123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867 |
- # cython: auto_cpdef=True, infer_types=True, language_level=3, py2_import=True
- #
- # Parser
- #
- from __future__ import absolute_import
- # This should be done automatically
- import cython
- cython.declare(Nodes=object, ExprNodes=object, EncodedString=object,
- bytes_literal=object, StringEncoding=object,
- FileSourceDescriptor=object, lookup_unicodechar=object, unicode_category=object,
- Future=object, Options=object, error=object, warning=object,
- Builtin=object, ModuleNode=object, Utils=object, _unicode=object, _bytes=object,
- re=object, sys=object, _parse_escape_sequences=object, _parse_escape_sequences_raw=object,
- partial=object, reduce=object, _IS_PY3=cython.bint, _IS_2BYTE_UNICODE=cython.bint,
- _CDEF_MODIFIERS=tuple)
- from io import StringIO
- import re
- import sys
- from unicodedata import lookup as lookup_unicodechar, category as unicode_category
- from functools import partial, reduce
- from .Scanning import PyrexScanner, FileSourceDescriptor, StringSourceDescriptor
- from . import Nodes
- from . import ExprNodes
- from . import Builtin
- from . import StringEncoding
- from .StringEncoding import EncodedString, bytes_literal, _unicode, _bytes
- from .ModuleNode import ModuleNode
- from .Errors import error, warning
- from .. import Utils
- from . import Future
- from . import Options
- _IS_PY3 = sys.version_info[0] >= 3
- _IS_2BYTE_UNICODE = sys.maxunicode == 0xffff
- _CDEF_MODIFIERS = ('inline', 'nogil', 'api')
- class Ctx(object):
- # Parsing context
- level = 'other'
- visibility = 'private'
- cdef_flag = 0
- typedef_flag = 0
- api = 0
- overridable = 0
- nogil = 0
- namespace = None
- templates = None
- allow_struct_enum_decorator = False
- def __init__(self, **kwds):
- self.__dict__.update(kwds)
- def __call__(self, **kwds):
- ctx = Ctx()
- d = ctx.__dict__
- d.update(self.__dict__)
- d.update(kwds)
- return ctx
- def p_ident(s, message="Expected an identifier"):
- if s.sy == 'IDENT':
- name = s.systring
- s.next()
- return name
- else:
- s.error(message)
- def p_ident_list(s):
- names = []
- while s.sy == 'IDENT':
- names.append(s.systring)
- s.next()
- if s.sy != ',':
- break
- s.next()
- return names
- #------------------------------------------
- #
- # Expressions
- #
- #------------------------------------------
- def p_binop_operator(s):
- pos = s.position()
- op = s.sy
- s.next()
- return op, pos
- def p_binop_expr(s, ops, p_sub_expr):
- n1 = p_sub_expr(s)
- while s.sy in ops:
- op, pos = p_binop_operator(s)
- n2 = p_sub_expr(s)
- n1 = ExprNodes.binop_node(pos, op, n1, n2)
- if op == '/':
- if Future.division in s.context.future_directives:
- n1.truedivision = True
- else:
- n1.truedivision = None # unknown
- return n1
- #lambdef: 'lambda' [varargslist] ':' test
- def p_lambdef(s, allow_conditional=True):
- # s.sy == 'lambda'
- pos = s.position()
- s.next()
- if s.sy == ':':
- args = []
- star_arg = starstar_arg = None
- else:
- args, star_arg, starstar_arg = p_varargslist(
- s, terminator=':', annotated=False)
- s.expect(':')
- if allow_conditional:
- expr = p_test(s)
- else:
- expr = p_test_nocond(s)
- return ExprNodes.LambdaNode(
- pos, args = args,
- star_arg = star_arg, starstar_arg = starstar_arg,
- result_expr = expr)
- #lambdef_nocond: 'lambda' [varargslist] ':' test_nocond
- def p_lambdef_nocond(s):
- return p_lambdef(s, allow_conditional=False)
- #test: or_test ['if' or_test 'else' test] | lambdef
- def p_test(s):
- if s.sy == 'lambda':
- return p_lambdef(s)
- pos = s.position()
- expr = p_or_test(s)
- if s.sy == 'if':
- s.next()
- test = p_or_test(s)
- s.expect('else')
- other = p_test(s)
- return ExprNodes.CondExprNode(pos, test=test, true_val=expr, false_val=other)
- else:
- return expr
- #test_nocond: or_test | lambdef_nocond
- def p_test_nocond(s):
- if s.sy == 'lambda':
- return p_lambdef_nocond(s)
- else:
- return p_or_test(s)
- #or_test: and_test ('or' and_test)*
- def p_or_test(s):
- return p_rassoc_binop_expr(s, ('or',), p_and_test)
- def p_rassoc_binop_expr(s, ops, p_subexpr):
- n1 = p_subexpr(s)
- if s.sy in ops:
- pos = s.position()
- op = s.sy
- s.next()
- n2 = p_rassoc_binop_expr(s, ops, p_subexpr)
- n1 = ExprNodes.binop_node(pos, op, n1, n2)
- return n1
- #and_test: not_test ('and' not_test)*
- def p_and_test(s):
- #return p_binop_expr(s, ('and',), p_not_test)
- return p_rassoc_binop_expr(s, ('and',), p_not_test)
- #not_test: 'not' not_test | comparison
- def p_not_test(s):
- if s.sy == 'not':
- pos = s.position()
- s.next()
- return ExprNodes.NotNode(pos, operand = p_not_test(s))
- else:
- return p_comparison(s)
- #comparison: expr (comp_op expr)*
- #comp_op: '<'|'>'|'=='|'>='|'<='|'<>'|'!='|'in'|'not' 'in'|'is'|'is' 'not'
- def p_comparison(s):
- n1 = p_starred_expr(s)
- if s.sy in comparison_ops:
- pos = s.position()
- op = p_cmp_op(s)
- n2 = p_starred_expr(s)
- n1 = ExprNodes.PrimaryCmpNode(pos,
- operator = op, operand1 = n1, operand2 = n2)
- if s.sy in comparison_ops:
- n1.cascade = p_cascaded_cmp(s)
- return n1
- def p_test_or_starred_expr(s):
- if s.sy == '*':
- return p_starred_expr(s)
- else:
- return p_test(s)
- def p_starred_expr(s):
- pos = s.position()
- if s.sy == '*':
- starred = True
- s.next()
- else:
- starred = False
- expr = p_bit_expr(s)
- if starred:
- expr = ExprNodes.StarredUnpackingNode(pos, expr)
- return expr
- def p_cascaded_cmp(s):
- pos = s.position()
- op = p_cmp_op(s)
- n2 = p_starred_expr(s)
- result = ExprNodes.CascadedCmpNode(pos,
- operator = op, operand2 = n2)
- if s.sy in comparison_ops:
- result.cascade = p_cascaded_cmp(s)
- return result
- def p_cmp_op(s):
- if s.sy == 'not':
- s.next()
- s.expect('in')
- op = 'not_in'
- elif s.sy == 'is':
- s.next()
- if s.sy == 'not':
- s.next()
- op = 'is_not'
- else:
- op = 'is'
- else:
- op = s.sy
- s.next()
- if op == '<>':
- op = '!='
- return op
- comparison_ops = cython.declare(set, set([
- '<', '>', '==', '>=', '<=', '<>', '!=',
- 'in', 'is', 'not'
- ]))
- #expr: xor_expr ('|' xor_expr)*
- def p_bit_expr(s):
- return p_binop_expr(s, ('|',), p_xor_expr)
- #xor_expr: and_expr ('^' and_expr)*
- def p_xor_expr(s):
- return p_binop_expr(s, ('^',), p_and_expr)
- #and_expr: shift_expr ('&' shift_expr)*
- def p_and_expr(s):
- return p_binop_expr(s, ('&',), p_shift_expr)
- #shift_expr: arith_expr (('<<'|'>>') arith_expr)*
- def p_shift_expr(s):
- return p_binop_expr(s, ('<<', '>>'), p_arith_expr)
- #arith_expr: term (('+'|'-') term)*
- def p_arith_expr(s):
- return p_binop_expr(s, ('+', '-'), p_term)
- #term: factor (('*'|'@'|'/'|'%'|'//') factor)*
- def p_term(s):
- return p_binop_expr(s, ('*', '@', '/', '%', '//'), p_factor)
- #factor: ('+'|'-'|'~'|'&'|typecast|sizeof) factor | power
- def p_factor(s):
- # little indirection for C-ification purposes
- return _p_factor(s)
- def _p_factor(s):
- sy = s.sy
- if sy in ('+', '-', '~'):
- op = s.sy
- pos = s.position()
- s.next()
- return ExprNodes.unop_node(pos, op, p_factor(s))
- elif not s.in_python_file:
- if sy == '&':
- pos = s.position()
- s.next()
- arg = p_factor(s)
- return ExprNodes.AmpersandNode(pos, operand = arg)
- elif sy == "<":
- return p_typecast(s)
- elif sy == 'IDENT' and s.systring == "sizeof":
- return p_sizeof(s)
- return p_power(s)
- def p_typecast(s):
- # s.sy == "<"
- pos = s.position()
- s.next()
- base_type = p_c_base_type(s)
- is_memslice = isinstance(base_type, Nodes.MemoryViewSliceTypeNode)
- is_template = isinstance(base_type, Nodes.TemplatedTypeNode)
- is_const = isinstance(base_type, Nodes.CConstTypeNode)
- if (not is_memslice and not is_template and not is_const
- and base_type.name is None):
- s.error("Unknown type")
- declarator = p_c_declarator(s, empty = 1)
- if s.sy == '?':
- s.next()
- typecheck = 1
- else:
- typecheck = 0
- s.expect(">")
- operand = p_factor(s)
- if is_memslice:
- return ExprNodes.CythonArrayNode(pos, base_type_node=base_type,
- operand=operand)
- return ExprNodes.TypecastNode(pos,
- base_type = base_type,
- declarator = declarator,
- operand = operand,
- typecheck = typecheck)
- def p_sizeof(s):
- # s.sy == ident "sizeof"
- pos = s.position()
- s.next()
- s.expect('(')
- # Here we decide if we are looking at an expression or type
- # If it is actually a type, but parsable as an expression,
- # we treat it as an expression here.
- if looking_at_expr(s):
- operand = p_test(s)
- node = ExprNodes.SizeofVarNode(pos, operand = operand)
- else:
- base_type = p_c_base_type(s)
- declarator = p_c_declarator(s, empty = 1)
- node = ExprNodes.SizeofTypeNode(pos,
- base_type = base_type, declarator = declarator)
- s.expect(')')
- return node
- def p_yield_expression(s):
- # s.sy == "yield"
- pos = s.position()
- s.next()
- is_yield_from = False
- if s.sy == 'from':
- is_yield_from = True
- s.next()
- if s.sy != ')' and s.sy not in statement_terminators:
- # "yield from" does not support implicit tuples, but "yield" does ("yield 1,2")
- arg = p_test(s) if is_yield_from else p_testlist(s)
- else:
- if is_yield_from:
- s.error("'yield from' requires a source argument",
- pos=pos, fatal=False)
- arg = None
- if is_yield_from:
- return ExprNodes.YieldFromExprNode(pos, arg=arg)
- else:
- return ExprNodes.YieldExprNode(pos, arg=arg)
- def p_yield_statement(s):
- # s.sy == "yield"
- yield_expr = p_yield_expression(s)
- return Nodes.ExprStatNode(yield_expr.pos, expr=yield_expr)
- def p_async_statement(s, ctx, decorators):
- # s.sy >> 'async' ...
- if s.sy == 'def':
- # 'async def' statements aren't allowed in pxd files
- if 'pxd' in ctx.level:
- s.error('def statement not allowed here')
- s.level = ctx.level
- return p_def_statement(s, decorators, is_async_def=True)
- elif decorators:
- s.error("Decorators can only be followed by functions or classes")
- elif s.sy == 'for':
- return p_for_statement(s, is_async=True)
- elif s.sy == 'with':
- s.next()
- return p_with_items(s, is_async=True)
- else:
- s.error("expected one of 'def', 'for', 'with' after 'async'")
- #power: atom_expr ('**' factor)*
- #atom_expr: ['await'] atom trailer*
- def p_power(s):
- if s.systring == 'new' and s.peek()[0] == 'IDENT':
- return p_new_expr(s)
- await_pos = None
- if s.sy == 'await':
- await_pos = s.position()
- s.next()
- n1 = p_atom(s)
- while s.sy in ('(', '[', '.'):
- n1 = p_trailer(s, n1)
- if await_pos:
- n1 = ExprNodes.AwaitExprNode(await_pos, arg=n1)
- if s.sy == '**':
- pos = s.position()
- s.next()
- n2 = p_factor(s)
- n1 = ExprNodes.binop_node(pos, '**', n1, n2)
- return n1
- def p_new_expr(s):
- # s.systring == 'new'.
- pos = s.position()
- s.next()
- cppclass = p_c_base_type(s)
- return p_call(s, ExprNodes.NewExprNode(pos, cppclass = cppclass))
- #trailer: '(' [arglist] ')' | '[' subscriptlist ']' | '.' NAME
- def p_trailer(s, node1):
- pos = s.position()
- if s.sy == '(':
- return p_call(s, node1)
- elif s.sy == '[':
- return p_index(s, node1)
- else: # s.sy == '.'
