVSSrm_alt:
- case X86::VMOVSDrm:
- case X86::VMOVSDrm_alt:
- case X86::VMOVAPSrm:
- case X86::VMOVUPSrm:
- case X86::VMOVAPDrm:
- case X86::VMOVUPDrm:
- case X86::VMOVDQArm:
- case X86::VMOVDQUrm:
- case X86::VMOVAPSYrm:
- case X86::VMOVUPSYrm:
- case X86::VMOVAPDYrm:
- case X86::VMOVUPDYrm:
- case X86::VMOVDQAYrm:
- case X86::VMOVDQUYrm:
- // AVX512 load instructions
- case X86::VMOVSSZrm:
- case X86::VMOVSSZrm_alt:
- case X86::VMOVSDZrm:
- case X86::VMOVSDZrm_alt:
- case X86::VMOVAPSZ128rm:
- case X86::VMOVUPSZ128rm:
- case X86::VMOVAPSZ128rm_NOVLX:
- case X86::VMOVUPSZ128rm_NOVLX:
- case X86::VMOVAPDZ128rm:
- case X86::VMOVUPDZ128rm:
- case X86::VMOVDQU8Z128rm:
- case X86::VMOVDQU16Z128rm:
- case X86::VMOVDQA32Z128rm:
- case X86::VMOVDQU32Z128rm:
- case X86::VMOVDQA64Z128rm:
- case X86::VMOVDQU64Z128rm:
- case X86::VMOVAPSZ256rm:
- case X86::VMOVUPSZ256rm:
- case X86::VMOVAPSZ256rm_NOVLX:
- case X86::VMOVUPSZ256rm_NOVLX:
- case X86::VMOVAPDZ256rm:
- case X86::VMOVUPDZ256rm:
- case X86::VMOVDQU8Z256rm:
- case X86::VMOVDQU16Z256rm:
- case X86::VMOVDQA32Z256rm:
- case X86::VMOVDQU32Z256rm:
- case X86::VMOVDQA64Z256rm:
- case X86::VMOVDQU64Z256rm:
- case X86::VMOVAPSZrm:
- case X86::VMOVUPSZrm:
- case X86::VMOVAPDZrm:
- case X86::VMOVUPDZrm:
- case X86::VMOVDQU8Zrm:
- case X86::VMOVDQU16Zrm:
- case X86::VMOVDQA32Zrm:
- case X86::VMOVDQU32Zrm:
- case X86::VMOVDQA64Zrm:
- case X86::VMOVDQU64Zrm:
- case X86::KMOVBkm:
- case X86::KMOVWkm:
- case X86::KMOVDkm:
- case X86::KMOVQkm:
- break;
- }
- // Lambda to check if both the loads have the same value for an operand index.
- auto HasSameOp = [&](int I) {
- return Load1->getOperand(I) == Load2->getOperand(I);
- };
- // All operands except the displacement should match.
- if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
- !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
- return false;
- // Chain Operand must be the same.
- if (!HasSameOp(5))
- return false;
- // Now let's examine if the displacements are constants.
- auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
- auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
- if (!Disp1 || !Disp2)
- return false;
- Offset1 = Disp1->getSExtValue();
- Offset2 = Disp2->getSExtValue();
- return true;
- }
- bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
- int64_t Offset1, int64_t Offset2,
- unsigned NumLoads) const {
- assert(Offset2 > Offset1);
- if ((Offset2 - Offset1) / 8 > 64)
- return false;
- unsigned Opc1 = Load1->getMachineOpcode();
- unsigned Opc2 = Load2->getMachineOpcode();
- if (Opc1 != Opc2)
- return false; // FIXME: overly conservative?
- switch (Opc1) {
- default: break;
- case X86::LD_Fp32m:
- case X86::LD_Fp64m:
- case X86::LD_Fp80m:
- case X86::MMX_MOVD64rm:
- case X86::MMX_MOVQ64rm:
- return false;
- }
- EVT VT = Load1->getValueType(0);
- switch (VT.getSimpleVT().SimpleTy) {
- default:
- // XMM registers. In 64-bit mode we can be a bit more aggressive since we
- // have 16 of them to play with.
- if (Subtarget.is64Bit()) {
- if (NumLoads >= 3)
- return false;
- } else if (NumLoads) {
- return false;
- }
- break;
- case MVT::i8:
- case MVT::i16:
- case MVT::i32:
- case MVT::i64:
- case MVT::f32:
- case MVT::f64:
- if (NumLoads)
- return false;
- break;
- }
- return true;
- }
- bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI,
- const MachineBasicBlock *MBB,
- const MachineFunction &MF) const {
- // ENDBR instructions should not be scheduled around.
- unsigned Opcode = MI.getOpcode();
- if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 ||
- Opcode == X86::LDTILECFG)
- return true;
- return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
- }
- bool X86InstrInfo::
- reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
- assert(Cond.size() == 1 && "Invalid X86 branch condition!");
- X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
- Cond[0].setImm(GetOppositeBranchCondition(CC));
- return false;
- }
- bool X86InstrInfo::
- isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
- // FIXME: Return false for x87 stack register classes for now. We can't
- // allow any loads of these registers before FpGet_ST0_80.
- return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
- RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
- RC == &X86::RFP80RegClass);
- }
- /// Return a virtual register initialized with the
- /// the global base register value. Output instructions required to
- /// initialize the register in the function entry block, if necessary.
- ///
- /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
- ///
- unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
- assert((!Subtarget.is64Bit() ||
- MF->getTarget().getCodeModel() == CodeModel::Medium ||
- MF->getTarget().getCodeModel() == CodeModel::Large) &&
- "X86-64 PIC uses RIP relative addressing");
- X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
- Register GlobalBaseReg = X86FI->getGlobalBaseReg();
- if (GlobalBaseReg != 0)
- return GlobalBaseReg;
- // Create the register. The code to initialize it is inserted
- // later, by the CGBR pass (below).
- MachineRegisterInfo &RegInfo = MF->getRegInfo();
- GlobalBaseReg = RegInfo.createVirtualRegister(
- Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
- X86FI->setGlobalBaseReg(GlobalBaseReg);
- return GlobalBaseReg;
- }
- // These are the replaceable SSE instructions. Some of these have Int variants
- // that we don't include here. We don't want to replace instructions selected
- // by intrinsics.
- static const uint16_t ReplaceableInstrs[][3] = {
- //PackedSingle PackedDouble PackedInt
- { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
- { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
- { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
- { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
- { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
- { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr },
- { X86::MOVSDmr, X86::MOVSDmr, X86::MOVPQI2QImr },
- { X86::MOVSSmr, X86::MOVSSmr, X86::MOVPDI2DImr },
- { X86::MOVSDrm, X86::MOVSDrm, X86::MOVQI2PQIrm },
- { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm },
- { X86::MOVSSrm, X86::MOVSSrm, X86::MOVDI2PDIrm },
- { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm },
- { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
- { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
- { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
- { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
- { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
- { X86::ORPSrm, X86::ORPDrm, X86::PORrm },
- { X86::ORPSrr, X86::ORPDrr, X86::PORrr },
- { X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
- { X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
- { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
- { X86::MOVLHPSrr, X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
- { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
- { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
- { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
- { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
- { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
- { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
- { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
- { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
- // AVX 128-bit support
- { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
- { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
- { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
- { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
- { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
- { X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr },
- { X86::VMOVSDmr, X86::VMOVSDmr, X86::VMOVPQI2QImr },
- { X86::VMOVSSmr, X86::VMOVSSmr, X86::VMOVPDI2DImr },
- { X86::VMOVSDrm, X86::VMOVSDrm, X86::VMOVQI2PQIrm },
- { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm },
- { X86::VMOVSSrm, X86::VMOVSSrm, X86::VMOVDI2PDIrm },
- { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm },
- { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
- { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
- { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
- { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
- { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
- { X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
- { X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
- { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
- { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
- { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
- { X86::VMOVLHPSrr, X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
- { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
- { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
- { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
- { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
- { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
- { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
- { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
- { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
- // AVX 256-bit support
- { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
- { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
- { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
- { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
- { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
- { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr },
- { X86::VPERMPSYrm, X86::VPERMPSYrm, X86::VPERMDYrm },
- { X86::VPERMPSYrr, X86::VPERMPSYrr, X86::VPERMDYrr },
- { X86::VPERMPDYmi, X86::VPERMPDYmi, X86::VPERMQYmi },
- { X86::VPERMPDYri, X86::VPERMPDYri, X86::VPERMQYri },
- // AVX512 support
- { X86::VMOVLPSZ128mr, X86::VMOVLPDZ128mr, X86::VMOVPQI2QIZmr },
- { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
- { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
- { X86::VMOVNTPSZmr, X86::VMOVNTPDZmr, X86::VMOVNTDQZmr },
- { X86::VMOVSDZmr, X86::VMOVSDZmr, X86::VMOVPQI2QIZmr },
- { X86::VMOVSSZmr, X86::VMOVSSZmr, X86::VMOVPDI2DIZmr },
- { X86::VMOVSDZrm, X86::VMOVSDZrm, X86::VMOVQI2PQIZrm },
- { X86::VMOVSDZrm_alt, X86::VMOVSDZrm_alt, X86::VMOVQI2PQIZrm },
- { X86::VMOVSSZrm, X86::VMOVSSZrm, X86::VMOVDI2PDIZrm },
- { X86::VMOVSSZrm_alt, X86::VMOVSSZrm_alt, X86::VMOVDI2PDIZrm },
- { X86::VBROADCASTSSZ128rr,X86::VBROADCASTSSZ128rr,X86::VPBROADCASTDZ128rr },
- { X86::VBROADCASTSSZ128rm,X86::VBROADCASTSSZ128rm,X86::VPBROADCASTDZ128rm },
- { X86::VBROADCASTSSZ256rr,X86::VBROADCASTSSZ256rr,X86::VPBROADCASTDZ256rr },
- { X86::VBROADCASTSSZ256rm,X86::VBROADCASTSSZ256rm,X86::VPBROADCASTDZ256rm },
- { X86::VBROADCASTSSZrr, X86::VBROADCASTSSZrr, X86::VPBROADCASTDZrr },
- { X86::VBROADCASTSSZrm, X86::VBROADCASTSSZrm, X86::VPBROADCASTDZrm },
- { X86::VMOVDDUPZ128rr, X86::VMOVDDUPZ128rr, X86::VPBROADCASTQZ128rr },
- { X86::VMOVDDUPZ128rm, X86::VMOVDDUPZ128rm, X86::VPBROADCASTQZ128rm },
- { X86::VBROADCASTSDZ256rr,X86::VBROADCASTSDZ256rr,X86::VPBROADCASTQZ256rr },
- { X86::VBROADCASTSDZ256rm,X86::VBROADCASTSDZ256rm,X86::VPBROADCASTQZ256rm },
- { X86::VBROADCASTSDZrr, X86::VBROADCASTSDZrr, X86::VPBROADCASTQZrr },
