METADATA 2.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051
  1. Metadata-Version: 2.1
  2. Name: scipy
  3. Version: 1.2.3
  4. Summary: SciPy: Scientific Library for Python
  5. Home-page: https://www.scipy.org
  6. Maintainer: SciPy Developers
  7. Maintainer-email: scipy-dev@python.org
  8. License: BSD
  9. Download-URL: https://github.com/scipy/scipy/releases
  10. Platform: Windows
  11. Platform: Linux
  12. Platform: Solaris
  13. Platform: Mac OS-X
  14. Platform: Unix
  15. Classifier: Development Status :: 5 - Production/Stable
  16. Classifier: Intended Audience :: Science/Research
  17. Classifier: Intended Audience :: Developers
  18. Classifier: License :: OSI Approved :: BSD License
  19. Classifier: Programming Language :: C
  20. Classifier: Programming Language :: Python
  21. Classifier: Programming Language :: Python :: 2
  22. Classifier: Programming Language :: Python :: 2.7
  23. Classifier: Programming Language :: Python :: 3
  24. Classifier: Programming Language :: Python :: 3.4
  25. Classifier: Programming Language :: Python :: 3.5
  26. Classifier: Programming Language :: Python :: 3.6
  27. Classifier: Topic :: Software Development
  28. Classifier: Topic :: Scientific/Engineering
  29. Classifier: Operating System :: Microsoft :: Windows
  30. Classifier: Operating System :: POSIX
  31. Classifier: Operating System :: Unix
  32. Classifier: Operating System :: MacOS
  33. Requires-Python: >=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*
  34. License-File: LICENSE.txt
  35. Requires-Dist: numpy (>=1.8.2)
  36. SciPy (pronounced "Sigh Pie") is open-source software for mathematics,
  37. science, and engineering. The SciPy library
  38. depends on NumPy, which provides convenient and fast N-dimensional
  39. array manipulation. The SciPy library is built to work with NumPy
  40. arrays, and provides many user-friendly and efficient numerical
  41. routines such as routines for numerical integration and optimization.
  42. Together, they run on all popular operating systems, are quick to
  43. install, and are free of charge. NumPy and SciPy are easy to use,
  44. but powerful enough to be depended upon by some of the world's
  45. leading scientists and engineers. If you need to manipulate
  46. numbers on a computer and display or publish the results,
  47. give SciPy a try!