- s.next()
- name = p_ident(s)
- return ExprNodes.AttributeNode(pos,
- obj=node1, attribute=name)
- # arglist: argument (',' argument)* [',']
- # argument: [test '='] test # Really [keyword '='] test
- # since PEP 448:
- # argument: ( test [comp_for] |
- # test '=' test |
- # '**' expr |
- # star_expr )
- def p_call_parse_args(s, allow_genexp=True):
- # s.sy == '('
- pos = s.position()
- s.next()
- positional_args = []
- keyword_args = []
- starstar_seen = False
- last_was_tuple_unpack = False
- while s.sy != ')':
- if s.sy == '*':
- if starstar_seen:
- s.error("Non-keyword arg following keyword arg", pos=s.position())
- s.next()
- positional_args.append(p_test(s))
- last_was_tuple_unpack = True
- elif s.sy == '**':
- s.next()
- keyword_args.append(p_test(s))
- starstar_seen = True
- else:
- arg = p_test(s)
- if s.sy == '=':
- s.next()
- if not arg.is_name:
- s.error("Expected an identifier before '='",
- pos=arg.pos)
- encoded_name = s.context.intern_ustring(arg.name)
- keyword = ExprNodes.IdentifierStringNode(
- arg.pos, value=encoded_name)
- arg = p_test(s)
- keyword_args.append((keyword, arg))
- else:
- if keyword_args:
- s.error("Non-keyword arg following keyword arg", pos=arg.pos)
- if positional_args and not last_was_tuple_unpack:
- positional_args[-1].append(arg)
- else:
- positional_args.append([arg])
- last_was_tuple_unpack = False
- if s.sy != ',':
- break
- s.next()
- if s.sy in ('for', 'async'):
- if not keyword_args and not last_was_tuple_unpack:
- if len(positional_args) == 1 and len(positional_args[0]) == 1:
- positional_args = [[p_genexp(s, positional_args[0][0])]]
- s.expect(')')
- return positional_args or [[]], keyword_args
- def p_call_build_packed_args(pos, positional_args, keyword_args):
- keyword_dict = None
- subtuples = [
- ExprNodes.TupleNode(pos, args=arg) if isinstance(arg, list) else ExprNodes.AsTupleNode(pos, arg=arg)
- for arg in positional_args
- ]
- # TODO: implement a faster way to join tuples than creating each one and adding them
- arg_tuple = reduce(partial(ExprNodes.binop_node, pos, '+'), subtuples)
- if keyword_args:
- kwargs = []
- dict_items = []
- for item in keyword_args:
- if isinstance(item, tuple):
- key, value = item
- dict_items.append(ExprNodes.DictItemNode(pos=key.pos, key=key, value=value))
- elif item.is_dict_literal:
- # unpack "**{a:b}" directly
- dict_items.extend(item.key_value_pairs)
- else:
- if dict_items:
- kwargs.append(ExprNodes.DictNode(
- dict_items[0].pos, key_value_pairs=dict_items, reject_duplicates=True))
- dict_items = []
- kwargs.append(item)
- if dict_items:
- kwargs.append(ExprNodes.DictNode(
- dict_items[0].pos, key_value_pairs=dict_items, reject_duplicates=True))
- if kwargs:
- if len(kwargs) == 1 and kwargs[0].is_dict_literal:
- # only simple keyword arguments found -> one dict
- keyword_dict = kwargs[0]
- else:
- # at least one **kwargs
- keyword_dict = ExprNodes.MergedDictNode(pos, keyword_args=kwargs)
- return arg_tuple, keyword_dict
- def p_call(s, function):
- # s.sy == '('
- pos = s.position()
- positional_args, keyword_args = p_call_parse_args(s)
- if not keyword_args and len(positional_args) == 1 and isinstance(positional_args[0], list):
- return ExprNodes.SimpleCallNode(pos, function=function, args=positional_args[0])
- else:
- arg_tuple, keyword_dict = p_call_build_packed_args(pos, positional_args, keyword_args)
- return ExprNodes.GeneralCallNode(
- pos, function=function, positional_args=arg_tuple, keyword_args=keyword_dict)
- #lambdef: 'lambda' [varargslist] ':' test
- #subscriptlist: subscript (',' subscript)* [',']
- def p_index(s, base):
- # s.sy == '['
- pos = s.position()
- s.next()
- subscripts, is_single_value = p_subscript_list(s)
- if is_single_value and len(subscripts[0]) == 2:
- start, stop = subscripts[0]
- result = ExprNodes.SliceIndexNode(pos,
- base = base, start = start, stop = stop)
- else:
- indexes = make_slice_nodes(pos, subscripts)
- if is_single_value:
- index = indexes[0]
- else:
- index = ExprNodes.TupleNode(pos, args = indexes)
- result = ExprNodes.IndexNode(pos,
- base = base, index = index)
- s.expect(']')
- return result
- def p_subscript_list(s):
- is_single_value = True
- items = [p_subscript(s)]
- while s.sy == ',':
- is_single_value = False
- s.next()
- if s.sy == ']':
- break
- items.append(p_subscript(s))
- return items, is_single_value
- #subscript: '.' '.' '.' | test | [test] ':' [test] [':' [test]]
- def p_subscript(s):
- # Parse a subscript and return a list of
- # 1, 2 or 3 ExprNodes, depending on how
- # many slice elements were encountered.
- pos = s.position()
- start = p_slice_element(s, (':',))
- if s.sy != ':':
- return [start]
- s.next()
- stop = p_slice_element(s, (':', ',', ']'))
- if s.sy != ':':
- return [start, stop]
- s.next()
- step = p_slice_element(s, (':', ',', ']'))
- return [start, stop, step]
- def p_slice_element(s, follow_set):
- # Simple expression which may be missing iff
- # it is followed by something in follow_set.
- if s.sy not in follow_set:
- return p_test(s)
- else:
- return None
- def expect_ellipsis(s):
- s.expect('.')
- s.expect('.')
- s.expect('.')
- def make_slice_nodes(pos, subscripts):
- # Convert a list of subscripts as returned
- # by p_subscript_list into a list of ExprNodes,
- # creating SliceNodes for elements with 2 or
- # more components.
- result = []
- for subscript in subscripts:
- if len(subscript) == 1:
- result.append(subscript[0])
- else:
- result.append(make_slice_node(pos, *subscript))
- return result
- def make_slice_node(pos, start, stop = None, step = None):
- if not start:
- start = ExprNodes.NoneNode(pos)
- if not stop:
- stop = ExprNodes.NoneNode(pos)
- if not step:
- step = ExprNodes.NoneNode(pos)
- return ExprNodes.SliceNode(pos,
- start = start, stop = stop, step = step)
- #atom: '(' [yield_expr|testlist_comp] ')' | '[' [listmaker] ']' | '{' [dict_or_set_maker] '}' | '`' testlist '`' | NAME | NUMBER | STRING+
- def p_atom(s):
- pos = s.position()
- sy = s.sy
- if sy == '(':
- s.next()
- if s.sy == ')':
- result = ExprNodes.TupleNode(pos, args = [])
- elif s.sy == 'yield':
- result = p_yield_expression(s)
- else:
- result = p_testlist_comp(s)
- s.expect(')')
- return result
- elif sy == '[':
- return p_list_maker(s)
- elif sy == '{':
- return p_dict_or_set_maker(s)
- elif sy == '`':
- return p_backquote_expr(s)
- elif sy == '.':
- expect_ellipsis(s)
- return ExprNodes.EllipsisNode(pos)
- elif sy == 'INT':
- return p_int_literal(s)
- elif sy == 'FLOAT':
- value = s.systring
- s.next()
- return ExprNodes.FloatNode(pos, value = value)
- elif sy == 'IMAG':
- value = s.systring[:-1]
- s.next()
- return ExprNodes.ImagNode(pos, value = value)
- elif sy == 'BEGIN_STRING':
- kind, bytes_value, unicode_value = p_cat_string_literal(s)
- if kind == 'c':
- return ExprNodes.CharNode(pos, value = bytes_value)
- elif kind == 'u':
- return ExprNodes.UnicodeNode(pos, value = unicode_value, bytes_value = bytes_value)
- elif kind == 'b':
- return ExprNodes.BytesNode(pos, value = bytes_value)
- elif kind == 'f':
- return ExprNodes.JoinedStrNode(pos, values = unicode_value)
- elif kind == '':
- return ExprNodes.StringNode(pos, value = bytes_value, unicode_value = unicode_value)
- else:
- s.error("invalid string kind '%s'" % kind)
- elif sy == 'IDENT':
- name = s.systring
- if name == "None":
- result = ExprNodes.NoneNode(pos)
- elif name == "True":
- result = ExprNodes.BoolNode(pos, value=True)
- elif name == "False":
- result = ExprNodes.BoolNode(pos, value=False)
- elif name == "NULL" and not s.in_python_file:
- result = ExprNodes.NullNode(pos)
- else:
- result = p_name(s, name)
- s.next()
- return result
- else:
- s.error("Expected an identifier or literal")
- def p_int_literal(s):
- pos = s.position()
- value = s.systring
- s.next()
- unsigned = ""
- longness = ""
- while value[-1] in u"UuLl":
- if value[-1] in u"Ll":
- longness += "L"
- else:
- unsigned += "U"
- value = value[:-1]
- # '3L' is ambiguous in Py2 but not in Py3. '3U' and '3LL' are
- # illegal in Py2 Python files. All suffixes are illegal in Py3
- # Python files.
- is_c_literal = None
- if unsigned:
- is_c_literal = True
- elif longness:
- if longness == 'LL' or s.context.language_level >= 3:
- is_c_literal = True
- if s.in_python_file:
- if is_c_literal:
- error(pos, "illegal integer literal syntax in Python source file")
- is_c_literal = False
- return ExprNodes.IntNode(pos,
- is_c_literal = is_c_literal,
- value = value,
- unsigned = unsigned,
- longness = longness)
- def p_name(s, name):
- pos = s.position()
- if not s.compile_time_expr and name in s.compile_time_env:
- value = s.compile_time_env.lookup_here(name)
- node = wrap_compile_time_constant(pos, value)
- if node is not None:
- return node
- return ExprNodes.NameNode(pos, name=name)
- def wrap_compile_time_constant(pos, value):
- rep = repr(value)
- if value is None:
- return ExprNodes.NoneNode(pos)
- elif value is Ellipsis:
- return ExprNodes.EllipsisNode(pos)
- elif isinstance(value, bool):
- return ExprNodes.BoolNode(pos, value=value)
- elif isinstance(value, int):
- return ExprNodes.IntNode(pos, value=rep, constant_result=value)
- elif isinstance(value, float):
- return ExprNodes.FloatNode(pos, value=rep, constant_result=value)
- elif isinstance(value, complex):
- node = ExprNodes.ImagNode(pos, value=repr(value.imag), constant_result=complex(0.0, value.imag))
- if value.real:
- # FIXME: should we care about -0.0 ?
- # probably not worth using the '-' operator for negative imag values
- node = ExprNodes.binop_node(
- pos, '+', ExprNodes.FloatNode(pos, value=repr(value.real), constant_result=value.real), node,
- constant_result=value)
- return node
- elif isinstance(value, _unicode):
- return ExprNodes.UnicodeNode(pos, value=EncodedString(value))
- elif isinstance(value, _bytes):
- bvalue = bytes_literal(value, 'ascii') # actually: unknown encoding, but BytesLiteral requires one
- return ExprNodes.BytesNode(pos, value=bvalue, constant_result=value)
- elif isinstance(value, tuple):
- args = [wrap_compile_time_constant(pos, arg)
- for arg in value]
- if None not in args:
- return ExprNodes.TupleNode(pos, args=args)
- else:
- # error already reported
- return None
- elif not _IS_PY3 and isinstance(value, long):
- return ExprNodes.IntNode(pos, value=rep.rstrip('L'), constant_result=value)
- error(pos, "Invalid type for compile-time constant: %r (type %s)"
- % (value, value.__class__.__name__))
- return None
- def p_cat_string_literal(s):
- # A sequence of one or more adjacent string literals.
- # Returns (kind, bytes_value, unicode_value)
- # where kind in ('b', 'c', 'u', 'f', '')
- pos = s.position()
- kind, bytes_value, unicode_value = p_string_literal(s)
- if kind == 'c' or s.sy != 'BEGIN_STRING':
- return kind, bytes_value, unicode_value
- bstrings, ustrings, positions = [bytes_value], [unicode_value], [pos]
- bytes_value = unicode_value = None
- while s.sy == 'BEGIN_STRING':
- pos = s.position()
- next_kind, next_bytes_value, next_unicode_value = p_string_literal(s)
- if next_kind == 'c':
- error(pos, "Cannot concatenate char literal with another string or char literal")
- continue
- elif next_kind != kind:
- # concatenating f strings and normal strings is allowed and leads to an f string
- if set([kind, next_kind]) in (set(['f', 'u']), set(['f', ''])):
- kind = 'f'
- else:
- error(pos, "Cannot mix string literals of different types, expected %s'', got %s''" % (
- kind, next_kind))
- continue
- bstrings.append(next_bytes_value)
- ustrings.append(next_unicode_value)
- positions.append(pos)
- # join and rewrap the partial literals
- if kind in ('b', 'c', '') or kind == 'u' and None not in bstrings:
- # Py3 enforced unicode literals are parsed as bytes/unicode combination
- bytes_value = bytes_literal(StringEncoding.join_bytes(bstrings), s.source_encoding)
- if kind in ('u', ''):
- unicode_value = EncodedString(u''.join([u for u in ustrings if u is not None]))
- if kind == 'f':
- unicode_value = []
- for u, pos in zip(ustrings, positions):
- if isinstance(u, list):
- unicode_value += u
- else:
- # non-f-string concatenated into the f-string
- unicode_value.append(ExprNodes.UnicodeNode(pos, value=EncodedString(u)))
- return kind, bytes_value, unicode_value
- def p_opt_string_literal(s, required_type='u'):
- if s.sy != 'BEGIN_STRING':
- return None
- pos = s.position()
- kind, bytes_value, unicode_value = p_string_literal(s, required_type)
- if required_type == 'u':
- if kind == 'f':
- s.error("f-string not allowed here", pos)
- return unicode_value
- elif required_type == 'b':
- return bytes_value
- else:
- s.error("internal parser configuration error")
- def check_for_non_ascii_characters(string):
- for c in string:
- if c >= u'\x80':
- return True
- return False
- def p_string_literal(s, kind_override=None):
- # A single string or char literal. Returns (kind, bvalue, uvalue)
- # where kind in ('b', 'c', 'u', 'f', ''). The 'bvalue' is the source
- # code byte sequence of the string literal, 'uvalue' is the
- # decoded Unicode string. Either of the two may be None depending
- # on the 'kind' of string, only unprefixed strings have both
- # representations. In f-strings, the uvalue is a list of the Unicode
- # strings and f-string expressions that make up the f-string.