- { X86::VBROADCASTSDZrm, X86::VBROADCASTSDZrm, X86::VPBROADCASTQZrm },
- { X86::VINSERTF32x4Zrr, X86::VINSERTF32x4Zrr, X86::VINSERTI32x4Zrr },
- { X86::VINSERTF32x4Zrm, X86::VINSERTF32x4Zrm, X86::VINSERTI32x4Zrm },
- { X86::VINSERTF32x8Zrr, X86::VINSERTF32x8Zrr, X86::VINSERTI32x8Zrr },
- { X86::VINSERTF32x8Zrm, X86::VINSERTF32x8Zrm, X86::VINSERTI32x8Zrm },
- { X86::VINSERTF64x2Zrr, X86::VINSERTF64x2Zrr, X86::VINSERTI64x2Zrr },
- { X86::VINSERTF64x2Zrm, X86::VINSERTF64x2Zrm, X86::VINSERTI64x2Zrm },
- { X86::VINSERTF64x4Zrr, X86::VINSERTF64x4Zrr, X86::VINSERTI64x4Zrr },
- { X86::VINSERTF64x4Zrm, X86::VINSERTF64x4Zrm, X86::VINSERTI64x4Zrm },
- { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
- { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
- { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
- { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
- { X86::VEXTRACTF32x4Zrr, X86::VEXTRACTF32x4Zrr, X86::VEXTRACTI32x4Zrr },
- { X86::VEXTRACTF32x4Zmr, X86::VEXTRACTF32x4Zmr, X86::VEXTRACTI32x4Zmr },
- { X86::VEXTRACTF32x8Zrr, X86::VEXTRACTF32x8Zrr, X86::VEXTRACTI32x8Zrr },
- { X86::VEXTRACTF32x8Zmr, X86::VEXTRACTF32x8Zmr, X86::VEXTRACTI32x8Zmr },
- { X86::VEXTRACTF64x2Zrr, X86::VEXTRACTF64x2Zrr, X86::VEXTRACTI64x2Zrr },
- { X86::VEXTRACTF64x2Zmr, X86::VEXTRACTF64x2Zmr, X86::VEXTRACTI64x2Zmr },
- { X86::VEXTRACTF64x4Zrr, X86::VEXTRACTF64x4Zrr, X86::VEXTRACTI64x4Zrr },
- { X86::VEXTRACTF64x4Zmr, X86::VEXTRACTF64x4Zmr, X86::VEXTRACTI64x4Zmr },
- { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
- { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
- { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
- { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
- { X86::VPERMILPSmi, X86::VPERMILPSmi, X86::VPSHUFDmi },
- { X86::VPERMILPSri, X86::VPERMILPSri, X86::VPSHUFDri },
- { X86::VPERMILPSZ128mi, X86::VPERMILPSZ128mi, X86::VPSHUFDZ128mi },
- { X86::VPERMILPSZ128ri, X86::VPERMILPSZ128ri, X86::VPSHUFDZ128ri },
- { X86::VPERMILPSZ256mi, X86::VPERMILPSZ256mi, X86::VPSHUFDZ256mi },
- { X86::VPERMILPSZ256ri, X86::VPERMILPSZ256ri, X86::VPSHUFDZ256ri },
- { X86::VPERMILPSZmi, X86::VPERMILPSZmi, X86::VPSHUFDZmi },
- { X86::VPERMILPSZri, X86::VPERMILPSZri, X86::VPSHUFDZri },
- { X86::VPERMPSZ256rm, X86::VPERMPSZ256rm, X86::VPERMDZ256rm },
- { X86::VPERMPSZ256rr, X86::VPERMPSZ256rr, X86::VPERMDZ256rr },
- { X86::VPERMPDZ256mi, X86::VPERMPDZ256mi, X86::VPERMQZ256mi },
- { X86::VPERMPDZ256ri, X86::VPERMPDZ256ri, X86::VPERMQZ256ri },
- { X86::VPERMPDZ256rm, X86::VPERMPDZ256rm, X86::VPERMQZ256rm },
- { X86::VPERMPDZ256rr, X86::VPERMPDZ256rr, X86::VPERMQZ256rr },
- { X86::VPERMPSZrm, X86::VPERMPSZrm, X86::VPERMDZrm },
- { X86::VPERMPSZrr, X86::VPERMPSZrr, X86::VPERMDZrr },
- { X86::VPERMPDZmi, X86::VPERMPDZmi, X86::VPERMQZmi },
- { X86::VPERMPDZri, X86::VPERMPDZri, X86::VPERMQZri },
- { X86::VPERMPDZrm, X86::VPERMPDZrm, X86::VPERMQZrm },
- { X86::VPERMPDZrr, X86::VPERMPDZrr, X86::VPERMQZrr },
- { X86::VUNPCKLPDZ256rm, X86::VUNPCKLPDZ256rm, X86::VPUNPCKLQDQZ256rm },
- { X86::VUNPCKLPDZ256rr, X86::VUNPCKLPDZ256rr, X86::VPUNPCKLQDQZ256rr },
- { X86::VUNPCKHPDZ256rm, X86::VUNPCKHPDZ256rm, X86::VPUNPCKHQDQZ256rm },
- { X86::VUNPCKHPDZ256rr, X86::VUNPCKHPDZ256rr, X86::VPUNPCKHQDQZ256rr },
- { X86::VUNPCKLPSZ256rm, X86::VUNPCKLPSZ256rm, X86::VPUNPCKLDQZ256rm },
- { X86::VUNPCKLPSZ256rr, X86::VUNPCKLPSZ256rr, X86::VPUNPCKLDQZ256rr },
- { X86::VUNPCKHPSZ256rm, X86::VUNPCKHPSZ256rm, X86::VPUNPCKHDQZ256rm },
- { X86::VUNPCKHPSZ256rr, X86::VUNPCKHPSZ256rr, X86::VPUNPCKHDQZ256rr },
- { X86::VUNPCKLPDZ128rm, X86::VUNPCKLPDZ128rm, X86::VPUNPCKLQDQZ128rm },
- { X86::VMOVLHPSZrr, X86::VUNPCKLPDZ128rr, X86::VPUNPCKLQDQZ128rr },
- { X86::VUNPCKHPDZ128rm, X86::VUNPCKHPDZ128rm, X86::VPUNPCKHQDQZ128rm },
- { X86::VUNPCKHPDZ128rr, X86::VUNPCKHPDZ128rr, X86::VPUNPCKHQDQZ128rr },
- { X86::VUNPCKLPSZ128rm, X86::VUNPCKLPSZ128rm, X86::VPUNPCKLDQZ128rm },
- { X86::VUNPCKLPSZ128rr, X86::VUNPCKLPSZ128rr, X86::VPUNPCKLDQZ128rr },
- { X86::VUNPCKHPSZ128rm, X86::VUNPCKHPSZ128rm, X86::VPUNPCKHDQZ128rm },
- { X86::VUNPCKHPSZ128rr, X86::VUNPCKHPSZ128rr, X86::VPUNPCKHDQZ128rr },
- { X86::VUNPCKLPDZrm, X86::VUNPCKLPDZrm, X86::VPUNPCKLQDQZrm },
- { X86::VUNPCKLPDZrr, X86::VUNPCKLPDZrr, X86::VPUNPCKLQDQZrr },
- { X86::VUNPCKHPDZrm, X86::VUNPCKHPDZrm, X86::VPUNPCKHQDQZrm },
- { X86::VUNPCKHPDZrr, X86::VUNPCKHPDZrr, X86::VPUNPCKHQDQZrr },
- { X86::VUNPCKLPSZrm, X86::VUNPCKLPSZrm, X86::VPUNPCKLDQZrm },
- { X86::VUNPCKLPSZrr, X86::VUNPCKLPSZrr, X86::VPUNPCKLDQZrr },
- { X86::VUNPCKHPSZrm, X86::VUNPCKHPSZrm, X86::VPUNPCKHDQZrm },
- { X86::VUNPCKHPSZrr, X86::VUNPCKHPSZrr, X86::VPUNPCKHDQZrr },
- { X86::VEXTRACTPSZmr, X86::VEXTRACTPSZmr, X86::VPEXTRDZmr },
- { X86::VEXTRACTPSZrr, X86::VEXTRACTPSZrr, X86::VPEXTRDZrr },
- };
- static const uint16_t ReplaceableInstrsAVX2[][3] = {
- //PackedSingle PackedDouble PackedInt
- { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
- { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
- { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
- { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
- { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
- { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
- { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
- { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
- { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
- { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr },
- { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
- { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
- { X86::VMOVDDUPrm, X86::VMOVDDUPrm, X86::VPBROADCASTQrm},
- { X86::VMOVDDUPrr, X86::VMOVDDUPrr, X86::VPBROADCASTQrr},
- { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
- { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
- { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
- { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
- { X86::VBROADCASTF128, X86::VBROADCASTF128, X86::VBROADCASTI128 },
- { X86::VBLENDPSYrri, X86::VBLENDPSYrri, X86::VPBLENDDYrri },
- { X86::VBLENDPSYrmi, X86::VBLENDPSYrmi, X86::VPBLENDDYrmi },
- { X86::VPERMILPSYmi, X86::VPERMILPSYmi, X86::VPSHUFDYmi },
- { X86::VPERMILPSYri, X86::VPERMILPSYri, X86::VPSHUFDYri },
- { X86::VUNPCKLPDYrm, X86::VUNPCKLPDYrm, X86::VPUNPCKLQDQYrm },
- { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrr, X86::VPUNPCKLQDQYrr },
- { X86::VUNPCKHPDYrm, X86::VUNPCKHPDYrm, X86::VPUNPCKHQDQYrm },
- { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrr, X86::VPUNPCKHQDQYrr },
- { X86::VUNPCKLPSYrm, X86::VUNPCKLPSYrm, X86::VPUNPCKLDQYrm },
- { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrr, X86::VPUNPCKLDQYrr },
- { X86::VUNPCKHPSYrm, X86::VUNPCKHPSYrm, X86::VPUNPCKHDQYrm },
- { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrr, X86::VPUNPCKHDQYrr },
- };
- static const uint16_t ReplaceableInstrsFP[][3] = {
- //PackedSingle PackedDouble
- { X86::MOVLPSrm, X86::MOVLPDrm, X86::INSTRUCTION_LIST_END },
- { X86::MOVHPSrm, X86::MOVHPDrm, X86::INSTRUCTION_LIST_END },
- { X86::MOVHPSmr, X86::MOVHPDmr, X86::INSTRUCTION_LIST_END },
- { X86::VMOVLPSrm, X86::VMOVLPDrm, X86::INSTRUCTION_LIST_END },
- { X86::VMOVHPSrm, X86::VMOVHPDrm, X86::INSTRUCTION_LIST_END },
- { X86::VMOVHPSmr, X86::VMOVHPDmr, X86::INSTRUCTION_LIST_END },
- { X86::VMOVLPSZ128rm, X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END },
- { X86::VMOVHPSZ128rm, X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END },
- { X86::VMOVHPSZ128mr, X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END },
- };
- static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
- //PackedSingle PackedDouble PackedInt
- { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
- { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
- { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
- { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
- };
- static const uint16_t ReplaceableInstrsAVX512[][4] = {
- // Two integer columns for 64-bit and 32-bit elements.
- //PackedSingle PackedDouble PackedInt PackedInt
- { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr },
- { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm },
- { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr },
- { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr },
- { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm },
- { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr },
- { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm },
- { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr },
- { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr },
- { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm },
- { X86::VMOVAPSZmr, X86::VMOVAPDZmr, X86::VMOVDQA64Zmr, X86::VMOVDQA32Zmr },
- { X86::VMOVAPSZrm, X86::VMOVAPDZrm, X86::VMOVDQA64Zrm, X86::VMOVDQA32Zrm },
- { X86::VMOVAPSZrr, X86::VMOVAPDZrr, X86::VMOVDQA64Zrr, X86::VMOVDQA32Zrr },
- { X86::VMOVUPSZmr, X86::VMOVUPDZmr, X86::VMOVDQU64Zmr, X86::VMOVDQU32Zmr },
- { X86::VMOVUPSZrm, X86::VMOVUPDZrm, X86::VMOVDQU64Zrm, X86::VMOVDQU32Zrm },
- };
- static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
- // Two integer columns for 64-bit and 32-bit elements.
- //PackedSingle PackedDouble PackedInt PackedInt
- { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
- { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
- { X86::VANDPSZ128rm, X86::VANDPDZ128rm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
- { X86::VANDPSZ128rr, X86::VANDPDZ128rr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
- { X86::VORPSZ128rm, X86::VORPDZ128rm, X86::VPORQZ128rm, X86::VPORDZ128rm },
- { X86::VORPSZ128rr, X86::VORPDZ128rr, X86::VPORQZ128rr, X86::VPORDZ128rr },
- { X86::VXORPSZ128rm, X86::VXORPDZ128rm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
- { X86::VXORPSZ128rr, X86::VXORPDZ128rr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
- { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
- { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
- { X86::VANDPSZ256rm, X86::VANDPDZ256rm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
- { X86::VANDPSZ256rr, X86::VANDPDZ256rr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
- { X86::VORPSZ256rm, X86::VORPDZ256rm, X86::VPORQZ256rm, X86::VPORDZ256rm },
- { X86::VORPSZ256rr, X86::VORPDZ256rr, X86::VPORQZ256rr, X86::VPORDZ256rr },
- { X86::VXORPSZ256rm, X86::VXORPDZ256rm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
- { X86::VXORPSZ256rr, X86::VXORPDZ256rr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
- { X86::VANDNPSZrm, X86::VANDNPDZrm, X86::VPANDNQZrm, X86::VPANDNDZrm },
- { X86::VANDNPSZrr, X86::VANDNPDZrr, X86::VPANDNQZrr, X86::VPANDNDZrr },
- { X86::VANDPSZrm, X86::VANDPDZrm, X86::VPANDQZrm, X86::VPANDDZrm },
- { X86::VANDPSZrr, X86::VANDPDZrr, X86::VPANDQZrr, X86::VPANDDZrr },
- { X86::VORPSZrm, X86::VORPDZrm, X86::VPORQZrm, X86::VPORDZrm },
- { X86::VORPSZrr, X86::VORPDZrr, X86::VPORQZrr, X86::VPORDZrr },
- { X86::VXORPSZrm, X86::VXORPDZrm, X86::VPXORQZrm, X86::VPXORDZrm },
- { X86::VXORPSZrr, X86::VXORPDZrr, X86::VPXORQZrr, X86::VPXORDZrr },
- };
- static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
- // Two integer columns for 64-bit and 32-bit elements.
