123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244 |
- // Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // Source project : https://github.com/ismaelJimenez/cpp.leastsq
- // Adapted to be used with google benchmark
- #include "complexity.h"
- #include <algorithm>
- #include <cmath>
- #include "benchmark/benchmark.h"
- #include "check.h"
- namespace benchmark {
- // Internal function to calculate the different scalability forms
- BigOFunc* FittingCurve(BigO complexity) {
- static const double kLog2E = 1.44269504088896340736;
- switch (complexity) {
- case oN:
- return [](IterationCount n) -> double { return static_cast<double>(n); };
- case oNSquared:
- return [](IterationCount n) -> double { return std::pow(n, 2); };
- case oNCubed:
- return [](IterationCount n) -> double { return std::pow(n, 3); };
- case oLogN:
- /* Note: can't use log2 because Android's GNU STL lacks it */
- return
- [](IterationCount n) { return kLog2E * log(static_cast<double>(n)); };
- case oNLogN:
- /* Note: can't use log2 because Android's GNU STL lacks it */
- return [](IterationCount n) {
- return kLog2E * n * log(static_cast<double>(n));
- };
- case o1:
- default:
- return [](IterationCount) { return 1.0; };
- }
- }
- // Function to return an string for the calculated complexity
- std::string GetBigOString(BigO complexity) {
- switch (complexity) {
- case oN:
- return "N";
- case oNSquared:
- return "N^2";
- case oNCubed:
- return "N^3";
- case oLogN:
- return "lgN";
- case oNLogN:
- return "NlgN";
- case o1:
- return "(1)";
- default:
- return "f(N)";
- }
- }
- // Find the coefficient for the high-order term in the running time, by
- // minimizing the sum of squares of relative error, for the fitting curve
- // given by the lambda expression.
- // - n : Vector containing the size of the benchmark tests.
- // - time : Vector containing the times for the benchmark tests.
- // - fitting_curve : lambda expression (e.g. [](int64_t n) {return n; };).
- // For a deeper explanation on the algorithm logic, please refer to
- // https://en.wikipedia.org/wiki/Least_squares#Least_squares,_regression_analysis_and_statistics
- LeastSq MinimalLeastSq(const std::vector<int64_t>& n,
- const std::vector<double>& time,
- BigOFunc* fitting_curve) {
- double sigma_gn_squared = 0.0;
- double sigma_time = 0.0;
- double sigma_time_gn = 0.0;
- // Calculate least square fitting parameter
- for (size_t i = 0; i < n.size(); ++i) {
- double gn_i = fitting_curve(n[i]);
- sigma_gn_squared += gn_i * gn_i;
- sigma_time += time[i];
- sigma_time_gn += time[i] * gn_i;
- }
- LeastSq result;
- result.complexity = oLambda;
- // Calculate complexity.
- result.coef = sigma_time_gn / sigma_gn_squared;
- // Calculate RMS
- double rms = 0.0;
- for (size_t i = 0; i < n.size(); ++i) {
- double fit = result.coef * fitting_curve(n[i]);
- rms += pow((time[i] - fit), 2);
- }
- // Normalized RMS by the mean of the observed values
- double mean = sigma_time / n.size();
- result.rms = sqrt(rms / n.size()) / mean;
- return result;
- }
- // Find the coefficient for the high-order term in the running time, by
- // minimizing the sum of squares of relative error.
- // - n : Vector containing the size of the benchmark tests.
- // - time : Vector containing the times for the benchmark tests.
- // - complexity : If different than oAuto, the fitting curve will stick to
- // this one. If it is oAuto, it will be calculated the best
- // fitting curve.