- # s.sy == 'BEGIN_STRING'
- pos = s.position()
- is_python3_source = s.context.language_level >= 3
- has_non_ascii_literal_characters = False
- string_start_pos = (pos[0], pos[1], pos[2] + len(s.systring))
- kind_string = s.systring.rstrip('"\'').lower()
- if len(kind_string) > 1:
- if len(set(kind_string)) != len(kind_string):
- error(pos, 'Duplicate string prefix character')
- if 'b' in kind_string and 'u' in kind_string:
- error(pos, 'String prefixes b and u cannot be combined')
- if 'b' in kind_string and 'f' in kind_string:
- error(pos, 'String prefixes b and f cannot be combined')
- if 'u' in kind_string and 'f' in kind_string:
- error(pos, 'String prefixes u and f cannot be combined')
- is_raw = 'r' in kind_string
- if 'c' in kind_string:
- # this should never happen, since the lexer does not allow combining c
- # with other prefix characters
- if len(kind_string) != 1:
- error(pos, 'Invalid string prefix for character literal')
- kind = 'c'
- elif 'f' in kind_string:
- kind = 'f' # u is ignored
- is_raw = True # postpone the escape resolution
- elif 'b' in kind_string:
- kind = 'b'
- elif 'u' in kind_string:
- kind = 'u'
- else:
- kind = ''
- if kind == '' and kind_override is None and Future.unicode_literals in s.context.future_directives:
- chars = StringEncoding.StrLiteralBuilder(s.source_encoding)
- kind = 'u'
- else:
- if kind_override is not None and kind_override in 'ub':
- kind = kind_override
- if kind in ('u', 'f'): # f-strings are scanned exactly like Unicode literals, but are parsed further later
- chars = StringEncoding.UnicodeLiteralBuilder()
- elif kind == '':
- chars = StringEncoding.StrLiteralBuilder(s.source_encoding)
- else:
- chars = StringEncoding.BytesLiteralBuilder(s.source_encoding)
- while 1:
- s.next()
- sy = s.sy
- systr = s.systring
- # print "p_string_literal: sy =", sy, repr(s.systring) ###
- if sy == 'CHARS':
- chars.append(systr)
- if is_python3_source and not has_non_ascii_literal_characters and check_for_non_ascii_characters(systr):
- has_non_ascii_literal_characters = True
- elif sy == 'ESCAPE':
- # in Py2, 'ur' raw unicode strings resolve unicode escapes but nothing else
- if is_raw and (is_python3_source or kind != 'u' or systr[1] not in u'Uu'):
- chars.append(systr)
- if is_python3_source and not has_non_ascii_literal_characters and check_for_non_ascii_characters(systr):
- has_non_ascii_literal_characters = True
- else:
- _append_escape_sequence(kind, chars, systr, s)
- elif sy == 'NEWLINE':
- chars.append(u'\n')
- elif sy == 'END_STRING':
- break
- elif sy == 'EOF':
- s.error("Unclosed string literal", pos=pos)
- else:
- s.error("Unexpected token %r:%r in string literal" % (
- sy, s.systring))
- if kind == 'c':
- unicode_value = None
- bytes_value = chars.getchar()
- if len(bytes_value) != 1:
- error(pos, u"invalid character literal: %r" % bytes_value)
- else:
- bytes_value, unicode_value = chars.getstrings()
- if (has_non_ascii_literal_characters
- and is_python3_source and Future.unicode_literals in s.context.future_directives):
- # Python 3 forbids literal non-ASCII characters in byte strings
- if kind == 'b':
- s.error("bytes can only contain ASCII literal characters.", pos=pos)
- bytes_value = None
- if kind == 'f':
- unicode_value = p_f_string(s, unicode_value, string_start_pos, is_raw='r' in kind_string)
- s.next()
- return (kind, bytes_value, unicode_value)
- def _append_escape_sequence(kind, builder, escape_sequence, s):
- c = escape_sequence[1]
- if c in u"01234567":
- builder.append_charval(int(escape_sequence[1:], 8))
- elif c in u"'\"\\":
- builder.append(c)
- elif c in u"abfnrtv":
- builder.append(StringEncoding.char_from_escape_sequence(escape_sequence))
- elif c == u'\n':
- pass # line continuation
- elif c == u'x': # \xXX
- if len(escape_sequence) == 4:
- builder.append_charval(int(escape_sequence[2:], 16))
- else:
- s.error("Invalid hex escape '%s'" % escape_sequence, fatal=False)
- elif c in u'NUu' and kind in ('u', 'f', ''): # \uxxxx, \Uxxxxxxxx, \N{...}
- chrval = -1
- if c == u'N':
- uchar = None
- try:
- uchar = lookup_unicodechar(escape_sequence[3:-1])
- chrval = ord(uchar)
- except KeyError:
- s.error("Unknown Unicode character name %s" %
- repr(escape_sequence[3:-1]).lstrip('u'), fatal=False)
- except TypeError:
- # 2-byte unicode build of CPython?
- if (uchar is not None and _IS_2BYTE_UNICODE and len(uchar) == 2 and
- unicode_category(uchar[0]) == 'Cs' and unicode_category(uchar[1]) == 'Cs'):
- # surrogate pair instead of single character
- chrval = 0x10000 + (ord(uchar[0]) - 0xd800) >> 10 + (ord(uchar[1]) - 0xdc00)
- else:
- raise
- elif len(escape_sequence) in (6, 10):
- chrval = int(escape_sequence[2:], 16)
- if chrval > 1114111: # sys.maxunicode:
- s.error("Invalid unicode escape '%s'" % escape_sequence)
- chrval = -1
- else:
- s.error("Invalid unicode escape '%s'" % escape_sequence, fatal=False)
- if chrval >= 0:
- builder.append_uescape(chrval, escape_sequence)
- else:
- builder.append(escape_sequence)
- _parse_escape_sequences_raw, _parse_escape_sequences = [re.compile((
- # escape sequences:
- br'(\\(?:' +
- (br'\\?' if is_raw else (
- br'[\\abfnrtv"\'{]|'
- br'[0-7]{2,3}|'
- br'N\{[^}]*\}|'
- br'x[0-9a-fA-F]{2}|'
- br'u[0-9a-fA-F]{4}|'
- br'U[0-9a-fA-F]{8}|'
- br'[NxuU]|' # detect invalid escape sequences that do not match above
- )) +
- br')?|'
- # non-escape sequences:
- br'\{\{?|'
- br'\}\}?|'
- br'[^\\{}]+)'
- ).decode('us-ascii')).match
- for is_raw in (True, False)]
- def _f_string_error_pos(pos, string, i):
- return (pos[0], pos[1], pos[2] + i + 1) # FIXME: handle newlines in string
- def p_f_string(s, unicode_value, pos, is_raw):
- # Parses a PEP 498 f-string literal into a list of nodes. Nodes are either UnicodeNodes
- # or FormattedValueNodes.
- values = []
- next_start = 0
- size = len(unicode_value)
- builder = StringEncoding.UnicodeLiteralBuilder()
- _parse_seq = _parse_escape_sequences_raw if is_raw else _parse_escape_sequences
- while next_start < size:
- end = next_start
- match = _parse_seq(unicode_value, next_start)
- if match is None:
- error(_f_string_error_pos(pos, unicode_value, next_start), "Invalid escape sequence")
- next_start = match.end()
- part = match.group()
- c = part[0]
- if c == '\\':
- if not is_raw and len(part) > 1:
- _append_escape_sequence('f', builder, part, s)
- else:
- builder.append(part)
- elif c == '{':
- if part == '{{':
- builder.append('{')
- else:
- # start of an expression
- if builder.chars:
- values.append(ExprNodes.UnicodeNode(pos, value=builder.getstring()))
- builder = StringEncoding.UnicodeLiteralBuilder()
- next_start, expr_node = p_f_string_expr(s, unicode_value, pos, next_start, is_raw)
- values.append(expr_node)
- elif c == '}':
- if part == '}}':
- builder.append('}')
- else:
- error(_f_string_error_pos(pos, unicode_value, end),
- "f-string: single '}' is not allowed")
- else:
- builder.append(part)
- if builder.chars:
- values.append(ExprNodes.UnicodeNode(pos, value=builder.getstring()))
- return values
- def p_f_string_expr(s, unicode_value, pos, starting_index, is_raw):
- # Parses a {}-delimited expression inside an f-string. Returns a FormattedValueNode
- # and the index in the string that follows the expression.
- i = starting_index
- size = len(unicode_value)
- conversion_char = terminal_char = format_spec = None
- format_spec_str = None
- NO_CHAR = 2**30
- nested_depth = 0
- quote_char = NO_CHAR
- in_triple_quotes = False
- backslash_reported = False
- while True:
- if i >= size:
- break # error will be reported below
- c = unicode_value[i]
- if quote_char != NO_CHAR:
- if c == '\\':
- # avoid redundant error reports along '\' sequences
- if not backslash_reported:
- error(_f_string_error_pos(pos, unicode_value, i),
- "backslashes not allowed in f-strings")
- backslash_reported = True
- elif c == quote_char:
- if in_triple_quotes:
- if i + 2 < size and unicode_value[i + 1] == c and unicode_value[i + 2] == c:
- in_triple_quotes = False
- quote_char = NO_CHAR
- i += 2
- else:
- quote_char = NO_CHAR
- elif c in '\'"':
- quote_char = c
- if i + 2 < size and unicode_value[i + 1] == c and unicode_value[i + 2] == c:
- in_triple_quotes = True
- i += 2
- elif c in '{[(':
- nested_depth += 1
- elif nested_depth != 0 and c in '}])':
- nested_depth -= 1
- elif c == '#':
- error(_f_string_error_pos(pos, unicode_value, i),
- "format string cannot include #")
- elif nested_depth == 0 and c in '!:}':
- # allow != as a special case
- if c == '!' and i + 1 < size and unicode_value[i + 1] == '=':
- i += 1
- continue
- terminal_char = c
- break
- i += 1
- # normalise line endings as the parser expects that
- expr_str = unicode_value[starting_index:i].replace('\r\n', '\n').replace('\r', '\n')
- expr_pos = (pos[0], pos[1], pos[2] + starting_index + 2) # TODO: find exact code position (concat, multi-line, ...)
- if not expr_str.strip():
- error(_f_string_error_pos(pos, unicode_value, starting_index),
- "empty expression not allowed in f-string")
- if terminal_char == '!':
- i += 1
- if i + 2 > size:
- pass # error will be reported below
- else:
- conversion_char = unicode_value[i]
- i += 1
- terminal_char = unicode_value[i]
- if terminal_char == ':':
- in_triple_quotes = False
- in_string = False
- nested_depth = 0
- start_format_spec = i + 1
- while True:
- if i >= size:
- break # error will be reported below
- c = unicode_value[i]
- if not in_triple_quotes and not in_string:
- if c == '{':
- nested_depth += 1
- elif c == '}':
- if nested_depth > 0:
- nested_depth -= 1
- else:
- terminal_char = c
- break
- if c in '\'"':
- if not in_string and i + 2 < size and unicode_value[i + 1] == c and unicode_value[i + 2] == c:
- in_triple_quotes = not in_triple_quotes
- i += 2
- elif not in_triple_quotes:
- in_string = not in_string
- i += 1
- format_spec_str = unicode_value[start_format_spec:i]
- if terminal_char != '}':
- error(_f_string_error_pos(pos, unicode_value, i),
- "missing '}' in format string expression" + (
- ", found '%s'" % terminal_char if terminal_char else ""))
- # parse the expression as if it was surrounded by parentheses
- buf = StringIO('(%s)' % expr_str)
- scanner = PyrexScanner(buf, expr_pos[0], parent_scanner=s, source_encoding=s.source_encoding, initial_pos=expr_pos)
- expr = p_testlist(scanner) # TODO is testlist right here?
- # validate the conversion char
- if conversion_char is not None and not ExprNodes.FormattedValueNode.find_conversion_func(conversion_char):
- error(expr_pos, "invalid conversion character '%s'" % conversion_char)
- # the format spec is itself treated like an f-string
- if format_spec_str:
- format_spec = ExprNodes.JoinedStrNode(pos, values=p_f_string(s, format_spec_str, pos, is_raw))
- return i + 1, ExprNodes.FormattedValueNode(
- pos, value=expr, conversion_char=conversion_char, format_spec=format_spec)
- # since PEP 448:
- # list_display ::= "[" [listmaker] "]"
- # listmaker ::= (test|star_expr) ( comp_for | (',' (test|star_expr))* [','] )
- # comp_iter ::= comp_for | comp_if
- # comp_for ::= ["async"] "for" expression_list "in" testlist [comp_iter]
- # comp_if ::= "if" test [comp_iter]
- def p_list_maker(s):
- # s.sy == '['
- pos = s.position()
- s.next()
- if s.sy == ']':
- s.expect(']')
- return ExprNodes.ListNode(pos, args=[])
- expr = p_test_or_starred_expr(s)
- if s.sy in ('for', 'async'):
- if expr.is_starred:
- s.error("iterable unpacking cannot be used in comprehension")
- append = ExprNodes.ComprehensionAppendNode(pos, expr=expr)
- loop = p_comp_for(s, append)
- s.expect(']')
- return ExprNodes.ComprehensionNode(
- pos, loop=loop, append=append, type=Builtin.list_type,
- # list comprehensions leak their loop variable in Py2
- has_local_scope=s.context.language_level >= 3)
- # (merged) list literal
- if s.sy == ',':
- s.next()
- exprs = p_test_or_starred_expr_list(s, expr)
- else:
- exprs = [expr]
- s.expect(']')
- return ExprNodes.ListNode(pos, args=exprs)
- def p_comp_iter(s, body):
- if s.sy in ('for', 'async'):
- return p_comp_for(s, body)
- elif s.sy == 'if':
- return p_comp_if(s, body)
- else:
- # insert the 'append' operation into the loop
- return body
- def p_comp_for(s, body):
- pos = s.position()
- # [async] for ...