- //PackedSingle PackedDouble
- //PackedInt PackedInt
- { X86::VANDNPSZ128rmk, X86::VANDNPDZ128rmk,
- X86::VPANDNQZ128rmk, X86::VPANDNDZ128rmk },
- { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
- X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
- { X86::VANDNPSZ128rrk, X86::VANDNPDZ128rrk,
- X86::VPANDNQZ128rrk, X86::VPANDNDZ128rrk },
- { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
- X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
- { X86::VANDPSZ128rmk, X86::VANDPDZ128rmk,
- X86::VPANDQZ128rmk, X86::VPANDDZ128rmk },
- { X86::VANDPSZ128rmkz, X86::VANDPDZ128rmkz,
- X86::VPANDQZ128rmkz, X86::VPANDDZ128rmkz },
- { X86::VANDPSZ128rrk, X86::VANDPDZ128rrk,
- X86::VPANDQZ128rrk, X86::VPANDDZ128rrk },
- { X86::VANDPSZ128rrkz, X86::VANDPDZ128rrkz,
- X86::VPANDQZ128rrkz, X86::VPANDDZ128rrkz },
- { X86::VORPSZ128rmk, X86::VORPDZ128rmk,
- X86::VPORQZ128rmk, X86::VPORDZ128rmk },
- { X86::VORPSZ128rmkz, X86::VORPDZ128rmkz,
- X86::VPORQZ128rmkz, X86::VPORDZ128rmkz },
- { X86::VORPSZ128rrk, X86::VORPDZ128rrk,
- X86::VPORQZ128rrk, X86::VPORDZ128rrk },
- { X86::VORPSZ128rrkz, X86::VORPDZ128rrkz,
- X86::VPORQZ128rrkz, X86::VPORDZ128rrkz },
- { X86::VXORPSZ128rmk, X86::VXORPDZ128rmk,
- X86::VPXORQZ128rmk, X86::VPXORDZ128rmk },
- { X86::VXORPSZ128rmkz, X86::VXORPDZ128rmkz,
- X86::VPXORQZ128rmkz, X86::VPXORDZ128rmkz },
- { X86::VXORPSZ128rrk, X86::VXORPDZ128rrk,
- X86::VPXORQZ128rrk, X86::VPXORDZ128rrk },
- { X86::VXORPSZ128rrkz, X86::VXORPDZ128rrkz,
- X86::VPXORQZ128rrkz, X86::VPXORDZ128rrkz },
- { X86::VANDNPSZ256rmk, X86::VANDNPDZ256rmk,
- X86::VPANDNQZ256rmk, X86::VPANDNDZ256rmk },
- { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
- X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
- { X86::VANDNPSZ256rrk, X86::VANDNPDZ256rrk,
- X86::VPANDNQZ256rrk, X86::VPANDNDZ256rrk },
- { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
- X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
- { X86::VANDPSZ256rmk, X86::VANDPDZ256rmk,
- X86::VPANDQZ256rmk, X86::VPANDDZ256rmk },
- { X86::VANDPSZ256rmkz, X86::VANDPDZ256rmkz,
- X86::VPANDQZ256rmkz, X86::VPANDDZ256rmkz },
- { X86::VANDPSZ256rrk, X86::VANDPDZ256rrk,
- X86::VPANDQZ256rrk, X86::VPANDDZ256rrk },
- { X86::VANDPSZ256rrkz, X86::VANDPDZ256rrkz,
- X86::VPANDQZ256rrkz, X86::VPANDDZ256rrkz },
- { X86::VORPSZ256rmk, X86::VORPDZ256rmk,
- X86::VPORQZ256rmk, X86::VPORDZ256rmk },
- { X86::VORPSZ256rmkz, X86::VORPDZ256rmkz,
- X86::VPORQZ256rmkz, X86::VPORDZ256rmkz },
- { X86::VORPSZ256rrk, X86::VORPDZ256rrk,
- X86::VPORQZ256rrk, X86::VPORDZ256rrk },
- { X86::VORPSZ256rrkz, X86::VORPDZ256rrkz,
- X86::VPORQZ256rrkz, X86::VPORDZ256rrkz },
- { X86::VXORPSZ256rmk, X86::VXORPDZ256rmk,
- X86::VPXORQZ256rmk, X86::VPXORDZ256rmk },
- { X86::VXORPSZ256rmkz, X86::VXORPDZ256rmkz,
- X86::VPXORQZ256rmkz, X86::VPXORDZ256rmkz },
- { X86::VXORPSZ256rrk, X86::VXORPDZ256rrk,
- X86::VPXORQZ256rrk, X86::VPXORDZ256rrk },
- { X86::VXORPSZ256rrkz, X86::VXORPDZ256rrkz,
- X86::VPXORQZ256rrkz, X86::VPXORDZ256rrkz },
- { X86::VANDNPSZrmk, X86::VANDNPDZrmk,
- X86::VPANDNQZrmk, X86::VPANDNDZrmk },
- { X86::VANDNPSZrmkz, X86::VANDNPDZrmkz,
- X86::VPANDNQZrmkz, X86::VPANDNDZrmkz },
- { X86::VANDNPSZrrk, X86::VANDNPDZrrk,
- X86::VPANDNQZrrk, X86::VPANDNDZrrk },
- { X86::VANDNPSZrrkz, X86::VANDNPDZrrkz,
- X86::VPANDNQZrrkz, X86::VPANDNDZrrkz },
- { X86::VANDPSZrmk, X86::VANDPDZrmk,
- X86::VPANDQZrmk, X86::VPANDDZrmk },
- { X86::VANDPSZrmkz, X86::VANDPDZrmkz,
- X86::VPANDQZrmkz, X86::VPANDDZrmkz },
- { X86::VANDPSZrrk, X86::VANDPDZrrk,
- X86::VPANDQZrrk, X86::VPANDDZrrk },
- { X86::VANDPSZrrkz, X86::VANDPDZrrkz,
- X86::VPANDQZrrkz, X86::VPANDDZrrkz },
- { X86::VORPSZrmk, X86::VORPDZrmk,
- X86::VPORQZrmk, X86::VPORDZrmk },
- { X86::VORPSZrmkz, X86::VORPDZrmkz,
- X86::VPORQZrmkz, X86::VPORDZrmkz },
- { X86::VORPSZrrk, X86::VORPDZrrk,
- X86::VPORQZrrk, X86::VPORDZrrk },
- { X86::VORPSZrrkz, X86::VORPDZrrkz,
- X86::VPORQZrrkz, X86::VPORDZrrkz },
- { X86::VXORPSZrmk, X86::VXORPDZrmk,
- X86::VPXORQZrmk, X86::VPXORDZrmk },
- { X86::VXORPSZrmkz, X86::VXORPDZrmkz,
- X86::VPXORQZrmkz, X86::VPXORDZrmkz },
- { X86::VXORPSZrrk, X86::VXORPDZrrk,
- X86::VPXORQZrrk, X86::VPXORDZrrk },
- { X86::VXORPSZrrkz, X86::VXORPDZrrkz,
- X86::VPXORQZrrkz, X86::VPXORDZrrkz },
- // Broadcast loads can be handled the same as masked operations to avoid
- // changing element size.
- { X86::VANDNPSZ128rmb, X86::VANDNPDZ128rmb,
- X86::VPANDNQZ128rmb, X86::VPANDNDZ128rmb },
- { X86::VANDPSZ128rmb, X86::VANDPDZ128rmb,
- X86::VPANDQZ128rmb, X86::VPANDDZ128rmb },
- { X86::VORPSZ128rmb, X86::VORPDZ128rmb,
- X86::VPORQZ128rmb, X86::VPORDZ128rmb },
- { X86::VXORPSZ128rmb, X86::VXORPDZ128rmb,
- X86::VPXORQZ128rmb, X86::VPXORDZ128rmb },
- { X86::VANDNPSZ256rmb, X86::VANDNPDZ256rmb,
- X86::VPANDNQZ256rmb, X86::VPANDNDZ256rmb },
- { X86::VANDPSZ256rmb, X86::VANDPDZ256rmb,
- X86::VPANDQZ256rmb, X86::VPANDDZ256rmb },
- { X86::VORPSZ256rmb, X86::VORPDZ256rmb,
- X86::VPORQZ256rmb, X86::VPORDZ256rmb },
- { X86::VXORPSZ256rmb, X86::VXORPDZ256rmb,
- X86::VPXORQZ256rmb, X86::VPXORDZ256rmb },
- { X86::VANDNPSZrmb, X86::VANDNPDZrmb,
- X86::VPANDNQZrmb, X86::VPANDNDZrmb },
- { X86::VANDPSZrmb, X86::VANDPDZrmb,
- X86::VPANDQZrmb, X86::VPANDDZrmb },
- { X86::VANDPSZrmb, X86::VANDPDZrmb,
- X86::VPANDQZrmb, X86::VPANDDZrmb },
- { X86::VORPSZrmb, X86::VORPDZrmb,
- X86::VPORQZrmb, X86::VPORDZrmb },
- { X86::VXORPSZrmb, X86::VXORPDZrmb,
- X86::VPXORQZrmb, X86::VPXORDZrmb },
- { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
- X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
- { X86::VANDPSZ128rmbk, X86::VANDPDZ128rmbk,
- X86::VPANDQZ128rmbk, X86::VPANDDZ128rmbk },
- { X86::VORPSZ128rmbk, X86::VORPDZ128rmbk,
- X86::VPORQZ128rmbk, X86::VPORDZ128rmbk },
- { X86::VXORPSZ128rmbk, X86::VXORPDZ128rmbk,
- X86::VPXORQZ128rmbk, X86::VPXORDZ128rmbk },
- { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
- X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
- { X86::VANDPSZ256rmbk, X86::VANDPDZ256rmbk,
- X86::VPANDQZ256rmbk, X86::VPANDDZ256rmbk },
- { X86::VORPSZ256rmbk, X86::VORPDZ256rmbk,
- X86::VPORQZ256rmbk, X86::VPORDZ256rmbk },
- { X86::VXORPSZ256rmbk, X86::VXORPDZ256rmbk,
- X86::VPXORQZ256rmbk, X86::VPXORDZ256rmbk },
- { X86::VANDNPSZrmbk, X86::VANDNPDZrmbk,
- X86::VPANDNQZrmbk, X86::VPANDNDZrmbk },
- { X86::VANDPSZrmbk, X86::VANDPDZrmbk,
- X86::VPANDQZrmbk, X86::VPANDDZrmbk },
- { X86::VANDPSZrmbk, X86::VANDPDZrmbk,
- X86::VPANDQZrmbk, X86::VPANDDZrmbk },
- { X86::VORPSZrmbk, X86::VORPDZrmbk,
- X86::VPORQZrmbk, X86::VPORDZrmbk },
- { X86::VXORPSZrmbk, X86::VXORPDZrmbk,
- X86::VPXORQZrmbk, X86::VPXORDZrmbk },
- { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
- X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
- { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
- X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
- { X86::VORPSZ128rmbkz, X86::VORPDZ128rmbkz,
- X86::VPORQZ128rmbkz, X86::VPORDZ128rmbkz },
- { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
- X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
- { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
- X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
- { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
- X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
- { X86::VORPSZ256rmbkz, X86::VORPDZ256rmbkz,
- X86::VPORQZ256rmbkz, X86::VPORDZ256rmbkz },
- { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
- X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
- { X86::VANDNPSZrmbkz, X86::VANDNPDZrmbkz,
- X86::VPANDNQZrmbkz, X86::VPANDNDZrmbkz },
- { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
- X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
- { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
- X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
- { X86::VORPSZrmbkz, X86::VORPDZrmbkz,
- X86::VPORQZrmbkz, X86::VPORDZrmbkz },
- { X86::VXORPSZrmbkz, X86::VXORPDZrmbkz,
- X86::VPXORQZrmbkz, X86::VPXORDZrmbkz },
- };
- // NOTE: These should only be used by the custom domain methods.
