123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259 |
- """
- Various transforms used for by the 3D code
- """
- import numpy as np
- from matplotlib import _api
- def world_transformation(xmin, xmax,
- ymin, ymax,
- zmin, zmax, pb_aspect=None):
- """
- Produce a matrix that scales homogeneous coords in the specified ranges
- to [0, 1], or [0, pb_aspect[i]] if the plotbox aspect ratio is specified.
- """
- dx = xmax - xmin
- dy = ymax - ymin
- dz = zmax - zmin
- if pb_aspect is not None:
- ax, ay, az = pb_aspect
- dx /= ax
- dy /= ay
- dz /= az
- return np.array([[1/dx, 0, 0, -xmin/dx],
- [0, 1/dy, 0, -ymin/dy],
- [0, 0, 1/dz, -zmin/dz],
- [0, 0, 0, 1]])
- @_api.deprecated("3.8")
- def rotation_about_vector(v, angle):
- """
- Produce a rotation matrix for an angle in radians about a vector.
- """
- return _rotation_about_vector(v, angle)
- def _rotation_about_vector(v, angle):
- """
- Produce a rotation matrix for an angle in radians about a vector.
- """
- vx, vy, vz = v / np.linalg.norm(v)
- s = np.sin(angle)
- c = np.cos(angle)
- t = 2*np.sin(angle/2)**2 # more numerically stable than t = 1-c
- R = np.array([
- [t*vx*vx + c, t*vx*vy - vz*s, t*vx*vz + vy*s],
- [t*vy*vx + vz*s, t*vy*vy + c, t*vy*vz - vx*s],
- [t*vz*vx - vy*s, t*vz*vy + vx*s, t*vz*vz + c]])
- return R
- def _view_axes(E, R, V, roll):
- """
- Get the unit viewing axes in data coordinates.
- Parameters
- ----------
- E : 3-element numpy array
- The coordinates of the eye/camera.
- R : 3-element numpy array
- The coordinates of the center of the view box.
- V : 3-element numpy array
- Unit vector in the direction of the vertical axis.
- roll : float
- The roll angle in radians.
- Returns
- -------
- u : 3-element numpy array
- Unit vector pointing towards the right of the screen.
- v : 3-element numpy array
- Unit vector pointing towards the top of the screen.
- w : 3-element numpy array
- Unit vector pointing out of the screen.
- """
- w = (E - R)
- w = w/np.linalg.norm(w)
- u = np.cross(V, w)
- u = u/np.linalg.norm(u)
- v = np.cross(w, u) # Will be a unit vector
- # Save some computation for the default roll=0
- if roll != 0:
- # A positive rotation of the camera is a negative rotation of the world
- Rroll = _rotation_about_vector(w, -roll)
- u = np.dot(Rroll, u)
- v = np.dot(Rroll, v)
- return u, v, w
- def _view_transformation_uvw(u, v, w, E):
- """
- Return the view transformation matrix.
- Parameters
- ----------
- u : 3-element numpy array
- Unit vector pointing towards the right of the screen.
- v : 3-element numpy array
- Unit vector pointing towards the top of the screen.
- w : 3-element numpy array
- Unit vector pointing out of the screen.
- E : 3-element numpy array
- The coordinates of the eye/camera.
- """
- Mr = np.eye(4)
- Mt = np.eye(4)
- Mr[:3, :3] = [u, v, w]
- Mt[:3, -1] = -E
- M = np.dot(Mr, Mt)
- return M
- @_api.deprecated("3.8")
- def view_transformation(E, R, V, roll):
- """
- Return the view transformation matrix.
- Parameters
- ----------
- E : 3-element numpy array
- The coordinates of the eye/camera.
- R : 3-element numpy array
- The coordinates of the center of the view box.
- V : 3-element numpy array
- Unit vector in the direction of the vertical axis.
- roll : float
- The roll angle in radians.