- is_async = False
- if s.sy == 'async':
- is_async = True
- s.next()
- # s.sy == 'for'
- s.expect('for')
- kw = p_for_bounds(s, allow_testlist=False, is_async=is_async)
- kw.update(else_clause=None, body=p_comp_iter(s, body), is_async=is_async)
- return Nodes.ForStatNode(pos, **kw)
- def p_comp_if(s, body):
- # s.sy == 'if'
- pos = s.position()
- s.next()
- test = p_test_nocond(s)
- return Nodes.IfStatNode(pos,
- if_clauses = [Nodes.IfClauseNode(pos, condition = test,
- body = p_comp_iter(s, body))],
- else_clause = None )
- # since PEP 448:
- #dictorsetmaker: ( ((test ':' test | '**' expr)
- # (comp_for | (',' (test ':' test | '**' expr))* [','])) |
- # ((test | star_expr)
- # (comp_for | (',' (test | star_expr))* [','])) )
- def p_dict_or_set_maker(s):
- # s.sy == '{'
- pos = s.position()
- s.next()
- if s.sy == '}':
- s.next()
- return ExprNodes.DictNode(pos, key_value_pairs=[])
- parts = []
- target_type = 0
- last_was_simple_item = False
- while True:
- if s.sy in ('*', '**'):
- # merged set/dict literal
- if target_type == 0:
- target_type = 1 if s.sy == '*' else 2 # 'stars'
- elif target_type != len(s.sy):
- s.error("unexpected %sitem found in %s literal" % (
- s.sy, 'set' if target_type == 1 else 'dict'))
- s.next()
- if s.sy == '*':
- s.error("expected expression, found '*'")
- item = p_starred_expr(s)
- parts.append(item)
- last_was_simple_item = False
- else:
- item = p_test(s)
- if target_type == 0:
- target_type = 2 if s.sy == ':' else 1 # dict vs. set
- if target_type == 2:
- # dict literal
- s.expect(':')
- key = item
- value = p_test(s)
- item = ExprNodes.DictItemNode(key.pos, key=key, value=value)
- if last_was_simple_item:
- parts[-1].append(item)
- else:
- parts.append([item])
- last_was_simple_item = True
- if s.sy == ',':
- s.next()
- if s.sy == '}':
- break
- else:
- break
- if s.sy in ('for', 'async'):
- # dict/set comprehension
- if len(parts) == 1 and isinstance(parts[0], list) and len(parts[0]) == 1:
- item = parts[0][0]
- if target_type == 2:
- assert isinstance(item, ExprNodes.DictItemNode), type(item)
- comprehension_type = Builtin.dict_type
- append = ExprNodes.DictComprehensionAppendNode(
- item.pos, key_expr=item.key, value_expr=item.value)
- else:
- comprehension_type = Builtin.set_type
- append = ExprNodes.ComprehensionAppendNode(item.pos, expr=item)
- loop = p_comp_for(s, append)
- s.expect('}')
- return ExprNodes.ComprehensionNode(pos, loop=loop, append=append, type=comprehension_type)
- else:
- # syntax error, try to find a good error message
- if len(parts) == 1 and not isinstance(parts[0], list):
- s.error("iterable unpacking cannot be used in comprehension")
- else:
- # e.g. "{1,2,3 for ..."
- s.expect('}')
- return ExprNodes.DictNode(pos, key_value_pairs=[])
- s.expect('}')
- if target_type == 1:
- # (merged) set literal
- items = []
- set_items = []
- for part in parts:
- if isinstance(part, list):
- set_items.extend(part)
- else:
- if set_items:
- items.append(ExprNodes.SetNode(set_items[0].pos, args=set_items))
- set_items = []
- items.append(part)
- if set_items:
- items.append(ExprNodes.SetNode(set_items[0].pos, args=set_items))
- if len(items) == 1 and items[0].is_set_literal:
- return items[0]
- return ExprNodes.MergedSequenceNode(pos, args=items, type=Builtin.set_type)
- else:
- # (merged) dict literal
- items = []
- dict_items = []
- for part in parts:
- if isinstance(part, list):
- dict_items.extend(part)
- else:
- if dict_items:
- items.append(ExprNodes.DictNode(dict_items[0].pos, key_value_pairs=dict_items))
- dict_items = []
- items.append(part)
- if dict_items:
- items.append(ExprNodes.DictNode(dict_items[0].pos, key_value_pairs=dict_items))
- if len(items) == 1 and items[0].is_dict_literal:
- return items[0]
- return ExprNodes.MergedDictNode(pos, keyword_args=items, reject_duplicates=False)
- # NOTE: no longer in Py3 :)
- def p_backquote_expr(s):
- # s.sy == '`'
- pos = s.position()
- s.next()
- args = [p_test(s)]
- while s.sy == ',':
- s.next()
- args.append(p_test(s))
- s.expect('`')
- if len(args) == 1:
- arg = args[0]
- else:
- arg = ExprNodes.TupleNode(pos, args = args)
- return ExprNodes.BackquoteNode(pos, arg = arg)
- def p_simple_expr_list(s, expr=None):
- exprs = expr is not None and [expr] or []
- while s.sy not in expr_terminators:
- exprs.append( p_test(s) )
- if s.sy != ',':
- break
- s.next()
- return exprs
- def p_test_or_starred_expr_list(s, expr=None):
- exprs = expr is not None and [expr] or []
- while s.sy not in expr_terminators:
- exprs.append(p_test_or_starred_expr(s))
- if s.sy != ',':
- break
- s.next()
- return exprs
- #testlist: test (',' test)* [',']
- def p_testlist(s):
- pos = s.position()
- expr = p_test(s)
- if s.sy == ',':
- s.next()
- exprs = p_simple_expr_list(s, expr)
- return ExprNodes.TupleNode(pos, args = exprs)
- else:
- return expr
- # testlist_star_expr: (test|star_expr) ( comp_for | (',' (test|star_expr))* [','] )
- def p_testlist_star_expr(s):
- pos = s.position()
- expr = p_test_or_starred_expr(s)
- if s.sy == ',':
- s.next()
- exprs = p_test_or_starred_expr_list(s, expr)
- return ExprNodes.TupleNode(pos, args = exprs)
- else:
- return expr
- # testlist_comp: (test|star_expr) ( comp_for | (',' (test|star_expr))* [','] )
- def p_testlist_comp(s):
- pos = s.position()
- expr = p_test_or_starred_expr(s)
- if s.sy == ',':
- s.next()
- exprs = p_test_or_starred_expr_list(s, expr)
- return ExprNodes.TupleNode(pos, args = exprs)
- elif s.sy in ('for', 'async'):
- return p_genexp(s, expr)
- else:
- return expr
- def p_genexp(s, expr):
- # s.sy == 'async' | 'for'
- loop = p_comp_for(s, Nodes.ExprStatNode(
- expr.pos, expr = ExprNodes.YieldExprNode(expr.pos, arg=expr)))
- return ExprNodes.GeneratorExpressionNode(expr.pos, loop=loop)
- expr_terminators = cython.declare(set, set([
- ')', ']', '}', ':', '=', 'NEWLINE']))
- #-------------------------------------------------------
- #
- # Statements
- #
- #-------------------------------------------------------
- def p_global_statement(s):
- # assume s.sy == 'global'
- pos = s.position()
- s.next()
- names = p_ident_list(s)
- return Nodes.GlobalNode(pos, names = names)
- def p_nonlocal_statement(s):
- pos = s.position()
- s.next()
- names = p_ident_list(s)
- return Nodes.NonlocalNode(pos, names = names)
- def p_expression_or_assignment(s):
- expr = p_testlist_star_expr(s)
- if s.sy == ':' and (expr.is_name or expr.is_subscript or expr.is_attribute):
- s.next()
- expr.annotation = p_test(s)
- if s.sy == '=' and expr.is_starred:
- # This is a common enough error to make when learning Cython to let
- # it fail as early as possible and give a very clear error message.
- s.error("a starred assignment target must be in a list or tuple"
- " - maybe you meant to use an index assignment: var[0] = ...",
- pos=expr.pos)
- expr_list = [expr]
- while s.sy == '=':
- s.next()
- if s.sy == 'yield':
- expr = p_yield_expression(s)
- else:
- expr = p_testlist_star_expr(s)
- expr_list.append(expr)
- if len(expr_list) == 1:
- if re.match(r"([-+*/%^&|]|<<|>>|\*\*|//|@)=", s.sy):
- lhs = expr_list[0]
- if isinstance(lhs, ExprNodes.SliceIndexNode):
- # implementation requires IndexNode
- lhs = ExprNodes.IndexNode(
- lhs.pos,
- base=lhs.base,
- index=make_slice_node(lhs.pos, lhs.start, lhs.stop))
- elif not isinstance(lhs, (ExprNodes.AttributeNode, ExprNodes.IndexNode, ExprNodes.NameNode)):
- error(lhs.pos, "Illegal operand for inplace operation.")
- operator = s.sy[:-1]
- s.next()
- if s.sy == 'yield':
- rhs = p_yield_expression(s)
- else:
- rhs = p_testlist(s)
- return Nodes.InPlaceAssignmentNode(lhs.pos, operator=operator, lhs=lhs, rhs=rhs)
- expr = expr_list[0]
- return Nodes.ExprStatNode(expr.pos, expr=expr)
- rhs = expr_list[-1]
- if len(expr_list) == 2:
- return Nodes.SingleAssignmentNode(rhs.pos, lhs=expr_list[0], rhs=rhs)
- else:
- return Nodes.CascadedAssignmentNode(rhs.pos, lhs_list=expr_list[:-1], rhs=rhs)
- def p_print_statement(s):
- # s.sy == 'print'
- pos = s.position()
- ends_with_comma = 0
- s.next()
- if s.sy == '>>':
- s.next()
- stream = p_test(s)
- if s.sy == ',':
- s.next()
- ends_with_comma = s.sy in ('NEWLINE', 'EOF')
- else:
- stream = None
- args = []
- if s.sy not in ('NEWLINE', 'EOF'):
- args.append(p_test(s))
- while s.sy == ',':
- s.next()
- if s.sy in ('NEWLINE', 'EOF'):
- ends_with_comma = 1
- break
- args.append(p_test(s))
- arg_tuple = ExprNodes.TupleNode(pos, args=args)
- return Nodes.PrintStatNode(pos,
- arg_tuple=arg_tuple, stream=stream,
- append_newline=not ends_with_comma)
- def p_exec_statement(s):
- # s.sy == 'exec'
- pos = s.position()
- s.next()
- code = p_bit_expr(s)
- if isinstance(code, ExprNodes.TupleNode):
- # Py3 compatibility syntax
- tuple_variant = True
- args = code.args
- if len(args) not in (2, 3):
- s.error("expected tuple of length 2 or 3, got length %d" % len(args),
- pos=pos, fatal=False)
- args = [code]
- else:
- tuple_variant = False
- args = [code]
- if s.sy == 'in':
- if tuple_variant:
- s.error("tuple variant of exec does not support additional 'in' arguments",
- fatal=False)
- s.next()
- args.append(p_test(s))
- if s.sy == ',':
- s.next()
- args.append(p_test(s))
- return Nodes.ExecStatNode(pos, args=args)
- def p_del_statement(s):
- # s.sy == 'del'
- pos = s.position()
- s.next()
- # FIXME: 'exprlist' in Python
- args = p_simple_expr_list(s)
- return Nodes.DelStatNode(pos, args = args)
- def p_pass_statement(s, with_newline = 0):
- pos = s.position()
- s.expect('pass')
- if with_newline:
- s.expect_newline("Expected a newline", ignore_semicolon=True)
- return Nodes.PassStatNode(pos)
- def p_break_statement(s):
- # s.sy == 'break'
- pos = s.position()
- s.next()
- return Nodes.BreakStatNode(pos)
- def p_continue_statement(s):
- # s.sy == 'continue'
- pos = s.position()
- s.next()
- return Nodes.ContinueStatNode(pos)
- def p_return_statement(s):
- # s.sy == 'return'
- pos = s.position()
- s.next()
- if s.sy not in statement_terminators:
- value = p_testlist(s)
- else:
- value = None
- return Nodes.ReturnStatNode(pos, value = value)
- def p_raise_statement(s):
- # s.sy == 'raise'
- pos = s.position()
- s.next()
- exc_type = None
- exc_value = None
- exc_tb = None
- cause = None
- if s.sy not in statement_terminators:
- exc_type = p_test(s)
- if s.sy == ',':
- s.next()
- exc_value = p_test(s)
- if s.sy == ',':
- s.next()
- exc_tb = p_test(s)
- elif s.sy == 'from':
- s.next()
- cause = p_test(s)
- if exc_type or exc_value or exc_tb:
- return Nodes.RaiseStatNode(pos,
- exc_type = exc_type,
- exc_value = exc_value,
- exc_tb = exc_tb,
- cause = cause)
- else:
- return Nodes.ReraiseStatNode(pos)
- def p_import_statement(s):
- # s.sy in ('import', 'cimport')
- pos = s.position()
- kind = s.sy
- s.next()
- items = [p_dotted_name(s, as_allowed=1)]
- while s.sy == ',':
- s.next()
- items.append(p_dotted_name(s, as_allowed=1))
- stats = []
- is_absolute = Future.absolute_import in s.context.future_directives
- for pos, target_name, dotted_name, as_name in items:
- if kind == 'cimport':
- stat = Nodes.CImportStatNode(
- pos,
- module_name=dotted_name,
- as_name=as_name,
- is_absolute=is_absolute)
- else:
- if as_name and "." in dotted_name:
- name_list = ExprNodes.ListNode(pos, args=[
- ExprNodes.IdentifierStringNode(pos, value=s.context.intern_ustring("*"))])
- else:
- name_list = None
- stat = Nodes.SingleAssignmentNode(
- pos,
- lhs=ExprNodes.NameNode(pos, name=as_name or target_name),
- rhs=ExprNodes.ImportNode(
- pos,
- module_name=ExprNodes.IdentifierStringNode(pos, value=dotted_name),
- level=0 if is_absolute else None,
- name_list=name_list))
- stats.append(stat)
- return Nodes.StatListNode(pos, stats=stats)
- def p_from_import_statement(s, first_statement = 0):
- # s.sy == 'from'
- pos = s.position()
- s.next()
- if s.sy == '.':