- static const uint16_t ReplaceableBlendInstrs[][3] = {
- //PackedSingle PackedDouble PackedInt
- { X86::BLENDPSrmi, X86::BLENDPDrmi, X86::PBLENDWrmi },
- { X86::BLENDPSrri, X86::BLENDPDrri, X86::PBLENDWrri },
- { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDWrmi },
- { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDWrri },
- { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDWYrmi },
- { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDWYrri },
- };
- static const uint16_t ReplaceableBlendAVX2Instrs[][3] = {
- //PackedSingle PackedDouble PackedInt
- { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDDrmi },
- { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDDrri },
- { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDDYrmi },
- { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDDYrri },
- };
- // Special table for changing EVEX logic instructions to VEX.
- // TODO: Should we run EVEX->VEX earlier?
- static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
- // Two integer columns for 64-bit and 32-bit elements.
- //PackedSingle PackedDouble PackedInt PackedInt
- { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
- { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
- { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
- { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
- { X86::VORPSrm, X86::VORPDrm, X86::VPORQZ128rm, X86::VPORDZ128rm },
- { X86::VORPSrr, X86::VORPDrr, X86::VPORQZ128rr, X86::VPORDZ128rr },
- { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
- { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
- { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
- { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
- { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
- { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
- { X86::VORPSYrm, X86::VORPDYrm, X86::VPORQZ256rm, X86::VPORDZ256rm },
- { X86::VORPSYrr, X86::VORPDYrr, X86::VPORQZ256rr, X86::VPORDZ256rr },
- { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
- { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
- };
- // FIXME: Some shuffle and unpack instructions have equivalents in different
- // domains, but they require a bit more work than just switching opcodes.
- static const uint16_t *lookup(unsigned opcode, unsigned domain,
- ArrayRef<uint16_t[3]> Table) {
- for (const uint16_t (&Row)[3] : Table)
- if (Row[domain-1] == opcode)
- return Row;
- return nullptr;
- }
- static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
- ArrayRef<uint16_t[4]> Table) {
- // If this is the integer domain make sure to check both integer columns.
- for (const uint16_t (&Row)[4] : Table)
- if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
- return Row;
- return nullptr;
- }
- // Helper to attempt to widen/narrow blend masks.
- static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
- unsigned NewWidth, unsigned *pNewMask = nullptr) {
- assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
- "Illegal blend mask scale");
- unsigned NewMask = 0;
- if ((OldWidth % NewWidth) == 0) {
- unsigned Scale = OldWidth / NewWidth;
- unsigned SubMask = (1u << Scale) - 1;
- for (unsigned i = 0; i != NewWidth; ++i) {
- unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
- if (Sub == SubMask)
- NewMask |= (1u << i);
- else if (Sub != 0x0)
- return false;
- }
- } else {
- unsigned Scale = NewWidth / OldWidth;
- unsigned SubMask = (1u << Scale) - 1;
- for (unsigned i = 0; i != OldWidth; ++i) {
- if (OldMask & (1 << i)) {
- NewMask |= (SubMask << (i * Scale));
- }
- }
- }
- if (pNewMask)
- *pNewMask = NewMask;
- return true;
- }
- uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
- unsigned Opcode = MI.getOpcode();
- unsigned NumOperands = MI.getDesc().getNumOperands();
- auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
- uint16_t validDomains = 0;
- if (MI.getOperand(NumOperands - 1).isImm()) {
- unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
- if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
- validDomains |= 0x2; // PackedSingle
- if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
- validDomains |= 0x4; // PackedDouble
- if (!Is256 || Subtarget.hasAVX2())
- validDomains |= 0x8; // PackedInt
- }
- return validDomains;
- };
- switch (Opcode) {
- case X86::BLENDPDrmi:
- case X86::BLENDPDrri:
- case X86::VBLENDPDrmi:
- case X86::VBLENDPDrri:
- return GetBlendDomains(2, false);
- case X86::VBLENDPDYrmi:
- case X86::VBLENDPDYrri:
- return GetBlendDomains(4, true);
- case X86::BLENDPSrmi:
- case X86::BLENDPSrri:
- case X86::VBLENDPSrmi:
- case X86::VBLENDPSrri:
- case X86::VPBLENDDrmi:
- case X86::VPBLENDDrri:
- return GetBlendDomains(4, false);
- case X86::VBLENDPSYrmi:
- case X86::VBLENDPSYrri:
- case X86::VPBLENDDYrmi:
- case X86::VPBLENDDYrri:
- return GetBlendDomains(8, true);
- case X86::PBLENDWrmi:
- case X86::PBLENDWrri:
- case X86::VPBLENDWrmi:
- case X86::VPBLENDWrri:
- // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
- case X86::VPBLENDWYrmi:
- case X86::VPBLENDWYrri:
- return GetBlendDomains(8, false);
- case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
- case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
- case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
- case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
- case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
- case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
- case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
- case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
- case X86::VPORDZ128rr: case X86::VPORDZ128rm:
- case X86::VPORDZ256rr: case X86::VPORDZ256rm:
- case X86::VPORQZ128rr: case X86::VPORQZ128rm:
- case X86::VPORQZ256rr: case X86::VPORQZ256rm:
- case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
- case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
- case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
- case X86::VPXORQZ256rr: case X86::VPXORQZ256rm:
- // If we don't have DQI see if we can still switch from an EVEX integer
- // instruction to a VEX floating point instruction.
- if (Subtarget.hasDQI())
- return 0;
- if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
- return 0;
- if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
- return 0;
- // Register forms will have 3 operands. Memory form will have more.
- if (NumOperands == 3 &&
- RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
- return 0;
- // All domains are valid.
- return 0xe;
- case X86::MOVHLPSrr:
- // We can swap domains when both inputs are the same register.
- // FIXME: This doesn't catch all the cases we would like. If the input
- // register isn't KILLed by the instruction, the two address instruction
- // pass puts a COPY on one input. The other input uses the original
- // register. This prevents the same physical register from being used by
- // both inputs.
- if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
- MI.getOperand(0).getSubReg() == 0 &&
- MI.getOperand(1).getSubReg() == 0 &&
- MI.getOperand(2).getSubReg() == 0)
- return 0x6;
- return 0;
- case X86::SHUFPDrri:
- return 0x6;
- }
- return 0;
- }
- bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
- unsigned Domain) const {
- assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
- uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
- assert(dom && "Not an SSE instruction");
- unsigned Opcode = MI.getOpcode();
- unsigned NumOperands = MI.getDesc().getNumOperands();
- auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
- if (MI.getOperand(NumOperands - 1).isImm()) {
- unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
- Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
- unsigned NewImm = Imm;
- const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
- if (!table)
- table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
- if (Domain == 1) { // PackedSingle
- AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
- } else if (Domain == 2) { // PackedDouble
- AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
- } else if (Domain == 3) { // PackedInt
- if (Subtarget.hasAVX2()) {
- // If we are already VPBLENDW use that, else use VPBLENDD.
- if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
- table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
- AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
- }
- } else {
- assert(!Is256 && "128-bit vector expected");
- AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
- }
- }
- assert(table && table[Domain - 1] && "Unknown domain op");
- MI.setDesc(get(table[Domain - 1]));
- MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
- }
- return true;
- };
- switch (Opcode) {
- case X86::BLENDPDrmi:
- case X86::BLENDPDrri:
- case X86::VBLENDPDrmi:
- case X86::VBLENDPDrri:
- return SetBlendDomain(2, false);
- case X86::VBLENDPDYrmi:
- case X86::VBLENDPDYrri:
- return SetBlendDomain(4, true);
- case X86::BLENDPSrmi:
- case X86::BLENDPSrri:
- case X86::VBLENDPSrmi:
- case X86::VBLENDPSrri:
- case X86::VPBLENDDrmi:
- case X86::VPBLENDDrri:
- return SetBlendDomain(4, false);
- case X86::VBLENDPSYrmi:
- case X86::VBLENDPSYrri:
- case X86::VPBLENDDYrmi:
- case X86::VPBLENDDYrri:
- return SetBlendDomain(8, true);
- case X86::PBLENDWrmi:
- case X86::PBLENDWrri:
- case X86::VPBLENDWrmi:
- case X86::VPBLENDWrri:
- return SetBlendDomain(8, false);
- case X86::VPBLENDWYrmi:
- case X86::VPBLENDWYrri:
- return SetBlendDomain(16, true);
- case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
- case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
- case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
- case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
- case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
- case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
- case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
- case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
- case X86::VPORDZ128rr: case X86::VPORDZ128rm:
- case X86::VPORDZ256rr: case X86::VPORDZ256rm:
- case X86::VPORQZ128rr: case X86::VPORQZ128rm:
- case X86::VPORQZ256rr: case X86::VPORQZ256rm:
- case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
- case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
- case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
- case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: {
- // Without DQI, convert EVEX instructions to VEX instructions.
- if (Subtarget.hasDQI())
- return false;
- const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
- ReplaceableCustomAVX512LogicInstrs);
- assert(table && "Instruction not found in table?");
- // Don't change integer Q instructions to D instructions and
- // use D intructions if we started with a PS instruction.
- if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
- Domain = 4;
- MI.setDesc(get(table[Domain - 1]));
- return true;
- }
- case X86::UNPCKHPDrr:
- case X86::MOVHLPSrr:
- // We just need to commute the instruction which will switch the domains.
- if (Domain != dom && Domain != 3 &&
- MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
- MI.getOperand(0).getSubReg() == 0 &&
- MI.getOperand(1).getSubReg() == 0 &&
- MI.getOperand(2).getSubReg() == 0) {
- commuteInstruction(MI, false);
- return true;
- }
- // We must always return true for MOVHLPSrr.
- if (Opcode == X86::MOVHLPSrr)
- return true;
- break;
- case X86::SHUFPDrri: {
- if (Domain == 1) {
- unsigned Imm = MI.getOperand(3).getImm();
- unsigned NewImm = 0x44;
- if (Imm & 1) NewImm |= 0x0a;
- if (Imm & 2) NewImm |= 0xa0;
- MI.getOperand(3).setImm(NewImm);
- MI.setDesc(get(X86::SHUFPSrri));
- }
- return true;
- }
- }
- return false;
- }
- std::pair<uint16_t, uint16_t>
- X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
- uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
- unsigned opcode = MI.getOpcode();
- uint16_t validDomains = 0;
- if (domain) {
- // Attempt to match for custom instructions.
- validDomains = getExecutionDomainCustom(MI);
- if (validDomains)
- return std::make_pair(domain, validDomains);
- if (lookup(opcode, domain, ReplaceableInstrs)) {
- validDomains = 0xe;
- } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
- validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
- } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
- validDomains = 0x6;
- } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
- // Insert/extract instructions should only effect domain if AVX2
- // is enabled.
- if (!Subtarget.hasAVX2())
- return std::make_pair(0, 0);
- validDomains = 0xe;
- } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
- validDomains = 0xe;
- } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
- ReplaceableInstrsAVX512DQ)) {
- validDomains = 0xe;
- } else if (Subtarget.hasDQI()) {
- if (const uint16_t *table = lookupAVX512(opcode, domain,
- ReplaceableInstrsAVX512DQMasked)) {
- if (domain == 1 || (domain == 3 && table[3] == opcode))
- validDomains = 0xa;
- else
- validDomains = 0xc;
- }
- }
- }
- return std::make_pair(domain, validDomains);
- }
- void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
- assert(Domain>0 && Domain<4 && "Invalid execution domain");
- uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
- assert(dom && "Not an SSE instruction");
- // Attempt to match for custom instructions.