- """
- u, v, w = _view_axes(E, R, V, roll)
- M = _view_transformation_uvw(u, v, w, E)
- return M
- @_api.deprecated("3.8")
- def persp_transformation(zfront, zback, focal_length):
- return _persp_transformation(zfront, zback, focal_length)
- def _persp_transformation(zfront, zback, focal_length):
- e = focal_length
- a = 1 # aspect ratio
- b = (zfront+zback)/(zfront-zback)
- c = -2*(zfront*zback)/(zfront-zback)
- proj_matrix = np.array([[e, 0, 0, 0],
- [0, e/a, 0, 0],
- [0, 0, b, c],
- [0, 0, -1, 0]])
- return proj_matrix
- @_api.deprecated("3.8")
- def ortho_transformation(zfront, zback):
- return _ortho_transformation(zfront, zback)
- def _ortho_transformation(zfront, zback):
- # note: w component in the resulting vector will be (zback-zfront), not 1
- a = -(zfront + zback)
- b = -(zfront - zback)
- proj_matrix = np.array([[2, 0, 0, 0],
- [0, 2, 0, 0],
- [0, 0, -2, 0],
- [0, 0, a, b]])
- return proj_matrix
- def _proj_transform_vec(vec, M):
- vecw = np.dot(M, vec)
- w = vecw[3]
- # clip here..
- txs, tys, tzs = vecw[0]/w, vecw[1]/w, vecw[2]/w
- return txs, tys, tzs
- def _proj_transform_vec_clip(vec, M):
- vecw = np.dot(M, vec)
- w = vecw[3]
- # clip here.
- txs, tys, tzs = vecw[0] / w, vecw[1] / w, vecw[2] / w
- tis = (0 <= vecw[0]) & (vecw[0] <= 1) & (0 <= vecw[1]) & (vecw[1] <= 1)
- if np.any(tis):
- tis = vecw[1] < 1
- return txs, tys, tzs, tis
- def inv_transform(xs, ys, zs, invM):
- """
- Transform the points by the inverse of the projection matrix, *invM*.
- """
- vec = _vec_pad_ones(xs, ys, zs)
- vecr = np.dot(invM, vec)
- if vecr.shape == (4,):
- vecr = vecr.reshape((4, 1))
- for i in range(vecr.shape[1]):
- if vecr[3][i] != 0:
- vecr[:, i] = vecr[:, i] / vecr[3][i]
- return vecr[0], vecr[1], vecr[2]
- def _vec_pad_ones(xs, ys, zs):
- return np.array([xs, ys, zs, np.ones_like(xs)])
- def proj_transform(xs, ys, zs, M):
- """
- Transform the points by the projection matrix *M*.
- """
- vec = _vec_pad_ones(xs, ys, zs)
- return _proj_transform_vec(vec, M)
- transform = _api.deprecated(
- "3.8", obj_type="function", name="transform",
- alternative="proj_transform")(proj_transform)
- def proj_transform_clip(xs, ys, zs, M):
- """
- Transform the points by the projection matrix
- and return the clipping result
- returns txs, tys, tzs, tis
- """
- vec = _vec_pad_ones(xs, ys, zs)
- return _proj_transform_vec_clip(vec, M)
- @_api.deprecated("3.8")
- def proj_points(points, M):
- return _proj_points(points, M)
- def _proj_points(points, M):
- return np.column_stack(_proj_trans_points(points, M))
- @_api.deprecated("3.8")
- def proj_trans_points(points, M):
- return _proj_trans_points(points, M)
- def _proj_trans_points(points, M):
- xs, ys, zs = zip(*points)
- return proj_transform(xs, ys, zs, M)
- @_api.deprecated("3.8")
- def rot_x(V, alpha):
- cosa, sina = np.cos(alpha), np.sin(alpha)
- M1 = np.array([[1, 0, 0, 0],
- [0, cosa, -sina, 0],
- [0, sina, cosa, 0],
- [0, 0, 0, 1]])
- return np.dot(M1, V)
|