- # count relative import level
- level = 0
- while s.sy == '.':
- level += 1
- s.next()
- else:
- level = None
- if level is not None and s.sy in ('import', 'cimport'):
- # we are dealing with "from .. import foo, bar"
- dotted_name_pos, dotted_name = s.position(), s.context.intern_ustring('')
- else:
- if level is None and Future.absolute_import in s.context.future_directives:
- level = 0
- (dotted_name_pos, _, dotted_name, _) = p_dotted_name(s, as_allowed=False)
- if s.sy not in ('import', 'cimport'):
- s.error("Expected 'import' or 'cimport'")
- kind = s.sy
- s.next()
- is_cimport = kind == 'cimport'
- is_parenthesized = False
- if s.sy == '*':
- imported_names = [(s.position(), s.context.intern_ustring("*"), None, None)]
- s.next()
- else:
- if s.sy == '(':
- is_parenthesized = True
- s.next()
- imported_names = [p_imported_name(s, is_cimport)]
- while s.sy == ',':
- s.next()
- if is_parenthesized and s.sy == ')':
- break
- imported_names.append(p_imported_name(s, is_cimport))
- if is_parenthesized:
- s.expect(')')
- if dotted_name == '__future__':
- if not first_statement:
- s.error("from __future__ imports must occur at the beginning of the file")
- elif level:
- s.error("invalid syntax")
- else:
- for (name_pos, name, as_name, kind) in imported_names:
- if name == "braces":
- s.error("not a chance", name_pos)
- break
- try:
- directive = getattr(Future, name)
- except AttributeError:
- s.error("future feature %s is not defined" % name, name_pos)
- break
- s.context.future_directives.add(directive)
- return Nodes.PassStatNode(pos)
- elif kind == 'cimport':
- return Nodes.FromCImportStatNode(
- pos, module_name=dotted_name,
- relative_level=level,
- imported_names=imported_names)
- else:
- imported_name_strings = []
- items = []
- for (name_pos, name, as_name, kind) in imported_names:
- imported_name_strings.append(
- ExprNodes.IdentifierStringNode(name_pos, value=name))
- items.append(
- (name, ExprNodes.NameNode(name_pos, name=as_name or name)))
- import_list = ExprNodes.ListNode(
- imported_names[0][0], args=imported_name_strings)
- return Nodes.FromImportStatNode(pos,
- module = ExprNodes.ImportNode(dotted_name_pos,
- module_name = ExprNodes.IdentifierStringNode(pos, value = dotted_name),
- level = level,
- name_list = import_list),
- items = items)
- imported_name_kinds = cython.declare(set, set(['class', 'struct', 'union']))
- def p_imported_name(s, is_cimport):
- pos = s.position()
- kind = None
- if is_cimport and s.systring in imported_name_kinds:
- kind = s.systring
- warning(pos, 'the "from module cimport %s name" syntax is deprecated and '
- 'will be removed in Cython 3.0' % kind, 2)
- s.next()
- name = p_ident(s)
- as_name = p_as_name(s)
- return (pos, name, as_name, kind)
- def p_dotted_name(s, as_allowed):
- pos = s.position()
- target_name = p_ident(s)
- as_name = None
- names = [target_name]
- while s.sy == '.':
- s.next()
- names.append(p_ident(s))
- if as_allowed:
- as_name = p_as_name(s)
- return (pos, target_name, s.context.intern_ustring(u'.'.join(names)), as_name)
- def p_as_name(s):
- if s.sy == 'IDENT' and s.systring == 'as':
- s.next()
- return p_ident(s)
- else:
- return None
- def p_assert_statement(s):
- # s.sy == 'assert'
- pos = s.position()
- s.next()
- cond = p_test(s)
- if s.sy == ',':
- s.next()
- value = p_test(s)
- else:
- value = None
- return Nodes.AssertStatNode(pos, cond = cond, value = value)
- statement_terminators = cython.declare(set, set([';', 'NEWLINE', 'EOF']))
- def p_if_statement(s):
- # s.sy == 'if'
- pos = s.position()
- s.next()
- if_clauses = [p_if_clause(s)]
- while s.sy == 'elif':
- s.next()
- if_clauses.append(p_if_clause(s))
- else_clause = p_else_clause(s)
- return Nodes.IfStatNode(pos,
- if_clauses = if_clauses, else_clause = else_clause)
- def p_if_clause(s):
- pos = s.position()
- test = p_test(s)
- body = p_suite(s)
- return Nodes.IfClauseNode(pos,
- condition = test, body = body)
- def p_else_clause(s):
- if s.sy == 'else':
- s.next()
- return p_suite(s)
- else:
- return None
- def p_while_statement(s):
- # s.sy == 'while'
- pos = s.position()
- s.next()
- test = p_test(s)
- body = p_suite(s)
- else_clause = p_else_clause(s)
- return Nodes.WhileStatNode(pos,
- condition = test, body = body,
- else_clause = else_clause)
- def p_for_statement(s, is_async=False):
- # s.sy == 'for'
- pos = s.position()
- s.next()
- kw = p_for_bounds(s, allow_testlist=True, is_async=is_async)
- body = p_suite(s)
- else_clause = p_else_clause(s)
- kw.update(body=body, else_clause=else_clause, is_async=is_async)
- return Nodes.ForStatNode(pos, **kw)
- def p_for_bounds(s, allow_testlist=True, is_async=False):
- target = p_for_target(s)
- if s.sy == 'in':
- s.next()
- iterator = p_for_iterator(s, allow_testlist, is_async=is_async)
- return dict(target=target, iterator=iterator)
- elif not s.in_python_file and not is_async:
- if s.sy == 'from':
- s.next()
- bound1 = p_bit_expr(s)
- else:
- # Support shorter "for a <= x < b" syntax
- bound1, target = target, None
- rel1 = p_for_from_relation(s)
- name2_pos = s.position()
- name2 = p_ident(s)
- rel2_pos = s.position()
- rel2 = p_for_from_relation(s)
- bound2 = p_bit_expr(s)
- step = p_for_from_step(s)
- if target is None:
- target = ExprNodes.NameNode(name2_pos, name = name2)
- else:
- if not target.is_name:
- error(target.pos,
- "Target of for-from statement must be a variable name")
- elif name2 != target.name:
- error(name2_pos,
- "Variable name in for-from range does not match target")
- if rel1[0] != rel2[0]:
- error(rel2_pos,
- "Relation directions in for-from do not match")
- return dict(target = target,
- bound1 = bound1,
- relation1 = rel1,
- relation2 = rel2,
- bound2 = bound2,
- step = step,
- )
- else:
- s.expect('in')
- return {}
- def p_for_from_relation(s):
- if s.sy in inequality_relations:
- op = s.sy
- s.next()
- return op
- else:
- s.error("Expected one of '<', '<=', '>' '>='")
- def p_for_from_step(s):
- if s.sy == 'IDENT' and s.systring == 'by':
- s.next()
- step = p_bit_expr(s)
- return step
- else:
- return None
- inequality_relations = cython.declare(set, set(['<', '<=', '>', '>=']))
- def p_target(s, terminator):
- pos = s.position()
- expr = p_starred_expr(s)
- if s.sy == ',':
- s.next()
- exprs = [expr]
- while s.sy != terminator:
- exprs.append(p_starred_expr(s))
- if s.sy != ',':
- break
- s.next()
- return ExprNodes.TupleNode(pos, args = exprs)
- else:
- return expr
- def p_for_target(s):
- return p_target(s, 'in')
- def p_for_iterator(s, allow_testlist=True, is_async=False):
- pos = s.position()
- if allow_testlist:
- expr = p_testlist(s)
- else:
- expr = p_or_test(s)
- return (ExprNodes.AsyncIteratorNode if is_async else ExprNodes.IteratorNode)(pos, sequence=expr)
- def p_try_statement(s):
- # s.sy == 'try'
- pos = s.position()
- s.next()
- body = p_suite(s)
- except_clauses = []
- else_clause = None
- if s.sy in ('except', 'else'):
- while s.sy == 'except':
- except_clauses.append(p_except_clause(s))
- if s.sy == 'else':
- s.next()
- else_clause = p_suite(s)
- body = Nodes.TryExceptStatNode(pos,
- body = body, except_clauses = except_clauses,
- else_clause = else_clause)
- if s.sy != 'finally':
- return body
- # try-except-finally is equivalent to nested try-except/try-finally
- if s.sy == 'finally':
- s.next()
- finally_clause = p_suite(s)
- return Nodes.TryFinallyStatNode(pos,
- body = body, finally_clause = finally_clause)
- else:
- s.error("Expected 'except' or 'finally'")
- def p_except_clause(s):
- # s.sy == 'except'
- pos = s.position()
- s.next()
- exc_type = None
- exc_value = None
- is_except_as = False
- if s.sy != ':':
- exc_type = p_test(s)
- # normalise into list of single exception tests
- if isinstance(exc_type, ExprNodes.TupleNode):
- exc_type = exc_type.args
- else:
- exc_type = [exc_type]
- if s.sy == ',' or (s.sy == 'IDENT' and s.systring == 'as'
- and s.context.language_level == 2):
- s.next()
- exc_value = p_test(s)
- elif s.sy == 'IDENT' and s.systring == 'as':
- # Py3 syntax requires a name here
- s.next()
- pos2 = s.position()
- name = p_ident(s)
- exc_value = ExprNodes.NameNode(pos2, name = name)
- is_except_as = True
- body = p_suite(s)
- return Nodes.ExceptClauseNode(pos,
- pattern = exc_type, target = exc_value,
- body = body, is_except_as=is_except_as)
- def p_include_statement(s, ctx):
- pos = s.position()
- s.next() # 'include'
- unicode_include_file_name = p_string_literal(s, 'u')[2]
- s.expect_newline("Syntax error in include statement")
- if s.compile_time_eval:
- include_file_name = unicode_include_file_name
- include_file_path = s.context.find_include_file(include_file_name, pos)
- if include_file_path:
- s.included_files.append(include_file_name)
- with Utils.open_source_file(include_file_path) as f:
- if Options.source_root:
- import os
- rel_path = os.path.relpath(include_file_path, Options.source_root)
- else:
- rel_path = None
- source_desc = FileSourceDescriptor(include_file_path, rel_path)
- s2 = PyrexScanner(f, source_desc, s, source_encoding=f.encoding, parse_comments=s.parse_comments)
- tree = p_statement_list(s2, ctx)
- return tree
- else:
- return None
- else:
- return Nodes.PassStatNode(pos)
- def p_with_statement(s):
- s.next() # 'with'
- if s.systring == 'template' and not s.in_python_file:
- node = p_with_template(s)
- else:
- node = p_with_items(s)
- return node
- def p_with_items(s, is_async=False):
- pos = s.position()
- if not s.in_python_file and s.sy == 'IDENT' and s.systring in ('nogil', 'gil'):
- if is_async:
- s.error("with gil/nogil cannot be async")
- state = s.systring
- s.next()
- if s.sy == ',':
- s.next()
- body = p_with_items(s)
- else:
- body = p_suite(s)
- return Nodes.GILStatNode(pos, state=state, body=body)
- else:
- manager = p_test(s)
- target = None
- if s.sy == 'IDENT' and s.systring == 'as':
- s.next()
- target = p_starred_expr(s)
- if s.sy == ',':
- s.next()
- body = p_with_items(s, is_async=is_async)
- else:
- body = p_suite(s)
- return Nodes.WithStatNode(pos, manager=manager, target=target, body=body, is_async=is_async)
- def p_with_template(s):
- pos = s.position()
- templates = []
- s.next()
- s.expect('[')
- templates.append(s.systring)
- s.next()
- while s.systring == ',':
- s.next()
- templates.append(s.systring)
- s.next()
- s.expect(']')
- if s.sy == ':':
- s.next()
- s.expect_newline("Syntax error in template function declaration")
- s.expect_indent()
- body_ctx = Ctx()
- body_ctx.templates = templates
- func_or_var = p_c_func_or_var_declaration(s, pos, body_ctx)
- s.expect_dedent()
- return func_or_var
- else:
- error(pos, "Syntax error in template function declaration")
- def p_simple_statement(s, first_statement = 0):
- #print "p_simple_statement:", s.sy, s.systring ###
- if s.sy == 'global':
- node = p_global_statement(s)
- elif s.sy == 'nonlocal':
- node = p_nonlocal_statement(s)
- elif s.sy == 'print':
- node = p_print_statement(s)
- elif s.sy == 'exec':
- node = p_exec_statement(s)
- elif s.sy == 'del':
- node = p_del_statement(s)
- elif s.sy == 'break':
- node = p_break_statement(s)
- elif s.sy == 'continue':
- node = p_continue_statement(s)
- elif s.sy == 'return':
- node = p_return_statement(s)
- elif s.sy == 'raise':
- node = p_raise_statement(s)
- elif s.sy in ('import', 'cimport'):
- node = p_import_statement(s)
- elif s.sy == 'from':
- node = p_from_import_statement(s, first_statement = first_statement)
- elif s.sy == 'yield':
- node = p_yield_statement(s)
- elif s.sy == 'assert':
- node = p_assert_statement(s)
- elif s.sy == 'pass':
- node = p_pass_statement(s)
- else:
- node = p_expression_or_assignment(s)
- return node
- def p_simple_statement_list(s, ctx, first_statement = 0):
- # Parse a series of simple statements on one line
- # separated by semicolons.