- if (setExecutionDomainCustom(MI, Domain))
- return;
- const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
- if (!table) { // try the other table
- assert((Subtarget.hasAVX2() || Domain < 3) &&
- "256-bit vector operations only available in AVX2");
- table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
- }
- if (!table) { // try the FP table
- table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
- assert((!table || Domain < 3) &&
- "Can only select PackedSingle or PackedDouble");
- }
- if (!table) { // try the other table
- assert(Subtarget.hasAVX2() &&
- "256-bit insert/extract only available in AVX2");
- table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
- }
- if (!table) { // try the AVX512 table
- assert(Subtarget.hasAVX512() && "Requires AVX-512");
- table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
- // Don't change integer Q instructions to D instructions.
- if (table && Domain == 3 && table[3] == MI.getOpcode())
- Domain = 4;
- }
- if (!table) { // try the AVX512DQ table
- assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
- table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
- // Don't change integer Q instructions to D instructions and
- // use D instructions if we started with a PS instruction.
- if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
- Domain = 4;
- }
- if (!table) { // try the AVX512DQMasked table
- assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
- table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
- if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
- Domain = 4;
- }
- assert(table && "Cannot change domain");
- MI.setDesc(get(table[Domain - 1]));
- }
- /// Return the noop instruction to use for a noop.
- MCInst X86InstrInfo::getNop() const {
- MCInst Nop;
- Nop.setOpcode(X86::NOOP);
- return Nop;
- }
- bool X86InstrInfo::isHighLatencyDef(int opc) const {
- switch (opc) {
- default: return false;
- case X86::DIVPDrm:
- case X86::DIVPDrr:
- case X86::DIVPSrm:
- case X86::DIVPSrr:
- case X86::DIVSDrm:
- case X86::DIVSDrm_Int:
- case X86::DIVSDrr:
- case X86::DIVSDrr_Int:
- case X86::DIVSSrm:
- case X86::DIVSSrm_Int:
- case X86::DIVSSrr:
- case X86::DIVSSrr_Int:
- case X86::SQRTPDm:
- case X86::SQRTPDr:
- case X86::SQRTPSm:
- case X86::SQRTPSr:
- case X86::SQRTSDm:
- case X86::SQRTSDm_Int:
- case X86::SQRTSDr:
- case X86::SQRTSDr_Int:
- case X86::SQRTSSm:
- case X86::SQRTSSm_Int:
- case X86::SQRTSSr:
- case X86::SQRTSSr_Int:
- // AVX instructions with high latency
- case X86::VDIVPDrm:
- case X86::VDIVPDrr:
- case X86::VDIVPDYrm:
- case X86::VDIVPDYrr:
- case X86::VDIVPSrm:
- case X86::VDIVPSrr:
- case X86::VDIVPSYrm:
- case X86::VDIVPSYrr:
- case X86::VDIVSDrm:
- case X86::VDIVSDrm_Int:
- case X86::VDIVSDrr:
- case X86::VDIVSDrr_Int:
- case X86::VDIVSSrm:
- case X86::VDIVSSrm_Int:
- case X86::VDIVSSrr:
- case X86::VDIVSSrr_Int:
- case X86::VSQRTPDm:
- case X86::VSQRTPDr:
- case X86::VSQRTPDYm:
- case X86::VSQRTPDYr:
- case X86::VSQRTPSm:
- case X86::VSQRTPSr:
- case X86::VSQRTPSYm:
- case X86::VSQRTPSYr:
- case X86::VSQRTSDm:
- case X86::VSQRTSDm_Int:
- case X86::VSQRTSDr:
- case X86::VSQRTSDr_Int:
- case X86::VSQRTSSm:
- case X86::VSQRTSSm_Int:
- case X86::VSQRTSSr:
- case X86::VSQRTSSr_Int:
- // AVX512 instructions with high latency
- case X86::VDIVPDZ128rm:
- case X86::VDIVPDZ128rmb:
- case X86::VDIVPDZ128rmbk:
- case X86::VDIVPDZ128rmbkz:
- case X86::VDIVPDZ128rmk:
- case X86::VDIVPDZ128rmkz:
- case X86::VDIVPDZ128rr:
- case X86::VDIVPDZ128rrk:
- case X86::VDIVPDZ128rrkz:
- case X86::VDIVPDZ256rm:
- case X86::VDIVPDZ256rmb:
- case X86::VDIVPDZ256rmbk:
- case X86::VDIVPDZ256rmbkz:
- case X86::VDIVPDZ256rmk:
- case X86::VDIVPDZ256rmkz:
- case X86::VDIVPDZ256rr:
- case X86::VDIVPDZ256rrk:
- case X86::VDIVPDZ256rrkz:
- case X86::VDIVPDZrrb:
- case X86::VDIVPDZrrbk:
- case X86::VDIVPDZrrbkz:
- case X86::VDIVPDZrm:
- case X86::VDIVPDZrmb:
- case X86::VDIVPDZrmbk:
- case X86::VDIVPDZrmbkz:
- case X86::VDIVPDZrmk:
- case X86::VDIVPDZrmkz:
- case X86::VDIVPDZrr:
- case X86::VDIVPDZrrk:
- case X86::VDIVPDZrrkz:
- case X86::VDIVPSZ128rm:
- case X86::VDIVPSZ128rmb:
- case X86::VDIVPSZ128rmbk:
- case X86::VDIVPSZ128rmbkz:
- case X86::VDIVPSZ128rmk:
- case X86::VDIVPSZ128rmkz:
- case X86::VDIVPSZ128rr:
- case X86::VDIVPSZ128rrk:
- case X86::VDIVPSZ128rrkz:
- case X86::VDIVPSZ256rm:
- case X86::VDIVPSZ256rmb:
- case X86::VDIVPSZ256rmbk:
- case X86::VDIVPSZ256rmbkz:
- case X86::VDIVPSZ256rmk:
- case X86::VDIVPSZ256rmkz:
- case X86::VDIVPSZ256rr:
- case X86::VDIVPSZ256rrk:
- case X86::VDIVPSZ256rrkz:
- case X86::VDIVPSZrrb:
- case X86::VDIVPSZrrbk:
- case X86::VDIVPSZrrbkz:
- case X86::VDIVPSZrm:
- case X86::VDIVPSZrmb:
- case X86::VDIVPSZrmbk:
- case X86::VDIVPSZrmbkz:
- case X86::VDIVPSZrmk:
- case X86::VDIVPSZrmkz:
- case X86::VDIVPSZrr:
- case X86::VDIVPSZrrk:
- case X86::VDIVPSZrrkz:
- case X86::VDIVSDZrm:
- case X86::VDIVSDZrr:
- case X86::VDIVSDZrm_Int:
- case X86::VDIVSDZrm_Intk:
- case X86::VDIVSDZrm_Intkz:
- case X86::VDIVSDZrr_Int:
- case X86::VDIVSDZrr_Intk:
- case X86::VDIVSDZrr_Intkz:
- case X86::VDIVSDZrrb_Int:
- case X86::VDIVSDZrrb_Intk:
- case X86::VDIVSDZrrb_Intkz:
- case X86::VDIVSSZrm:
- case X86::VDIVSSZrr:
- case X86::VDIVSSZrm_Int:
- case X86::VDIVSSZrm_Intk:
- case X86::VDIVSSZrm_Intkz:
- case X86::VDIVSSZrr_Int:
- case X86::VDIVSSZrr_Intk:
- case X86::VDIVSSZrr_Intkz:
- case X86::VDIVSSZrrb_Int:
- case X86::VDIVSSZrrb_Intk:
- case X86::VDIVSSZrrb_Intkz:
- case X86::VSQRTPDZ128m:
- case X86::VSQRTPDZ128mb:
- case X86::VSQRTPDZ128mbk:
- case X86::VSQRTPDZ128mbkz:
- case X86::VSQRTPDZ128mk:
- case X86::VSQRTPDZ128mkz:
- case X86::VSQRTPDZ128r:
- case X86::VSQRTPDZ128rk:
- case X86::VSQRTPDZ128rkz:
- case X86::VSQRTPDZ256m:
- case X86::VSQRTPDZ256mb:
- case X86::VSQRTPDZ256mbk:
- case X86::VSQRTPDZ256mbkz:
- case X86::VSQRTPDZ256mk:
- case X86::VSQRTPDZ256mkz:
- case X86::VSQRTPDZ256r:
- case X86::VSQRTPDZ256rk:
- case X86::VSQRTPDZ256rkz:
- case X86::VSQRTPDZm:
- case X86::VSQRTPDZmb:
- case X86::VSQRTPDZmbk:
- case X86::VSQRTPDZmbkz:
- case X86::VSQRTPDZmk:
- case X86::VSQRTPDZmkz:
- case X86::VSQRTPDZr:
- case X86::VSQRTPDZrb:
- case X86::VSQRTPDZrbk:
- case X86::VSQRTPDZrbkz:
- case X86::VSQRTPDZrk:
- case X86::VSQRTPDZrkz:
- case X86::VSQRTPSZ128m:
- case X86::VSQRTPSZ128mb:
- case X86::VSQRTPSZ128mbk:
- case X86::VSQRTPSZ128mbkz:
- case X86::VSQRTPSZ128mk:
- case X86::VSQRTPSZ128mkz:
- case X86::VSQRTPSZ128r:
- case X86::VSQRTPSZ128rk:
- case X86::VSQRTPSZ128rkz:
- case X86::VSQRTPSZ256m:
- case X86::VSQRTPSZ256mb:
- case X86::VSQRTPSZ256mbk:
- case X86::VSQRTPSZ256mbkz:
- case X86::VSQRTPSZ256mk:
- case X86::VSQRTPSZ256mkz:
- case X86::VSQRTPSZ256r:
- case X86::VSQRTPSZ256rk:
- case X86::VSQRTPSZ256rkz:
- case X86::VSQRTPSZm:
- case X86::VSQRTPSZmb:
- case X86::VSQRTPSZmbk:
- case X86::VSQRTPSZmbkz:
- case X86::VSQRTPSZmk:
- case X86::VSQRTPSZmkz:
- case X86::VSQRTPSZr:
- case X86::VSQRTPSZrb:
- case X86::VSQRTPSZrbk:
- case X86::VSQRTPSZrbkz:
- case X86::VSQRTPSZrk:
- case X86::VSQRTPSZrkz:
- case X86::VSQRTSDZm:
- case X86::VSQRTSDZm_Int:
- case X86::VSQRTSDZm_Intk:
- case X86::VSQRTSDZm_Intkz:
- case X86::VSQRTSDZr:
- case X86::VSQRTSDZr_Int:
- case X86::VSQRTSDZr_Intk:
- case X86::VSQRTSDZr_Intkz:
- case X86::VSQRTSDZrb_Int:
- case X86::VSQRTSDZrb_Intk:
- case X86::VSQRTSDZrb_Intkz:
- case X86::VSQRTSSZm:
- case X86::VSQRTSSZm_Int:
- case X86::VSQRTSSZm_Intk:
- case X86::VSQRTSSZm_Intkz:
- case X86::VSQRTSSZr:
- case X86::VSQRTSSZr_Int:
- case X86::VSQRTSSZr_Intk:
- case X86::VSQRTSSZr_Intkz:
- case X86::VSQRTSSZrb_Int:
- case X86::VSQRTSSZrb_Intk:
- case X86::VSQRTSSZrb_Intkz:
- case X86::VGATHERDPDYrm:
- case X86::VGATHERDPDZ128rm:
- case X86::VGATHERDPDZ256rm:
- case X86::VGATHERDPDZrm:
- case X86::VGATHERDPDrm:
- case X86::VGATHERDPSYrm:
- case X86::VGATHERDPSZ128rm:
- case X86::VGATHERDPSZ256rm:
- case X86::VGATHERDPSZrm:
- case X86::VGATHERDPSrm:
- case X86::VGATHERPF0DPDm:
- case X86::VGATHERPF0DPSm:
- case X86::VGATHERPF0QPDm:
- case X86::VGATHERPF0QPSm:
- case X86::VGATHERPF1DPDm:
- case X86::VGATHERPF1DPSm:
- case X86::VGATHERPF1QPDm:
- case X86::VGATHERPF1QPSm:
- case X86::VGATHERQPDYrm:
- case X86::VGATHERQPDZ128rm:
- case X86::VGATHERQPDZ256rm:
- case X86::VGATHERQPDZrm:
- case X86::VGATHERQPDrm:
- case X86::VGATHERQPSYrm:
- case X86::VGATHERQPSZ128rm:
- case X86::VGATHERQPSZ256rm:
- case X86::VGATHERQPSZrm:
- case X86::VGATHERQPSrm:
- case X86::VPGATHERDDYrm:
- case X86::VPGATHERDDZ128rm:
- case X86::VPGATHERDDZ256rm:
- case X86::VPGATHERDDZrm:
- case X86::VPGATHERDDrm:
- case X86::VPGATHERDQYrm:
- case X86::VPGATHERDQZ128rm:
- case X86::VPGATHERDQZ256rm:
- case X86::VPGATHERDQZrm:
- case X86::VPGATHERDQrm:
- case X86::VPGATHERQDYrm:
- case X86::VPGATHERQDZ128rm:
- case X86::VPGATHERQDZ256rm:
- case X86::VPGATHERQDZrm:
- case X86::VPGATHERQDrm:
- case X86::VPGATHERQQYrm:
- case X86::VPGATHERQQZ128rm:
- case X86::VPGATHERQQZ256rm:
- case X86::VPGATHERQQZrm:
- case X86::VPGATHERQQrm:
- case X86::VSCATTERDPDZ128mr:
- case X86::VSCATTERDPDZ256mr:
- case X86::VSCATTERDPDZmr:
- case X86::VSCATTERDPSZ128mr:
- case X86::VSCATTERDPSZ256mr:
- case X86::VSCATTERDPSZmr:
- case X86::VSCATTERPF0DPDm:
- case X86::VSCATTERPF0DPSm:
- case X86::VSCATTERPF0QPDm:
- case X86::VSCATTERPF0QPSm:
- case X86::VSCATTERPF1DPDm:
- case X86::VSCATTERPF1DPSm:
- case X86::VSCATTERPF1QPDm:
- case X86::VSCATTERPF1QPSm:
- case X86::VSCATTERQPDZ128mr:
- case X86::VSCATTERQPDZ256mr:
- case X86::VSCATTERQPDZmr:
- case X86::VSCATTERQPSZ128mr:
- case X86::VSCATTERQPSZ256mr:
- case X86::VSCATTERQPSZmr:
- case X86::VPSCATTERDDZ128mr:
- case X86::VPSCATTERDDZ256mr:
- case X86::VPSCATTERDDZmr:
- case X86::VPSCATTERDQZ128mr:
- case X86::VPSCATTERDQZ256mr:
- case X86::VPSCATTERDQZmr:
- case X86::VPSCATTERQDZ128mr:
- case X86::VPSCATTERQDZ256mr:
- case X86::VPSCATTERQDZmr:
- case X86::VPSCATTERQQZ128mr:
- case X86::VPSCATTERQQZ256mr:
- case X86::VPSCATTERQQZmr:
- return true;
- }
- }
- bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
- const MachineRegisterInfo *MRI,
- const MachineInstr &DefMI,
- unsigned DefIdx,
- const MachineInstr &UseMI,
- unsigned UseIdx) const {
- return isHighLatencyDef(DefMI.getOpcode());
- }
- bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
- const MachineBasicBlock *MBB) const {
- assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 &&
- Inst.getNumDefs() <= 2 && "Reassociation needs binary operators");
- // Integer binary math/logic instructions have a third source operand:
- // the EFLAGS register. That operand must be both defined here and never
- // used; ie, it must be dead. If the EFLAGS operand is live, then we can
- // not change anything because rearranging the operands could affect other
- // instructions that depend on the exact status flags (zero, sign, etc.)