- LeastSq MinimalLeastSq(const std::vector<int64_t>& n,
- const std::vector<double>& time, const BigO complexity) {
- BM_CHECK_EQ(n.size(), time.size());
- BM_CHECK_GE(n.size(), 2); // Do not compute fitting curve is less than two
- // benchmark runs are given
- BM_CHECK_NE(complexity, oNone);
- LeastSq best_fit;
- if (complexity == oAuto) {
- std::vector<BigO> fit_curves = {oLogN, oN, oNLogN, oNSquared, oNCubed};
- // Take o1 as default best fitting curve
- best_fit = MinimalLeastSq(n, time, FittingCurve(o1));
- best_fit.complexity = o1;
- // Compute all possible fitting curves and stick to the best one
- for (const auto& fit : fit_curves) {
- LeastSq current_fit = MinimalLeastSq(n, time, FittingCurve(fit));
- if (current_fit.rms < best_fit.rms) {
- best_fit = current_fit;
- best_fit.complexity = fit;
- }
- }
- } else {
- best_fit = MinimalLeastSq(n, time, FittingCurve(complexity));
- best_fit.complexity = complexity;
- }
- return best_fit;
- }
- std::vector<BenchmarkReporter::Run> ComputeBigO(
- const std::vector<BenchmarkReporter::Run>& reports) {
- typedef BenchmarkReporter::Run Run;
- std::vector<Run> results;
- if (reports.size() < 2) return results;
- // Accumulators.
- std::vector<int64_t> n;
- std::vector<double> real_time;
- std::vector<double> cpu_time;
- // Populate the accumulators.
- for (const Run& run : reports) {
- BM_CHECK_GT(run.complexity_n, 0)
- << "Did you forget to call SetComplexityN?";
- n.push_back(run.complexity_n);
- real_time.push_back(run.real_accumulated_time / run.iterations);
- cpu_time.push_back(run.cpu_accumulated_time / run.iterations);
- }
- LeastSq result_cpu;
- LeastSq result_real;
- if (reports[0].complexity == oLambda) {
- result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity_lambda);
- result_real = MinimalLeastSq(n, real_time, reports[0].complexity_lambda);
- } else {
- result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity);
- result_real = MinimalLeastSq(n, real_time, result_cpu.complexity);
- }
- // Drop the 'args' when reporting complexity.
- auto run_name = reports[0].run_name;
- run_name.args.clear();
- // Get the data from the accumulator to BenchmarkReporter::Run's.
- Run big_o;
- big_o.run_name = run_name;
- big_o.family_index = reports[0].family_index;
- big_o.per_family_instance_index = reports[0].per_family_instance_index;
- big_o.run_type = BenchmarkReporter::Run::RT_Aggregate;
- big_o.repetitions = reports[0].repetitions;
- big_o.repetition_index = Run::no_repetition_index;
- big_o.threads = reports[0].threads;
- big_o.aggregate_name = "BigO";
- big_o.aggregate_unit = StatisticUnit::kTime;
- big_o.report_label = reports[0].report_label;
- big_o.iterations = 0;
- big_o.real_accumulated_time = result_real.coef;
- big_o.cpu_accumulated_time = result_cpu.coef;
- big_o.report_big_o = true;
- big_o.complexity = result_cpu.complexity;
- // All the time results are reported after being multiplied by the
- // time unit multiplier. But since RMS is a relative quantity it
- // should not be multiplied at all. So, here, we _divide_ it by the
- // multiplier so that when it is multiplied later the result is the
- // correct one.
- double multiplier = GetTimeUnitMultiplier(reports[0].time_unit);
- // Only add label to mean/stddev if it is same for all runs
- Run rms;
- rms.run_name = run_name;
- rms.family_index = reports[0].family_index;
- rms.per_family_instance_index = reports[0].per_family_instance_index;
- rms.run_type = BenchmarkReporter::Run::RT_Aggregate;
- rms.aggregate_name = "RMS";
- rms.aggregate_unit = StatisticUnit::kPercentage;
- rms.report_label = big_o.report_label;
- rms.iterations = 0;
- rms.repetition_index = Run::no_repetition_index;
- rms.repetitions = reports[0].repetitions;
- rms.threads = reports[0].threads;
- rms.real_accumulated_time = result_real.rms / multiplier;
- rms.cpu_accumulated_time = result_cpu.rms / multiplier;
- rms.report_rms = true;
- rms.complexity = result_cpu.complexity;
- // don't forget to keep the time unit, or we won't be able to
- // recover the correct value.
- rms.time_unit = reports[0].time_unit;
- results.push_back(big_o);
- results.push_back(rms);
- return results;
- }
- } // end namespace benchmark
|