- stat = p_simple_statement(s, first_statement = first_statement)
- pos = stat.pos
- stats = []
- if not isinstance(stat, Nodes.PassStatNode):
- stats.append(stat)
- while s.sy == ';':
- #print "p_simple_statement_list: maybe more to follow" ###
- s.next()
- if s.sy in ('NEWLINE', 'EOF'):
- break
- stat = p_simple_statement(s, first_statement = first_statement)
- if isinstance(stat, Nodes.PassStatNode):
- continue
- stats.append(stat)
- first_statement = False
- if not stats:
- stat = Nodes.PassStatNode(pos)
- elif len(stats) == 1:
- stat = stats[0]
- else:
- stat = Nodes.StatListNode(pos, stats = stats)
- if s.sy not in ('NEWLINE', 'EOF'):
- # provide a better error message for users who accidentally write Cython code in .py files
- if isinstance(stat, Nodes.ExprStatNode):
- if stat.expr.is_name and stat.expr.name == 'cdef':
- s.error("The 'cdef' keyword is only allowed in Cython files (pyx/pxi/pxd)", pos)
- s.expect_newline("Syntax error in simple statement list")
- return stat
- def p_compile_time_expr(s):
- old = s.compile_time_expr
- s.compile_time_expr = 1
- expr = p_testlist(s)
- s.compile_time_expr = old
- return expr
- def p_DEF_statement(s):
- pos = s.position()
- denv = s.compile_time_env
- s.next() # 'DEF'
- name = p_ident(s)
- s.expect('=')
- expr = p_compile_time_expr(s)
- if s.compile_time_eval:
- value = expr.compile_time_value(denv)
- #print "p_DEF_statement: %s = %r" % (name, value) ###
- denv.declare(name, value)
- s.expect_newline("Expected a newline", ignore_semicolon=True)
- return Nodes.PassStatNode(pos)
- def p_IF_statement(s, ctx):
- pos = s.position()
- saved_eval = s.compile_time_eval
- current_eval = saved_eval
- denv = s.compile_time_env
- result = None
- while 1:
- s.next() # 'IF' or 'ELIF'
- expr = p_compile_time_expr(s)
- s.compile_time_eval = current_eval and bool(expr.compile_time_value(denv))
- body = p_suite(s, ctx)
- if s.compile_time_eval:
- result = body
- current_eval = 0
- if s.sy != 'ELIF':
- break
- if s.sy == 'ELSE':
- s.next()
- s.compile_time_eval = current_eval
- body = p_suite(s, ctx)
- if current_eval:
- result = body
- if not result:
- result = Nodes.PassStatNode(pos)
- s.compile_time_eval = saved_eval
- return result
- def p_statement(s, ctx, first_statement = 0):
- cdef_flag = ctx.cdef_flag
- decorators = None
- if s.sy == 'ctypedef':
- if ctx.level not in ('module', 'module_pxd'):
- s.error("ctypedef statement not allowed here")
- #if ctx.api:
- # error(s.position(), "'api' not allowed with 'ctypedef'")
- return p_ctypedef_statement(s, ctx)
- elif s.sy == 'DEF':
- return p_DEF_statement(s)
- elif s.sy == 'IF':
- return p_IF_statement(s, ctx)
- elif s.sy == '@':
- if ctx.level not in ('module', 'class', 'c_class', 'function', 'property', 'module_pxd', 'c_class_pxd', 'other'):
- s.error('decorator not allowed here')
- s.level = ctx.level
- decorators = p_decorators(s)
- if not ctx.allow_struct_enum_decorator and s.sy not in ('def', 'cdef', 'cpdef', 'class', 'async'):
- if s.sy == 'IDENT' and s.systring == 'async':
- pass # handled below
- else:
- s.error("Decorators can only be followed by functions or classes")
- elif s.sy == 'pass' and cdef_flag:
- # empty cdef block
- return p_pass_statement(s, with_newline=1)
- overridable = 0
- if s.sy == 'cdef':
- cdef_flag = 1
- s.next()
- elif s.sy == 'cpdef':
- cdef_flag = 1
- overridable = 1
- s.next()
- if cdef_flag:
- if ctx.level not in ('module', 'module_pxd', 'function', 'c_class', 'c_class_pxd'):
- s.error('cdef statement not allowed here')
- s.level = ctx.level
- node = p_cdef_statement(s, ctx(overridable=overridable))
- if decorators is not None:
- tup = (Nodes.CFuncDefNode, Nodes.CVarDefNode, Nodes.CClassDefNode)
- if ctx.allow_struct_enum_decorator:
- tup += (Nodes.CStructOrUnionDefNode, Nodes.CEnumDefNode)
- if not isinstance(node, tup):
- s.error("Decorators can only be followed by functions or classes")
- node.decorators = decorators
- return node
- else:
- if ctx.api:
- s.error("'api' not allowed with this statement", fatal=False)
- elif s.sy == 'def':
- # def statements aren't allowed in pxd files, except
- # as part of a cdef class
- if ('pxd' in ctx.level) and (ctx.level != 'c_class_pxd'):
- s.error('def statement not allowed here')
- s.level = ctx.level
- return p_def_statement(s, decorators)
- elif s.sy == 'class':
- if ctx.level not in ('module', 'function', 'class', 'other'):
- s.error("class definition not allowed here")
- return p_class_statement(s, decorators)
- elif s.sy == 'include':
- if ctx.level not in ('module', 'module_pxd'):
- s.error("include statement not allowed here")
- return p_include_statement(s, ctx)
- elif ctx.level == 'c_class' and s.sy == 'IDENT' and s.systring == 'property':
- return p_property_decl(s)
- elif s.sy == 'pass' and ctx.level != 'property':
- return p_pass_statement(s, with_newline=True)
- else:
- if ctx.level in ('c_class_pxd', 'property'):
- node = p_ignorable_statement(s)
- if node is not None:
- return node
- s.error("Executable statement not allowed here")
- if s.sy == 'if':
- return p_if_statement(s)
- elif s.sy == 'while':
- return p_while_statement(s)
- elif s.sy == 'for':
- return p_for_statement(s)
- elif s.sy == 'try':
- return p_try_statement(s)
- elif s.sy == 'with':
- return p_with_statement(s)
- elif s.sy == 'async':
- s.next()
- return p_async_statement(s, ctx, decorators)
- else:
- if s.sy == 'IDENT' and s.systring == 'async':
- ident_name = s.systring
- # PEP 492 enables the async/await keywords when it spots "async def ..."
- s.next()
- if s.sy == 'def':
- return p_async_statement(s, ctx, decorators)
- elif decorators:
- s.error("Decorators can only be followed by functions or classes")
- s.put_back('IDENT', ident_name) # re-insert original token
- return p_simple_statement_list(s, ctx, first_statement=first_statement)
- def p_statement_list(s, ctx, first_statement = 0):
- # Parse a series of statements separated by newlines.
- pos = s.position()
- stats = []
- while s.sy not in ('DEDENT', 'EOF'):
- stat = p_statement(s, ctx, first_statement = first_statement)
- if isinstance(stat, Nodes.PassStatNode):
- continue
- stats.append(stat)
- first_statement = False
- if not stats:
- return Nodes.PassStatNode(pos)
- elif len(stats) == 1:
- return stats[0]
- else:
- return Nodes.StatListNode(pos, stats = stats)
- def p_suite(s, ctx=Ctx()):
- return p_suite_with_docstring(s, ctx, with_doc_only=False)[1]
- def p_suite_with_docstring(s, ctx, with_doc_only=False):
- s.expect(':')
- doc = None
- if s.sy == 'NEWLINE':
- s.next()
- s.expect_indent()
- if with_doc_only:
- doc = p_doc_string(s)
- body = p_statement_list(s, ctx)
- s.expect_dedent()
- else:
- if ctx.api:
- s.error("'api' not allowed with this statement", fatal=False)
- if ctx.level in ('module', 'class', 'function', 'other'):
- body = p_simple_statement_list(s, ctx)
- else:
- body = p_pass_statement(s)
- s.expect_newline("Syntax error in declarations", ignore_semicolon=True)
- if not with_doc_only:
- doc, body = _extract_docstring(body)
- return doc, body
- def p_positional_and_keyword_args(s, end_sy_set, templates = None):
- """
- Parses positional and keyword arguments. end_sy_set
- should contain any s.sy that terminate the argument list.
- Argument expansion (* and **) are not allowed.
- Returns: (positional_args, keyword_args)
- """
- positional_args = []
- keyword_args = []
- pos_idx = 0
- while s.sy not in end_sy_set:
- if s.sy == '*' or s.sy == '**':
- s.error('Argument expansion not allowed here.', fatal=False)
- parsed_type = False
- if s.sy == 'IDENT' and s.peek()[0] == '=':
- ident = s.systring
- s.next() # s.sy is '='
- s.next()
- if looking_at_expr(s):
- arg = p_test(s)
- else:
- base_type = p_c_base_type(s, templates = templates)
- declarator = p_c_declarator(s, empty = 1)
- arg = Nodes.CComplexBaseTypeNode(base_type.pos,
- base_type = base_type, declarator = declarator)
- parsed_type = True
- keyword_node = ExprNodes.IdentifierStringNode(arg.pos, value=ident)
- keyword_args.append((keyword_node, arg))
- was_keyword = True
- else:
- if looking_at_expr(s):
- arg = p_test(s)
- else:
- base_type = p_c_base_type(s, templates = templates)
- declarator = p_c_declarator(s, empty = 1)
- arg = Nodes.CComplexBaseTypeNode(base_type.pos,
- base_type = base_type, declarator = declarator)
- parsed_type = True
- positional_args.append(arg)
- pos_idx += 1
- if len(keyword_args) > 0:
- s.error("Non-keyword arg following keyword arg",
- pos=arg.pos)
- if s.sy != ',':
- if s.sy not in end_sy_set:
- if parsed_type:
- s.error("Unmatched %s" % " or ".join(end_sy_set))
- break
- s.next()
- return positional_args, keyword_args
- def p_c_base_type(s, self_flag = 0, nonempty = 0, templates = None):
- # If self_flag is true, this is the base type for the
- # self argument of a C method of an extension type.
- if s.sy == '(':
- return p_c_complex_base_type(s, templates = templates)
- else:
- return p_c_simple_base_type(s, self_flag, nonempty = nonempty, templates = templates)
- def p_calling_convention(s):
- if s.sy == 'IDENT' and s.systring in calling_convention_words:
- result = s.systring
- s.next()
- return result
- else:
- return ""
- calling_convention_words = cython.declare(
- set, set(["__stdcall", "__cdecl", "__fastcall"]))
- def p_c_complex_base_type(s, templates = None):
- # s.sy == '('
- pos = s.position()
- s.next()
- base_type = p_c_base_type(s, templates=templates)
- declarator = p_c_declarator(s, empty=True)
- type_node = Nodes.CComplexBaseTypeNode(
- pos, base_type=base_type, declarator=declarator)
- if s.sy == ',':
- components = [type_node]
- while s.sy == ',':
- s.next()
- if s.sy == ')':
- break
- base_type = p_c_base_type(s, templates=templates)
- declarator = p_c_declarator(s, empty=True)
- components.append(Nodes.CComplexBaseTypeNode(
- pos, base_type=base_type, declarator=declarator))
- type_node = Nodes.CTupleBaseTypeNode(pos, components = components)
- s.expect(')')
- if s.sy == '[':
- if is_memoryviewslice_access(s):
- type_node = p_memoryviewslice_access(s, type_node)
- else:
- type_node = p_buffer_or_template(s, type_node, templates)
- return type_node
- def p_c_simple_base_type(s, self_flag, nonempty, templates = None):
- #print "p_c_simple_base_type: self_flag =", self_flag, nonempty
- is_basic = 0
- signed = 1
- longness = 0
- complex = 0
- module_path = []
- pos = s.position()
- if not s.sy == 'IDENT':
- error(pos, "Expected an identifier, found '%s'" % s.sy)
- if s.systring == 'const':
- s.next()
- base_type = p_c_base_type(s, self_flag=self_flag, nonempty=nonempty, templates=templates)
- if isinstance(base_type, Nodes.MemoryViewSliceTypeNode):
- # reverse order to avoid having to write "(const int)[:]"
- base_type.base_type_node = Nodes.CConstTypeNode(pos, base_type=base_type.base_type_node)
- return base_type
- return Nodes.CConstTypeNode(pos, base_type=base_type)
- if looking_at_base_type(s):
- #print "p_c_simple_base_type: looking_at_base_type at", s.position()
- is_basic = 1
- if s.sy == 'IDENT' and s.systring in special_basic_c_types:
- signed, longness = special_basic_c_types[s.systring]
- name = s.systring
- s.next()
- else:
- signed, longness = p_sign_and_longness(s)
- if s.sy == 'IDENT' and s.systring in basic_c_type_names:
- name = s.systring
- s.next()
- else:
- name = 'int' # long [int], short [int], long [int] complex, etc.
- if s.sy == 'IDENT' and s.systring == 'complex':
- complex = 1
- s.next()
- elif looking_at_dotted_name(s):
- #print "p_c_simple_base_type: looking_at_type_name at", s.position()
- name = s.systring
- s.next()
- while s.sy == '.':
- module_path.append(name)
- s.next()
- name = p_ident(s)
- else:
- name = s.systring
- s.next()
- if nonempty and s.sy != 'IDENT':
- # Make sure this is not a declaration of a variable or function.
- if s.sy == '(':
- s.next()
- if (s.sy == '*' or s.sy == '**' or s.sy == '&'
- or (s.sy == 'IDENT' and s.systring in calling_convention_words)):
- s.put_back('(', '(')
- else:
- s.put_back('(', '(')
- s.put_back('IDENT', name)
- name = None
- elif s.sy not in ('*', '**', '[', '&'):
- s.put_back('IDENT', name)
- name = None
- type_node = Nodes.CSimpleBaseTypeNode(pos,
- name = name, module_path = module_path,
- is_basic_c_type = is_basic, signed = signed,
- complex = complex, longness = longness,
- is_self_arg = self_flag, templates = templates)
- # declarations here.
- if s.sy == '[':
- if is_memoryviewslice_access(s):
- type_node = p_memoryviewslice_access(s, type_node)
- else:
- type_node = p_buffer_or_template(s, type_node, templates)
- if s.sy == '.':
- s.next()
- name = p_ident(s)
- type_node = Nodes.CNestedBaseTypeNode(pos, base_type = type_node, name = name)
- return type_node
- def p_buffer_or_template(s, base_type_node, templates):
- # s.sy == '['
- pos = s.position()
- s.next()
- # Note that buffer_positional_options_count=1, so the only positional argument is dtype.
- # For templated types, all parameters are types.
- positional_args, keyword_args = (
- p_positional_and_keyword_args(s, (']',), templates)
- )
- s.expect(']')
- if s.sy == '[':
- base_type_node = p_buffer_or_template(s, base_type_node, templates)
- keyword_dict = ExprNodes.DictNode(pos,
- key_value_pairs = [
- ExprNodes.DictItemNode(pos=key.pos, key=key, value=value)
- for key, value in keyword_args
- ])
- result = Nodes.TemplatedTypeNode(pos,
- positional_args = positional_args,
- keyword_args = keyword_dict,
- base_type_node = base_type_node)
- return result
- def p_bracketed_base_type(s, base_type_node, nonempty, empty):
- # s.sy == '['
- if empty and not nonempty:
- # sizeof-like thing. Only anonymous C arrays allowed (int[SIZE]).
- return base_type_node
- elif not empty and nonempty:
- # declaration of either memoryview slice or buffer.
- if is_memoryviewslice_access(s):
- return p_memoryviewslice_access(s, base_type_node)
- else:
- return p_buffer_or_template(s, base_type_node, None)
- # return p_buffer_access(s, base_type_node)
- elif not empty and not nonempty:
- # only anonymous C arrays and memoryview slice arrays here. We
- # disallow buffer declarations for now, due to ambiguity with anonymous
- # C arrays.