- // that are set by using these particular operands with this operation.
- const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS);
- assert((Inst.getNumDefs() == 1 || FlagDef) &&
- "Implicit def isn't flags?");
- if (FlagDef && !FlagDef->isDead())
- return false;
- return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
- }
- // TODO: There are many more machine instruction opcodes to match:
- // 1. Other data types (integer, vectors)
- // 2. Other math / logic operations (xor, or)
- // 3. Other forms of the same operation (intrinsics and other variants)
- bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
- switch (Inst.getOpcode()) {
- case X86::AND8rr:
- case X86::AND16rr:
- case X86::AND32rr:
- case X86::AND64rr:
- case X86::OR8rr:
- case X86::OR16rr:
- case X86::OR32rr:
- case X86::OR64rr:
- case X86::XOR8rr:
- case X86::XOR16rr:
- case X86::XOR32rr:
- case X86::XOR64rr:
- case X86::IMUL16rr:
- case X86::IMUL32rr:
- case X86::IMUL64rr:
- case X86::PANDrr:
- case X86::PORrr:
- case X86::PXORrr:
- case X86::ANDPDrr:
- case X86::ANDPSrr:
- case X86::ORPDrr:
- case X86::ORPSrr:
- case X86::XORPDrr:
- case X86::XORPSrr:
- case X86::PADDBrr:
- case X86::PADDWrr:
- case X86::PADDDrr:
- case X86::PADDQrr:
- case X86::PMULLWrr:
- case X86::PMULLDrr:
- case X86::PMAXSBrr:
- case X86::PMAXSDrr:
- case X86::PMAXSWrr:
- case X86::PMAXUBrr:
- case X86::PMAXUDrr:
- case X86::PMAXUWrr:
- case X86::PMINSBrr:
- case X86::PMINSDrr:
- case X86::PMINSWrr:
- case X86::PMINUBrr:
- case X86::PMINUDrr:
- case X86::PMINUWrr:
- case X86::VPANDrr:
- case X86::VPANDYrr:
- case X86::VPANDDZ128rr:
- case X86::VPANDDZ256rr:
- case X86::VPANDDZrr:
- case X86::VPANDQZ128rr:
- case X86::VPANDQZ256rr:
- case X86::VPANDQZrr:
- case X86::VPORrr:
- case X86::VPORYrr:
- case X86::VPORDZ128rr:
- case X86::VPORDZ256rr:
- case X86::VPORDZrr:
- case X86::VPORQZ128rr:
- case X86::VPORQZ256rr:
- case X86::VPORQZrr:
- case X86::VPXORrr:
- case X86::VPXORYrr:
- case X86::VPXORDZ128rr:
- case X86::VPXORDZ256rr:
- case X86::VPXORDZrr:
- case X86::VPXORQZ128rr:
- case X86::VPXORQZ256rr:
- case X86::VPXORQZrr:
- case X86::VANDPDrr:
- case X86::VANDPSrr:
- case X86::VANDPDYrr:
- case X86::VANDPSYrr:
- case X86::VANDPDZ128rr:
- case X86::VANDPSZ128rr:
- case X86::VANDPDZ256rr:
- case X86::VANDPSZ256rr:
- case X86::VANDPDZrr:
- case X86::VANDPSZrr:
- case X86::VORPDrr:
- case X86::VORPSrr:
- case X86::VORPDYrr:
- case X86::VORPSYrr:
- case X86::VORPDZ128rr:
- case X86::VORPSZ128rr:
- case X86::VORPDZ256rr:
- case X86::VORPSZ256rr:
- case X86::VORPDZrr:
- case X86::VORPSZrr:
- case X86::VXORPDrr:
- case X86::VXORPSrr:
- case X86::VXORPDYrr:
- case X86::VXORPSYrr:
- case X86::VXORPDZ128rr:
- case X86::VXORPSZ128rr:
- case X86::VXORPDZ256rr:
- case X86::VXORPSZ256rr:
- case X86::VXORPDZrr:
- case X86::VXORPSZrr:
- case X86::KADDBrr:
- case X86::KADDWrr:
- case X86::KADDDrr:
- case X86::KADDQrr:
- case X86::KANDBrr:
- case X86::KANDWrr:
- case X86::KANDDrr:
- case X86::KANDQrr:
- case X86::KORBrr:
- case X86::KORWrr:
- case X86::KORDrr:
- case X86::KORQrr:
- case X86::KXORBrr:
- case X86::KXORWrr:
- case X86::KXORDrr:
- case X86::KXORQrr:
- case X86::VPADDBrr:
- case X86::VPADDWrr:
- case X86::VPADDDrr:
- case X86::VPADDQrr:
- case X86::VPADDBYrr:
- case X86::VPADDWYrr:
- case X86::VPADDDYrr:
- case X86::VPADDQYrr:
- case X86::VPADDBZ128rr:
- case X86::VPADDWZ128rr:
- case X86::VPADDDZ128rr:
- case X86::VPADDQZ128rr:
- case X86::VPADDBZ256rr:
- case X86::VPADDWZ256rr:
- case X86::VPADDDZ256rr:
- case X86::VPADDQZ256rr:
- case X86::VPADDBZrr:
- case X86::VPADDWZrr:
- case X86::VPADDDZrr:
- case X86::VPADDQZrr:
- case X86::VPMULLWrr:
- case X86::VPMULLWYrr:
- case X86::VPMULLWZ128rr:
- case X86::VPMULLWZ256rr:
- case X86::VPMULLWZrr:
- case X86::VPMULLDrr:
- case X86::VPMULLDYrr:
- case X86::VPMULLDZ128rr:
- case X86::VPMULLDZ256rr:
- case X86::VPMULLDZrr:
- case X86::VPMULLQZ128rr:
- case X86::VPMULLQZ256rr:
- case X86::VPMULLQZrr:
- case X86::VPMAXSBrr:
- case X86::VPMAXSBYrr:
- case X86::VPMAXSBZ128rr:
- case X86::VPMAXSBZ256rr:
- case X86::VPMAXSBZrr:
- case X86::VPMAXSDrr:
- case X86::VPMAXSDYrr:
- case X86::VPMAXSDZ128rr:
- case X86::VPMAXSDZ256rr:
- case X86::VPMAXSDZrr:
- case X86::VPMAXSQZ128rr:
- case X86::VPMAXSQZ256rr:
- case X86::VPMAXSQZrr:
- case X86::VPMAXSWrr:
- case X86::VPMAXSWYrr:
- case X86::VPMAXSWZ128rr:
- case X86::VPMAXSWZ256rr:
- case X86::VPMAXSWZrr:
- case X86::VPMAXUBrr:
- case X86::VPMAXUBYrr:
- case X86::VPMAXUBZ128rr:
- case X86::VPMAXUBZ256rr:
- case X86::VPMAXUBZrr:
- case X86::VPMAXUDrr:
- case X86::VPMAXUDYrr:
- case X86::VPMAXUDZ128rr:
- case X86::VPMAXUDZ256rr:
- case X86::VPMAXUDZrr:
- case X86::VPMAXUQZ128rr:
- case X86::VPMAXUQZ256rr:
- case X86::VPMAXUQZrr:
- case X86::VPMAXUWrr:
- case X86::VPMAXUWYrr:
- case X86::VPMAXUWZ128rr:
- case X86::VPMAXUWZ256rr:
- case X86::VPMAXUWZrr:
- case X86::VPMINSBrr:
- case X86::VPMINSBYrr:
- case X86::VPMINSBZ128rr:
- case X86::VPMINSBZ256rr:
- case X86::VPMINSBZrr:
- case X86::VPMINSDrr:
- case X86::VPMINSDYrr:
- case X86::VPMINSDZ128rr:
- case X86::VPMINSDZ256rr:
- case X86::VPMINSDZrr:
- case X86::VPMINSQZ128rr:
- case X86::VPMINSQZ256rr:
- case X86::VPMINSQZrr:
- case X86::VPMINSWrr:
- case X86::VPMINSWYrr:
- case X86::VPMINSWZ128rr:
- case X86::VPMINSWZ256rr:
- case X86::VPMINSWZrr:
- case X86::VPMINUBrr:
- case X86::VPMINUBYrr:
- case X86::VPMINUBZ128rr:
- case X86::VPMINUBZ256rr:
- case X86::VPMINUBZrr:
- case X86::VPMINUDrr:
- case X86::VPMINUDYrr:
- case X86::VPMINUDZ128rr:
- case X86::VPMINUDZ256rr:
- case X86::VPMINUDZrr:
- case X86::VPMINUQZ128rr:
- case X86::VPMINUQZ256rr:
- case X86::VPMINUQZrr:
- case X86::VPMINUWrr:
- case X86::VPMINUWYrr:
- case X86::VPMINUWZ128rr:
- case X86::VPMINUWZ256rr:
- case X86::VPMINUWZrr:
- // Normal min/max instructions are not commutative because of NaN and signed
- // zero semantics, but these are. Thus, there's no need to check for global
- // relaxed math; the instructions themselves have the properties we need.