- if is_memoryviewslice_access(s):
- return p_memoryviewslice_access(s, base_type_node)
- else:
- return base_type_node
- def is_memoryviewslice_access(s):
- # s.sy == '['
- # a memoryview slice declaration is distinguishable from a buffer access
- # declaration by the first entry in the bracketed list. The buffer will
- # not have an unnested colon in the first entry; the memoryview slice will.
- saved = [(s.sy, s.systring)]
- s.next()
- retval = False
- if s.systring == ':':
- retval = True
- elif s.sy == 'INT':
- saved.append((s.sy, s.systring))
- s.next()
- if s.sy == ':':
- retval = True
- for sv in saved[::-1]:
- s.put_back(*sv)
- return retval
- def p_memoryviewslice_access(s, base_type_node):
- # s.sy == '['
- pos = s.position()
- s.next()
- subscripts, _ = p_subscript_list(s)
- # make sure each entry in subscripts is a slice
- for subscript in subscripts:
- if len(subscript) < 2:
- s.error("An axis specification in memoryview declaration does not have a ':'.")
- s.expect(']')
- indexes = make_slice_nodes(pos, subscripts)
- result = Nodes.MemoryViewSliceTypeNode(pos,
- base_type_node = base_type_node,
- axes = indexes)
- return result
- def looking_at_name(s):
- return s.sy == 'IDENT' and not s.systring in calling_convention_words
- def looking_at_expr(s):
- if s.systring in base_type_start_words:
- return False
- elif s.sy == 'IDENT':
- is_type = False
- name = s.systring
- dotted_path = []
- s.next()
- while s.sy == '.':
- s.next()
- dotted_path.append(s.systring)
- s.expect('IDENT')
- saved = s.sy, s.systring
- if s.sy == 'IDENT':
- is_type = True
- elif s.sy == '*' or s.sy == '**':
- s.next()
- is_type = s.sy in (')', ']')
- s.put_back(*saved)
- elif s.sy == '(':
- s.next()
- is_type = s.sy == '*'
- s.put_back(*saved)
- elif s.sy == '[':
- s.next()
- is_type = s.sy == ']' or not looking_at_expr(s) # could be a nested template type
- s.put_back(*saved)
- dotted_path.reverse()
- for p in dotted_path:
- s.put_back('IDENT', p)
- s.put_back('.', '.')
- s.put_back('IDENT', name)
- return not is_type and saved[0]
- else:
- return True
- def looking_at_base_type(s):
- #print "looking_at_base_type?", s.sy, s.systring, s.position()
- return s.sy == 'IDENT' and s.systring in base_type_start_words
- def looking_at_dotted_name(s):
- if s.sy == 'IDENT':
- name = s.systring
- s.next()
- result = s.sy == '.'
- s.put_back('IDENT', name)
- return result
- else:
- return 0
- def looking_at_call(s):
- "See if we're looking at a.b.c("
- # Don't mess up the original position, so save and restore it.
- # Unfortunately there's no good way to handle this, as a subsequent call
- # to next() will not advance the position until it reads a new token.
- position = s.start_line, s.start_col
- result = looking_at_expr(s) == u'('
- if not result:
- s.start_line, s.start_col = position
- return result
- basic_c_type_names = cython.declare(
- set, set(["void", "char", "int", "float", "double", "bint"]))
- special_basic_c_types = cython.declare(dict, {
- # name : (signed, longness)
- "Py_UNICODE" : (0, 0),
- "Py_UCS4" : (0, 0),
- "Py_hash_t" : (2, 0),
- "Py_ssize_t" : (2, 0),
- "ssize_t" : (2, 0),
- "size_t" : (0, 0),
- "ptrdiff_t" : (2, 0),
- "Py_tss_t" : (1, 0),
- })
- sign_and_longness_words = cython.declare(
- set, set(["short", "long", "signed", "unsigned"]))
- base_type_start_words = cython.declare(
- set,
- basic_c_type_names
- | sign_and_longness_words
- | set(special_basic_c_types))
- struct_enum_union = cython.declare(
- set, set(["struct", "union", "enum", "packed"]))
- def p_sign_and_longness(s):
- signed = 1
- longness = 0
- while s.sy == 'IDENT' and s.systring in sign_and_longness_words:
- if s.systring == 'unsigned':
- signed = 0
- elif s.systring == 'signed':
- signed = 2
- elif s.systring == 'short':
- longness = -1
- elif s.systring == 'long':
- longness += 1
- s.next()
- return signed, longness
- def p_opt_cname(s):
- literal = p_opt_string_literal(s, 'u')
- if literal is not None:
- cname = EncodedString(literal)
- cname.encoding = s.source_encoding
- else:
- cname = None
- return cname
- def p_c_declarator(s, ctx = Ctx(), empty = 0, is_type = 0, cmethod_flag = 0,
- assignable = 0, nonempty = 0,
- calling_convention_allowed = 0):
- # If empty is true, the declarator must be empty. If nonempty is true,
- # the declarator must be nonempty. Otherwise we don't care.
- # If cmethod_flag is true, then if this declarator declares
- # a function, it's a C method of an extension type.
- pos = s.position()
- if s.sy == '(':
- s.next()
- if s.sy == ')' or looking_at_name(s):
- base = Nodes.CNameDeclaratorNode(pos, name=s.context.intern_ustring(u""), cname=None)
- result = p_c_func_declarator(s, pos, ctx, base, cmethod_flag)
- else:
- result = p_c_declarator(s, ctx, empty = empty, is_type = is_type,
- cmethod_flag = cmethod_flag,
- nonempty = nonempty,
- calling_convention_allowed = 1)
- s.expect(')')
- else:
- result = p_c_simple_declarator(s, ctx, empty, is_type, cmethod_flag,
- assignable, nonempty)
- if not calling_convention_allowed and result.calling_convention and s.sy != '(':
- error(s.position(), "%s on something that is not a function"
- % result.calling_convention)
- while s.sy in ('[', '('):
- pos = s.position()
- if s.sy == '[':
- result = p_c_array_declarator(s, result)
- else: # sy == '('
- s.next()
- result = p_c_func_declarator(s, pos, ctx, result, cmethod_flag)
- cmethod_flag = 0
- return result
- def p_c_array_declarator(s, base):
- pos = s.position()
- s.next() # '['
- if s.sy != ']':
- dim = p_testlist(s)
- else:
- dim = None
- s.expect(']')
- return Nodes.CArrayDeclaratorNode(pos, base = base, dimension = dim)
- def p_c_func_declarator(s, pos, ctx, base, cmethod_flag):
- # Opening paren has already been skipped
- args = p_c_arg_list(s, ctx, cmethod_flag = cmethod_flag,
- nonempty_declarators = 0)
- ellipsis = p_optional_ellipsis(s)
- s.expect(')')
- nogil = p_nogil(s)
- exc_val, exc_check = p_exception_value_clause(s)
- # TODO - warning to enforce preferred exception specification order
- nogil = nogil or p_nogil(s)
- with_gil = p_with_gil(s)
- return Nodes.CFuncDeclaratorNode(pos,
- base = base, args = args, has_varargs = ellipsis,
- exception_value = exc_val, exception_check = exc_check,
- nogil = nogil or ctx.nogil or with_gil, with_gil = with_gil)
- supported_overloaded_operators = cython.declare(set, set([
- '+', '-', '*', '/', '%',
- '++', '--', '~', '|', '&', '^', '<<', '>>', ',',
- '==', '!=', '>=', '>', '<=', '<',
- '[]', '()', '!', '=',
- 'bool',
- ]))
- def p_c_simple_declarator(s, ctx, empty, is_type, cmethod_flag,
- assignable, nonempty):
- pos = s.position()
- calling_convention = p_calling_convention(s)
- if s.sy == '*':
- s.next()
- if s.systring == 'const':
- const_pos = s.position()
- s.next()
- const_base = p_c_declarator(s, ctx, empty = empty,
- is_type = is_type,
- cmethod_flag = cmethod_flag,
- assignable = assignable,
- nonempty = nonempty)
- base = Nodes.CConstDeclaratorNode(const_pos, base = const_base)
- else:
- base = p_c_declarator(s, ctx, empty = empty, is_type = is_type,
- cmethod_flag = cmethod_flag,
- assignable = assignable, nonempty = nonempty)
- result = Nodes.CPtrDeclaratorNode(pos,
- base = base)
- elif s.sy == '**': # scanner returns this as a single token
- s.next()
- base = p_c_declarator(s, ctx, empty = empty, is_type = is_type,
- cmethod_flag = cmethod_flag,
- assignable = assignable, nonempty = nonempty)
- result = Nodes.CPtrDeclaratorNode(pos,
- base = Nodes.CPtrDeclaratorNode(pos,
- base = base))
- elif s.sy == '&':
- s.next()
- base = p_c_declarator(s, ctx, empty = empty, is_type = is_type,
- cmethod_flag = cmethod_flag,
- assignable = assignable, nonempty = nonempty)
- result = Nodes.CReferenceDeclaratorNode(pos, base = base)
- else:
- rhs = None
- if s.sy == 'IDENT':
- name = s.systring
- if empty:
- error(s.position(), "Declarator should be empty")
- s.next()
- cname = p_opt_cname(s)
- if name != 'operator' and s.sy == '=' and assignable:
- s.next()
- rhs = p_test(s)
- else:
- if nonempty:
- error(s.position(), "Empty declarator")
- name = ""
- cname = None
- if cname is None and ctx.namespace is not None and nonempty:
- cname = ctx.namespace + "::" + name
- if name == 'operator' and ctx.visibility == 'extern' and nonempty:
- op = s.sy
- if [1 for c in op if c in '+-*/<=>!%&|([^~,']:
- s.next()
- # Handle diphthong operators.
- if op == '(':
- s.expect(')')
- op = '()'
- elif op == '[':
- s.expect(']')
- op = '[]'
- elif op in ('-', '+', '|', '&') and s.sy == op:
- op *= 2 # ++, --, ...
- s.next()
- elif s.sy == '=':
- op += s.sy # +=, -=, ...
- s.next()
- if op not in supported_overloaded_operators:
- s.error("Overloading operator '%s' not yet supported." % op,
- fatal=False)
- name += op
- elif op == 'IDENT':
- op = s.systring;
- if op not in supported_overloaded_operators:
- s.error("Overloading operator '%s' not yet supported." % op,
- fatal=False)
- name = name + ' ' + op
- s.next()
- result = Nodes.CNameDeclaratorNode(pos,
- name = name, cname = cname, default = rhs)
- result.calling_convention = calling_convention
- return result
- def p_nogil(s):
- if s.sy == 'IDENT' and s.systring == 'nogil':
- s.next()
- return 1
- else:
- return 0
- def p_with_gil(s):
- if s.sy == 'with':
- s.next()
- s.expect_keyword('gil')
- return 1
- else:
- return 0
- def p_exception_value_clause(s):
- exc_val = None
- exc_check = 0
- if s.sy == 'IDENT' and s.systring == 'noexcept':
- s.next()
- exc_check = False # No-op in Cython 0.29.x
- elif s.sy == 'except':
- s.next()
- if s.sy == '*':
- exc_check = 1
- s.next()
- elif s.sy == '+':
- exc_check = '+'
- plus_char_pos = s.position()[2]
- s.next()
- if s.sy == 'IDENT':
- name = s.systring
- if name == 'nogil':
- if s.position()[2] == plus_char_pos + 1:
- error(s.position(),
- "'except +nogil' defines an exception handling function. Use 'except + nogil' for the 'nogil' modifier.")
- # 'except + nogil' is parsed outside
- else:
- exc_val = p_name(s, name)
- s.next()
- elif s.sy == '*':
- exc_val = ExprNodes.CharNode(s.position(), value=u'*')
- s.next()
- else:
- if s.sy == '?':
- exc_check = 1
- s.next()
- exc_val = p_test(s)
- return exc_val, exc_check
- c_arg_list_terminators = cython.declare(set, set(['*', '**', '.', ')', ':']))
- def p_c_arg_list(s, ctx = Ctx(), in_pyfunc = 0, cmethod_flag = 0,
- nonempty_declarators = 0, kw_only = 0, annotated = 1):
- # Comma-separated list of C argument declarations, possibly empty.
- # May have a trailing comma.
- args = []
- is_self_arg = cmethod_flag
- while s.sy not in c_arg_list_terminators:
- args.append(p_c_arg_decl(s, ctx, in_pyfunc, is_self_arg,
- nonempty = nonempty_declarators, kw_only = kw_only,
- annotated = annotated))
- if s.sy != ',':
- break
- s.next()
- is_self_arg = 0
- return args
- def p_optional_ellipsis(s):
- if s.sy == '.':
- expect_ellipsis(s)
- return 1
- else:
- return 0
- def p_c_arg_decl(s, ctx, in_pyfunc, cmethod_flag = 0, nonempty = 0,
- kw_only = 0, annotated = 1):
- pos = s.position()
- not_none = or_none = 0
- default = None
- annotation = None
- if s.in_python_file:
- # empty type declaration
- base_type = Nodes.CSimpleBaseTypeNode(pos,
- name = None, module_path = [],
- is_basic_c_type = 0, signed = 0,
- complex = 0, longness = 0,
- is_self_arg = cmethod_flag, templates = None)
- else:
- base_type = p_c_base_type(s, cmethod_flag, nonempty = nonempty)
- declarator = p_c_declarator(s, ctx, nonempty = nonempty)
- if s.sy in ('not', 'or') and not s.in_python_file:
- kind = s.sy
- s.next()
- if s.sy == 'IDENT' and s.systring == 'None':
- s.next()
- else:
- s.error("Expected 'None'")
- if not in_pyfunc:
- error(pos, "'%s None' only allowed in Python functions" % kind)
- or_none = kind == 'or'
- not_none = kind == 'not'
- if annotated and s.sy == ':':
- s.next()
- annotation = p_test(s)
- if s.sy == '=':
- s.next()
- if 'pxd' in ctx.level:
- if s.sy in ['*', '?']:
- # TODO(github/1736): Make this an error for inline declarations.