- case X86::MAXCPDrr:
- case X86::MAXCPSrr:
- case X86::MAXCSDrr:
- case X86::MAXCSSrr:
- case X86::MINCPDrr:
- case X86::MINCPSrr:
- case X86::MINCSDrr:
- case X86::MINCSSrr:
- case X86::VMAXCPDrr:
- case X86::VMAXCPSrr:
- case X86::VMAXCPDYrr:
- case X86::VMAXCPSYrr:
- case X86::VMAXCPDZ128rr:
- case X86::VMAXCPSZ128rr:
- case X86::VMAXCPDZ256rr:
- case X86::VMAXCPSZ256rr:
- case X86::VMAXCPDZrr:
- case X86::VMAXCPSZrr:
- case X86::VMAXCSDrr:
- case X86::VMAXCSSrr:
- case X86::VMAXCSDZrr:
- case X86::VMAXCSSZrr:
- case X86::VMINCPDrr:
- case X86::VMINCPSrr:
- case X86::VMINCPDYrr:
- case X86::VMINCPSYrr:
- case X86::VMINCPDZ128rr:
- case X86::VMINCPSZ128rr:
- case X86::VMINCPDZ256rr:
- case X86::VMINCPSZ256rr:
- case X86::VMINCPDZrr:
- case X86::VMINCPSZrr:
- case X86::VMINCSDrr:
- case X86::VMINCSSrr:
- case X86::VMINCSDZrr:
- case X86::VMINCSSZrr:
- case X86::VMAXCPHZ128rr:
- case X86::VMAXCPHZ256rr:
- case X86::VMAXCPHZrr:
- case X86::VMAXCSHZrr:
- case X86::VMINCPHZ128rr:
- case X86::VMINCPHZ256rr:
- case X86::VMINCPHZrr:
- case X86::VMINCSHZrr:
- return true;
- case X86::ADDPDrr:
- case X86::ADDPSrr:
- case X86::ADDSDrr:
- case X86::ADDSSrr:
- case X86::MULPDrr:
- case X86::MULPSrr:
- case X86::MULSDrr:
- case X86::MULSSrr:
- case X86::VADDPDrr:
- case X86::VADDPSrr:
- case X86::VADDPDYrr:
- case X86::VADDPSYrr:
- case X86::VADDPDZ128rr:
- case X86::VADDPSZ128rr:
- case X86::VADDPDZ256rr:
- case X86::VADDPSZ256rr:
- case X86::VADDPDZrr:
- case X86::VADDPSZrr:
- case X86::VADDSDrr:
- case X86::VADDSSrr:
- case X86::VADDSDZrr:
- case X86::VADDSSZrr:
- case X86::VMULPDrr:
- case X86::VMULPSrr:
- case X86::VMULPDYrr:
- case X86::VMULPSYrr:
- case X86::VMULPDZ128rr:
- case X86::VMULPSZ128rr:
- case X86::VMULPDZ256rr:
- case X86::VMULPSZ256rr:
- case X86::VMULPDZrr:
- case X86::VMULPSZrr:
- case X86::VMULSDrr:
- case X86::VMULSSrr:
- case X86::VMULSDZrr:
- case X86::VMULSSZrr:
- case X86::VADDPHZ128rr:
- case X86::VADDPHZ256rr:
- case X86::VADDPHZrr:
- case X86::VADDSHZrr:
- case X86::VMULPHZ128rr:
- case X86::VMULPHZ256rr:
- case X86::VMULPHZrr:
- case X86::VMULSHZrr:
- return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
- Inst.getFlag(MachineInstr::MIFlag::FmNsz);
- default:
- return false;
- }
- }
- /// If \p DescribedReg overlaps with the MOVrr instruction's destination
- /// register then, if possible, describe the value in terms of the source
- /// register.
- static Optional<ParamLoadedValue>
- describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg,
- const TargetRegisterInfo *TRI) {
- Register DestReg = MI.getOperand(0).getReg();
- Register SrcReg = MI.getOperand(1).getReg();
- auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
- // If the described register is the destination, just return the source.
- if (DestReg == DescribedReg)
- return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
- // If the described register is a sub-register of the destination register,
- // then pick out the source register's corresponding sub-register.
- if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) {
- Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx);
- return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
- }
- // The remaining case to consider is when the described register is a
- // super-register of the destination register. MOV8rr and MOV16rr does not
- // write to any of the other bytes in the register, meaning that we'd have to
- // describe the value using a combination of the source register and the
- // non-overlapping bits in the described register, which is not currently
- // possible.
- if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr ||
- !TRI->isSuperRegister(DestReg, DescribedReg))
- return None;
- assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case");
- return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
- }
- Optional<ParamLoadedValue>
- X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
- const MachineOperand *Op = nullptr;
- DIExpression *Expr = nullptr;
- const TargetRegisterInfo *TRI = &getRegisterInfo();
- switch (MI.getOpcode()) {
- case X86::LEA32r:
- case X86::LEA64r:
- case X86::LEA64_32r: {
- // We may need to describe a 64-bit parameter with a 32-bit LEA.
- if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
- return None;
- // Operand 4 could be global address. For now we do not support
- // such situation.
- if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm())
- return None;
- const MachineOperand &Op1 = MI.getOperand(1);
- const MachineOperand &Op2 = MI.getOperand(3);
- assert(Op2.isReg() && (Op2.getReg() == X86::NoRegister ||
- Register::isPhysicalRegister(Op2.getReg())));
- // Omit situations like:
- // %rsi = lea %rsi, 4, ...
- if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) ||
- Op2.getReg() == MI.getOperand(0).getReg())
- return None;
- else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister &&
- TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) ||
- (Op2.getReg() != X86::NoRegister &&
- TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg())))
- return None;
- int64_t Coef = MI.getOperand(2).getImm();
- int64_t Offset = MI.getOperand(4).getImm();
- SmallVector<uint64_t, 8> Ops;
- if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) {
- Op = &Op1;
- } else if (Op1.isFI())
- Op = &Op1;
- if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) {
- Ops.push_back(dwarf::DW_OP_constu);
- Ops.push_back(Coef + 1);
- Ops.push_back(dwarf::DW_OP_mul);
- } else {
- if (Op && Op2.getReg() != X86::NoRegister) {
- int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false);
- if (dwarfReg < 0)
- return None;
- else if (dwarfReg < 32) {
- Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg);
- Ops.push_back(0);
- } else {
- Ops.push_back(dwarf::DW_OP_bregx);
- Ops.push_back(dwarfReg);
- Ops.push_back(0);
- }
- } else if (!Op) {
- assert(Op2.getReg() != X86::NoRegister);
- Op = &Op2;
- }
- if (Coef > 1) {
- assert(Op2.getReg() != X86::NoRegister);
- Ops.push_back(dwarf::DW_OP_constu);
- Ops.push_back(Coef);
- Ops.push_back(dwarf::DW_OP_mul);
- }
- if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) &&
- Op2.getReg() != X86::NoRegister) {
- Ops.push_back(dwarf::DW_OP_plus);
- }
- }
- DIExpression::appendOffset(Ops, Offset);
- Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops);
- return ParamLoadedValue(*Op, Expr);;
- }
- case X86::MOV8ri:
- case X86::MOV16ri:
- // TODO: Handle MOV8ri and MOV16ri.
- return None;
- case X86::MOV32ri:
- case X86::MOV64ri:
- case X86::MOV64ri32:
- // MOV32ri may be used for producing zero-extended 32-bit immediates in
- // 64-bit parameters, so we need to consider super-registers.
- if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
- return None;
- return ParamLoadedValue(MI.getOperand(1), Expr);
- case X86::MOV8rr:
- case X86::MOV16rr:
- case X86::MOV32rr:
- case X86::MOV64rr:
- return describeMOVrrLoadedValue(MI, Reg, TRI);
- case X86::XOR32rr: {
- // 64-bit parameters are zero-materialized using XOR32rr, so also consider
- // super-registers.
- if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
- return None;
- if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
- return ParamLoadedValue(MachineOperand::CreateImm(0), Expr);
- return None;
- }
- case X86::MOVSX64rr32: {
- // We may need to describe the lower 32 bits of the MOVSX; for example, in
- // cases like this:
- //
- // $ebx = [...]
- // $rdi = MOVSX64rr32 $ebx
- // $esi = MOV32rr $edi
- if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg))
- return None;
- Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
- // If the described register is the destination register we need to
- // sign-extend the source register from 32 bits. The other case we handle
- // is when the described register is the 32-bit sub-register of the
- // destination register, in case we just need to return the source
- // register.
- if (Reg == MI.getOperand(0).getReg())
- Expr = DIExpression::appendExt(Expr, 32, 64, true);
- else
- assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) &&
- "Unhandled sub-register case for MOVSX64rr32");
- return ParamLoadedValue(MI.getOperand(1), Expr);
- }
- default:
- assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction");
- return TargetInstrInfo::describeLoadedValue(MI, Reg);
- }
- }
- /// This is an architecture-specific helper function of reassociateOps.
- /// Set special operand attributes for new instructions after reassociation.
- void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
- MachineInstr &OldMI2,
- MachineInstr &NewMI1,
- MachineInstr &NewMI2) const {
- // Propagate FP flags from the original instructions.
- // But clear poison-generating flags because those may not be valid now.
- // TODO: There should be a helper function for copying only fast-math-flags.
- uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
- NewMI1.setFlags(IntersectedFlags);
- NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
- NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
- NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
- NewMI2.setFlags(IntersectedFlags);
- NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
- NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
- NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
- // Integer instructions may define an implicit EFLAGS dest register operand.
- MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS);
- MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS);
- assert(!OldFlagDef1 == !OldFlagDef2 &&
- "Unexpected instruction type for reassociation");
- if (!OldFlagDef1 || !OldFlagDef2)
- return;
- assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() &&
- "Must have dead EFLAGS operand in reassociable instruction");
- MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS);
- MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS);
- assert(NewFlagDef1 && NewFlagDef2 &&
- "Unexpected operand in reassociable instruction");
- // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
- // of this pass or other passes. The EFLAGS operands must be dead in these new
- // instructions because the EFLAGS operands in the original instructions must
- // be dead in order for reassociation to occur.
- NewFlagDef1->setIsDead();
- NewFlagDef2->setIsDead();
- }
- std::pair<unsigned, unsigned>
- X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
- return std::make_pair(TF, 0u);
- }
- ArrayRef<std::pair<unsigned, const char *>>
- X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
- using namespace X86II;
- static const std::pair<unsigned, const char *> TargetFlags[] = {
- {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
- {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
- {MO_GOT, "x86-got"},
- {MO_GOTOFF, "x86-gotoff"},
- {MO_GOTPCREL, "x86-gotpcrel"},
- {MO_GOTPCREL_NORELAX, "x86-gotpcrel-norelax"},
- {MO_PLT, "x86-plt"},
- {MO_TLSGD, "x86-tlsgd"},
- {MO_TLSLD, "x86-tlsld"},
- {MO_TLSLDM, "x86-tlsldm"},
- {MO_GOTTPOFF, "x86-gottpoff"},
- {MO_INDNTPOFF, "x86-indntpoff"},
- {MO_TPOFF, "x86-tpoff"},
- {MO_DTPOFF, "x86-dtpoff"},
- {MO_NTPOFF, "x86-ntpoff"},
- {MO_GOTNTPOFF, "x86-gotntpoff"},
- {MO_DLLIMPORT, "x86-dllimport"},
- {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
- {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
- {MO_TLVP, "x86-tlvp"},
- {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
- {MO_SECREL, "x86-secrel"},
- {MO_COFFSTUB, "x86-coffstub"}};
- return makeArrayRef(TargetFlags);
- }
- namespace {
- /// Create Global Base Reg pass. This initializes the PIC
- /// global base register for x86-32.
- struct CGBR : public MachineFunctionPass {
- static char ID;
- CGBR() : MachineFunctionPass(ID) {}
- bool runOnMachineFunction(MachineFunction &MF) override {
- const X86TargetMachine *TM =
- static_cast<const X86TargetMachine *>(&MF.getTarget());
- const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
- // Don't do anything in the 64-bit small and kernel code models. They use
- // RIP-relative addressing for everything.
- if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
- TM->getCodeModel() == CodeModel::Kernel))
- return false;
- // Only emit a global base reg in PIC mode.
- if (!TM->isPositionIndependent())
- return false;
- X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
- Register GlobalBaseReg = X86FI->getGlobalBaseReg();
- // If we didn't need a GlobalBaseReg, don't insert code.
- if (GlobalBaseReg == 0)
- return false;
- // Insert the set of GlobalBaseReg into the first MBB of the function
- MachineBasicBlock &FirstMBB = MF.front();
- MachineBasicBlock::iterator MBBI = FirstMBB.begin();
- DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
- MachineRegisterInfo &RegInfo = MF.getRegInfo();
- const X86InstrInfo *TII = STI.getInstrInfo();
- Register PC;
- if (STI.isPICStyleGOT())
- PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
- else
- PC = GlobalBaseReg;
- if (STI.is64Bit()) {
- if (TM->getCodeModel() == CodeModel::Medium) {
- // In the medium code model, use a RIP-relative LEA to materialize the
- // GOT.
- BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
- .addReg(X86::RIP)
- .addImm(0)
- .addReg(0)
- .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
- .addReg(0);
- } else if (TM->getCodeModel() == CodeModel::Large) {
- // In the large code model, we are aiming for this code, though the
- // register allocation may vary:
- // leaq .LN$pb(%rip), %rax
- // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
- // addq %rcx, %rax
- // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
- Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
- Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
- BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
- .addReg(X86::RIP)
- .addImm(0)
- .addReg(0)
- .addSym(MF.getPICBaseSymbol())
- .addReg(0);
- std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
- BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
- .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
- X86II::MO_PIC_BASE_OFFSET);
- BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
- .addReg(PBReg, RegState::Kill)
- .addReg(GOTReg, RegState::Kill);
- } else {
- llvm_unreachable("unexpected code model");
- }
- } else {
- // Operand of MovePCtoStack is completely ignored by asm printer. It's
- // only used in JIT code emission as displacement to pc.
- BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
- // If we're using vanilla 'GOT' PIC style, we should use relative
- // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
- if (STI.isPICStyleGOT()) {
- // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
- // %some_register
- BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
- .addReg(PC)
- .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
- X86II::MO_GOT_ABSOLUTE_ADDRESS);
- }
- }
- return true;
- }
- StringRef getPassName() const override {
- return "X86 PIC Global Base Reg Initialization";
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- };
- } // namespace
- char CGBR::ID = 0;
- FunctionPass*
- llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
- namespace {
- struct LDTLSCleanup : public MachineFunctionPass {
- static char ID;
- LDTLSCleanup() : MachineFunctionPass(ID) {}
- bool runOnMachineFunction(MachineFunction &MF) override {
- if (skipFunction(MF.getFunction()))
- return false;
- X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
- if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
- // No point folding accesses if there isn't at least two.
- return false;
- }
- MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
- return VisitNode(DT->getRootNode(), 0);
- }
- // Visit the dominator subtree rooted at Node in pre-order.
- // If TLSBaseAddrReg is non-null, then use that to replace any
- // TLS_base_addr instructions. Otherwise, create the register
- // when the first such instruction is seen, and then use it
- // as we encounter more instructions.
- bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
- MachineBasicBlock *BB = Node->getBlock();
- bool Changed = false;
- // Traverse the current block.
- for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
- ++I) {
- switch (I->getOpcode()) {
- case X86::TLS_base_addr32:
- case X86::TLS_base_addr64:
- if (TLSBaseAddrReg)
- I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
- else
- I = SetRegister(*I, &TLSBaseAddrReg);
- Changed = true;
- break;
- default:
- break;
- }
- }
- // Visit the children of this block in the dominator tree.
- for (auto I = Node->begin(), E = Node->end(); I != E; ++I) {
- Changed |= VisitNode(*I, TLSBaseAddrReg);
- }
- return Changed;
- }
- // Replace the TLS_base_addr instruction I with a copy from
- // TLSBaseAddrReg, returning the new instruction.
- MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
- unsigned TLSBaseAddrReg) {
- MachineFunction *MF = I.getParent()->getParent();
- const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
- const bool is64Bit = STI.is64Bit();
- const X86InstrInfo *TII = STI.getInstrInfo();
- // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
- MachineInstr *Copy =
- BuildMI(*I.getParent(), I, I.getDebugLoc(),
- TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
- .addReg(TLSBaseAddrReg);
- // Erase the TLS_base_addr instruction.
- I.eraseFromParent();
- return Copy;
- }
- // Create a virtual register in *TLSBaseAddrReg, and populate it by
- // inserting a copy instruction after I. Returns the new instruction.
- MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
- MachineFunction *MF = I.getParent()->getParent();
- const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
- const bool is64Bit = STI.is64Bit();
- const X86InstrInfo *TII = STI.getInstrInfo();
- // Create a virtual register for the TLS base address.
- MachineRegisterInfo &RegInfo = MF->getRegInfo();
- *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
- ? &X86::GR64RegClass
- : &X86::GR32RegClass);
- // Insert a copy from RAX/EAX to TLSBaseAddrReg.
- MachineInstr *Next = I.getNextNode();
- MachineInstr *Copy =
- BuildMI(*I.getParent(), Next, I.getDebugLoc(),
- TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
- .addReg(is64Bit ? X86::RAX : X86::EAX);
- return Copy;
- }
- StringRef getPassName() const override {
- return "Local Dynamic TLS Access Clean-up";
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- AU.addRequired<MachineDominatorTree>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- };
- }
- char LDTLSCleanup::ID = 0;
- FunctionPass*
- llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
- /// Constants defining how certain sequences should be outlined.
- ///
- /// \p MachineOutlinerDefault implies that the function is called with a call
- /// instruction, and a return must be emitted for the outlined function frame.
- ///
- /// That is,
- ///
- /// I1 OUTLINED_FUNCTION:
- /// I2 --> call OUTLINED_FUNCTION I1
- /// I3 I2
- /// I3
- /// ret
- ///
- /// * Call construction overhead: 1 (call instruction)
- /// * Frame construction overhead: 1 (return instruction)
- ///
- /// \p MachineOutlinerTailCall implies that the function is being tail called.
- /// A jump is emitted instead of a call, and the return is already present in
- /// the outlined sequence. That is,
- ///
- /// I1 OUTLINED_FUNCTION:
- /// I2 --> jmp OUTLINED_FUNCTION I1
- /// ret I2
- /// ret
- ///
- /// * Call construction overhead: 1 (jump instruction)
- /// * Frame construction overhead: 0 (don't need to return)
- ///
- enum MachineOutlinerClass {
- MachineOutlinerDefault,
- MachineOutlinerTailCall
- };
- outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
- std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
- unsigned SequenceSize =
- std::accumulate(RepeatedSequenceLocs[0].front(),
- std::next(RepeatedSequenceLocs[0].back()), 0,
- [](unsigned Sum, const MachineInstr &MI) {
- // FIXME: x86 doesn't implement getInstSizeInBytes, so
- // we can't tell the cost. Just assume each instruction
- // is one byte.
- if (MI.isDebugInstr() || MI.isKill())
- return Sum;
- return Sum + 1;
- });
- // We check to see if CFI Instructions are present, and if they are
- // we find the number of CFI Instructions in the candidates.
- unsigned CFICount = 0;
- MachineBasicBlock::iterator MBBI = RepeatedSequenceLocs[0].front();
- for (unsigned Loc = RepeatedSequenceLocs[0].getStartIdx();
- Loc < RepeatedSequenceLocs[0].getEndIdx() + 1; Loc++) {
- if (MBBI->isCFIInstruction())
- CFICount++;
- MBBI++;
- }
- // We compare the number of found CFI Instructions to the number of CFI
- // instructions in the parent function for each candidate. We must check this
- // since if we outline one of the CFI instructions in a function, we have to
- // outline them all for correctness. If we do not, the address offsets will be
- // incorrect between the two sections of the program.
- for (outliner::Candidate &C : RepeatedSequenceLocs) {
- std::vector<MCCFIInstruction> CFIInstructions =
- C.getMF()->getFrameInstructions();
- if (CFICount > 0 && CFICount != CFIInstructions.size())
- return outliner::OutlinedFunction();
- }
- // FIXME: Use real size in bytes for call and ret instructions.
- if (RepeatedSequenceLocs[0].back()->isTerminator()) {
- for (outliner::Candidate &C : RepeatedSequenceLocs)
- C.setCallInfo(MachineOutlinerTailCall, 1);
- return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
- 0, // Number of bytes to emit frame.
- MachineOutlinerTailCall // Type of frame.
- );
- }
- if (CFICount > 0)
- return outliner::OutlinedFunction();
- for (outliner::Candidate &C : RepeatedSequenceLocs)
- C.setCallInfo(MachineOutlinerDefault, 1);
- return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
- MachineOutlinerDefault);
- }
- bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
- bool OutlineFromLinkOnceODRs) const {
- const Function &F = MF.getFunction();
- // Does the function use a red zone? If it does, then we can't risk messing
- // with the stack.
- if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
- // It could have a red zone. If it does, then we don't want to touch it.
- const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
- if (!X86FI || X86FI->getUsesRedZone())
- return false;
- }
- // If we *don't* want to outline from things that could potentially be deduped
- // then return false.
- if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
- return false;
- // This function is viable for outlining, so return true.
- return true;
- }
- outliner::InstrType
- X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
- MachineInstr &MI = *MIT;
- // Don't allow debug values to impact outlining type.
- if (MI.isDebugInstr() || MI.isIndirectDebugValue())
- return outliner::InstrType::Invisible;
- // At this point, KILL instructions don't really tell us much so we can go
- // ahead and skip over them.
- if (MI.isKill())
- return outliner::InstrType::Invisible;
- // Is this a tail call? If yes, we can outline as a tail call.
- if (isTailCall(MI))
- return outliner::InstrType::Legal;
- // Is this the terminator of a basic block?
- if (MI.isTerminator() || MI.isReturn()) {
- // Does its parent have any successors in its MachineFunction?
- if (MI.getParent()->succ_empty())
- return outliner::InstrType::Legal;
- // It does, so we can't tail call it.
- return outliner::InstrType::Illegal;
- }
- // Don't outline anything that modifies or reads from the stack pointer.
- //
- // FIXME: There are instructions which are being manually built without
- // explicit uses/defs so we also have to check the MCInstrDesc. We should be
- // able to remove the extra checks once those are fixed up. For example,
- // sometimes we might get something like %rax = POP64r 1. This won't be
- // caught by modifiesRegister or readsRegister even though the instruction
- // really ought to be formed so that modifiesRegister/readsRegister would
- // catch it.
- if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
- MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
- MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
- return outliner::InstrType::Illegal;
- // Outlined calls change the instruction pointer, so don't read from it.
- if (MI.readsRegister(X86::RIP, &RI) ||
- MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
- MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
- return outliner::InstrType::Illegal;
- // Positions can't safely be outlined.
- if (MI.isPosition())
- return outliner::InstrType::Illegal;
- // Make sure none of the operands of this instruction do anything tricky.
- for (const MachineOperand &MOP : MI.operands())
- if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
- MOP.isTargetIndex())
- return outliner::InstrType::Illegal;
- return outliner::InstrType::Legal;
- }
- void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
- MachineFunction &MF,
- const outliner::OutlinedFunction &OF)
- const {
- // If we're a tail call, we already have a return, so don't do anything.
- if (OF.FrameConstructionID == MachineOutlinerTailCall)
- return;
- // We're a normal call, so our sequence doesn't have a return instruction.
- // Add it in.
- MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RET64));
- MBB.insert(MBB.end(), retq);
- }
- MachineBasicBlock::iterator
- X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
- MachineBasicBlock::iterator &It,
- MachineFunction &MF,
- const outliner::Candidate &C) const {
- // Is it a tail call?
- if (C.CallConstructionID == MachineOutlinerTailCall) {
- // Yes, just insert a JMP.
- It = MBB.insert(It,
- BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
- .addGlobalAddress(M.getNamedValue(MF.getName())));
- } else {
- // No, insert a call.
- It = MBB.insert(It,
- BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
- .addGlobalAddress(M.getNamedValue(MF.getName())));
- }
- return It;
- }
- #define GET_INSTRINFO_HELPERS
- #include "X86GenInstrInfo.inc"
|