- default = ExprNodes.NoneNode(pos)
- s.next()
- elif 'inline' in ctx.modifiers:
- default = p_test(s)
- else:
- error(pos, "default values cannot be specified in pxd files, use ? or *")
- else:
- default = p_test(s)
- return Nodes.CArgDeclNode(pos,
- base_type = base_type,
- declarator = declarator,
- not_none = not_none,
- or_none = or_none,
- default = default,
- annotation = annotation,
- kw_only = kw_only)
- def p_api(s):
- if s.sy == 'IDENT' and s.systring == 'api':
- s.next()
- return 1
- else:
- return 0
- def p_cdef_statement(s, ctx):
- pos = s.position()
- ctx.visibility = p_visibility(s, ctx.visibility)
- ctx.api = ctx.api or p_api(s)
- if ctx.api:
- if ctx.visibility not in ('private', 'public'):
- error(pos, "Cannot combine 'api' with '%s'" % ctx.visibility)
- if (ctx.visibility == 'extern') and s.sy == 'from':
- return p_cdef_extern_block(s, pos, ctx)
- elif s.sy == 'import':
- s.next()
- return p_cdef_extern_block(s, pos, ctx)
- elif p_nogil(s):
- ctx.nogil = 1
- if ctx.overridable:
- error(pos, "cdef blocks cannot be declared cpdef")
- return p_cdef_block(s, ctx)
- elif s.sy == ':':
- if ctx.overridable:
- error(pos, "cdef blocks cannot be declared cpdef")
- return p_cdef_block(s, ctx)
- elif s.sy == 'class':
- if ctx.level not in ('module', 'module_pxd'):
- error(pos, "Extension type definition not allowed here")
- if ctx.overridable:
- error(pos, "Extension types cannot be declared cpdef")
- return p_c_class_definition(s, pos, ctx)
- elif s.sy == 'IDENT' and s.systring == 'cppclass':
- return p_cpp_class_definition(s, pos, ctx)
- elif s.sy == 'IDENT' and s.systring in struct_enum_union:
- if ctx.level not in ('module', 'module_pxd'):
- error(pos, "C struct/union/enum definition not allowed here")
- if ctx.overridable:
- if s.systring != 'enum':
- error(pos, "C struct/union cannot be declared cpdef")
- return p_struct_enum(s, pos, ctx)
- elif s.sy == 'IDENT' and s.systring == 'fused':
- return p_fused_definition(s, pos, ctx)
- else:
- return p_c_func_or_var_declaration(s, pos, ctx)
- def p_cdef_block(s, ctx):
- return p_suite(s, ctx(cdef_flag = 1))
- def p_cdef_extern_block(s, pos, ctx):
- if ctx.overridable:
- error(pos, "cdef extern blocks cannot be declared cpdef")
- include_file = None
- s.expect('from')
- if s.sy == '*':
- s.next()
- else:
- include_file = p_string_literal(s, 'u')[2]
- ctx = ctx(cdef_flag = 1, visibility = 'extern')
- if s.systring == "namespace":
- s.next()
- ctx.namespace = p_string_literal(s, 'u')[2]
- if p_nogil(s):
- ctx.nogil = 1
- # Use "docstring" as verbatim string to include
- verbatim_include, body = p_suite_with_docstring(s, ctx, True)
- return Nodes.CDefExternNode(pos,
- include_file = include_file,
- verbatim_include = verbatim_include,
- body = body,
- namespace = ctx.namespace)
- def p_c_enum_definition(s, pos, ctx):
- # s.sy == ident 'enum'
- s.next()
- if s.sy == 'IDENT':
- name = s.systring
- s.next()
- cname = p_opt_cname(s)
- if cname is None and ctx.namespace is not None:
- cname = ctx.namespace + "::" + name
- else:
- name = None
- cname = None
- items = None
- s.expect(':')
- items = []
- if s.sy != 'NEWLINE':
- p_c_enum_line(s, ctx, items)
- else:
- s.next() # 'NEWLINE'
- s.expect_indent()
- while s.sy not in ('DEDENT', 'EOF'):
- p_c_enum_line(s, ctx, items)
- s.expect_dedent()
- return Nodes.CEnumDefNode(
- pos, name = name, cname = cname, items = items,
- typedef_flag = ctx.typedef_flag, visibility = ctx.visibility,
- create_wrapper = ctx.overridable,
- api = ctx.api, in_pxd = ctx.level == 'module_pxd')
- def p_c_enum_line(s, ctx, items):
- if s.sy != 'pass':
- p_c_enum_item(s, ctx, items)
- while s.sy == ',':
- s.next()
- if s.sy in ('NEWLINE', 'EOF'):
- break
- p_c_enum_item(s, ctx, items)
- else:
- s.next()
- s.expect_newline("Syntax error in enum item list")
- def p_c_enum_item(s, ctx, items):
- pos = s.position()
- name = p_ident(s)
- cname = p_opt_cname(s)
- if cname is None and ctx.namespace is not None:
- cname = ctx.namespace + "::" + name
- value = None
- if s.sy == '=':
- s.next()
- value = p_test(s)
- items.append(Nodes.CEnumDefItemNode(pos,
- name = name, cname = cname, value = value))
- def p_c_struct_or_union_definition(s, pos, ctx):
- packed = False
- if s.systring == 'packed':
- packed = True
- s.next()
- if s.sy != 'IDENT' or s.systring != 'struct':
- s.expected('struct')
- # s.sy == ident 'struct' or 'union'
- kind = s.systring
- s.next()
- name = p_ident(s)
- cname = p_opt_cname(s)
- if cname is None and ctx.namespace is not None:
- cname = ctx.namespace + "::" + name
- attributes = None
- if s.sy == ':':
- s.next()
- s.expect('NEWLINE')
- s.expect_indent()
- attributes = []
- body_ctx = Ctx()
- while s.sy != 'DEDENT':
- if s.sy != 'pass':
- attributes.append(
- p_c_func_or_var_declaration(s, s.position(), body_ctx))
- else:
- s.next()
- s.expect_newline("Expected a newline")
- s.expect_dedent()
- else:
- s.expect_newline("Syntax error in struct or union definition")
- return Nodes.CStructOrUnionDefNode(pos,
- name = name, cname = cname, kind = kind, attributes = attributes,
- typedef_flag = ctx.typedef_flag, visibility = ctx.visibility,
- api = ctx.api, in_pxd = ctx.level == 'module_pxd', packed = packed)
- def p_fused_definition(s, pos, ctx):
- """
- c(type)def fused my_fused_type:
- ...
- """
- # s.systring == 'fused'
- if ctx.level not in ('module', 'module_pxd'):
- error(pos, "Fused type definition not allowed here")
- s.next()
- name = p_ident(s)
- s.expect(":")
- s.expect_newline()
- s.expect_indent()
- types = []
- while s.sy != 'DEDENT':
- if s.sy != 'pass':
- #types.append(p_c_declarator(s))
- types.append(p_c_base_type(s)) #, nonempty=1))
- else:
- s.next()
- s.expect_newline()
- s.expect_dedent()
- if not types:
- error(pos, "Need at least one type")
- return Nodes.FusedTypeNode(pos, name=name, types=types)
- def p_struct_enum(s, pos, ctx):
- if s.systring == 'enum':
- return p_c_enum_definition(s, pos, ctx)
- else:
- return p_c_struct_or_union_definition(s, pos, ctx)
- def p_visibility(s, prev_visibility):
- pos = s.position()
- visibility = prev_visibility
- if s.sy == 'IDENT' and s.systring in ('extern', 'public', 'readonly'):
- visibility = s.systring
- if prev_visibility != 'private' and visibility != prev_visibility:
- s.error("Conflicting visibility options '%s' and '%s'"
- % (prev_visibility, visibility), fatal=False)
- s.next()
- return visibility
- def p_c_modifiers(s):
- if s.sy == 'IDENT' and s.systring in ('inline',):
- modifier = s.systring
- s.next()
- return [modifier] + p_c_modifiers(s)
- return []
- def p_c_func_or_var_declaration(s, pos, ctx):
- cmethod_flag = ctx.level in ('c_class', 'c_class_pxd')
- modifiers = p_c_modifiers(s)
- base_type = p_c_base_type(s, nonempty = 1, templates = ctx.templates)
- declarator = p_c_declarator(s, ctx(modifiers=modifiers), cmethod_flag = cmethod_flag,
- assignable = 1, nonempty = 1)
- declarator.overridable = ctx.overridable
- if s.sy == 'IDENT' and s.systring == 'const' and ctx.level == 'cpp_class':
- s.next()
- is_const_method = 1
- else:
- is_const_method = 0
- if s.sy == '->':
- # Special enough to give a better error message and keep going.
- s.error(
- "Return type annotation is not allowed in cdef/cpdef signatures. "
- "Please define it before the function name, as in C signatures.",
- fatal=False)
- s.next()
- p_test(s) # Keep going, but ignore result.
- if s.sy == ':':
- if ctx.level not in ('module', 'c_class', 'module_pxd', 'c_class_pxd', 'cpp_class') and not ctx.templates:
- s.error("C function definition not allowed here")
- doc, suite = p_suite_with_docstring(s, Ctx(level='function'))
- result = Nodes.CFuncDefNode(pos,
- visibility = ctx.visibility,
- base_type = base_type,
- declarator = declarator,
- body = suite,
- doc = doc,
- modifiers = modifiers,
- api = ctx.api,
- overridable = ctx.overridable,
- is_const_method = is_const_method)
- else:
- #if api:
- # s.error("'api' not allowed with variable declaration")
- if is_const_method:
- declarator.is_const_method = is_const_method
- declarators = [declarator]
- while s.sy == ',':
- s.next()
- if s.sy == 'NEWLINE':
- break
- declarator = p_c_declarator(s, ctx, cmethod_flag = cmethod_flag,
- assignable = 1, nonempty = 1)
- declarators.append(declarator)
- doc_line = s.start_line + 1
- s.expect_newline("Syntax error in C variable declaration", ignore_semicolon=True)
- if ctx.level in ('c_class', 'c_class_pxd') and s.start_line == doc_line:
- doc = p_doc_string(s)
- else:
- doc = None
- result = Nodes.CVarDefNode(pos,
- visibility = ctx.visibility,
- base_type = base_type,
- declarators = declarators,
- in_pxd = ctx.level in ('module_pxd', 'c_class_pxd'),
- doc = doc,
- api = ctx.api,
- modifiers = modifiers,
- overridable = ctx.overridable)
- return result
- def p_ctypedef_statement(s, ctx):
- # s.sy == 'ctypedef'
- pos = s.position()
- s.next()
- visibility = p_visibility(s, ctx.visibility)
- api = p_api(s)
- ctx = ctx(typedef_flag = 1, visibility = visibility)
- if api:
- ctx.api = 1
- if s.sy == 'class':
- return p_c_class_definition(s, pos, ctx)
- elif s.sy == 'IDENT' and s.systring in struct_enum_union:
- return p_struct_enum(s, pos, ctx)
- elif s.sy == 'IDENT' and s.systring == 'fused':
- return p_fused_definition(s, pos, ctx)
- else:
- base_type = p_c_base_type(s, nonempty = 1)
- declarator = p_c_declarator(s, ctx, is_type = 1, nonempty = 1)
- s.expect_newline("Syntax error in ctypedef statement", ignore_semicolon=True)
- return Nodes.CTypeDefNode(
- pos, base_type = base_type,
- declarator = declarator,
- visibility = visibility, api = api,
- in_pxd = ctx.level == 'module_pxd')
- def p_decorators(s):
- decorators = []
- while s.sy == '@':
- pos = s.position()
- s.next()
- decstring = p_dotted_name(s, as_allowed=0)[2]
- names = decstring.split('.')
- decorator = ExprNodes.NameNode(pos, name=s.context.intern_ustring(names[0]))
- for name in names[1:]:
- decorator = ExprNodes.AttributeNode(
- pos, attribute=s.context.intern_ustring(name), obj=decorator)
- if s.sy == '(':
- decorator = p_call(s, decorator)
- decorators.append(Nodes.DecoratorNode(pos, decorator=decorator))
- s.expect_newline("Expected a newline after decorator")
- return decorators
- def _reject_cdef_modifier_in_py(s, name):
- """Step over incorrectly placed cdef modifiers (@see _CDEF_MODIFIERS) to provide a good error message for them.
- """
- if s.sy == 'IDENT' and name in _CDEF_MODIFIERS:
- # Special enough to provide a good error message.
- s.error("Cannot use cdef modifier '%s' in Python function signature. Use a decorator instead." % name, fatal=False)
- return p_ident(s) # Keep going, in case there are other errors.
- return name
- def p_def_statement(s, decorators=None, is_async_def=False):
- # s.sy == 'def'
- pos = s.position()
- # PEP 492 switches the async/await keywords on in "async def" functions
- if is_async_def:
- s.enter_async()
- s.next()
- name = _reject_cdef_modifier_in_py(s, p_ident(s))
- s.expect(
- '(',
- "Expected '(', found '%s'. Did you use cdef syntax in a Python declaration? "
- "Use decorators and Python type annotations instead." % (
- s.systring if s.sy == 'IDENT' else s.sy))
- args, star_arg, starstar_arg = p_varargslist(s, terminator=')')
- s.expect(')')
- _reject_cdef_modifier_in_py(s, s.systring)
- return_type_annotation = None
- if s.sy == '->':
- s.next()
- return_type_annotation = p_test(s)
- _reject_cdef_modifier_in_py(s, s.systring)
- doc, body = p_suite_with_docstring(s, Ctx(level='function'))
- if is_async_def:
- s.exit_async()
- return Nodes.DefNode(
- pos, name=name, args=args, star_arg=star_arg, starstar_arg=starstar_arg,
- doc=doc, body=body, decorators=decorators, is_async_def=is_async_def,
- return_type_annotation=return_type_annotation)
- def p_varargslist(s, terminator=')', annotated=1):
- args = p_c_arg_list(s, in_pyfunc = 1, nonempty_declarators = 1,
- annotated = annotated)
- star_arg = None
- starstar_arg = None
- if s.sy == '*':
- s.next()
- if s.sy == 'IDENT':
- star_arg = p_py_arg_decl(s, annotated=annotated)
- if s.sy == ',':
- s.next()
- args.extend(p_c_arg_list(s, in_pyfunc = 1,
- nonempty_declarators = 1, kw_only = 1, annotated = annotated))
- elif s.sy != terminator:
- s.error("Syntax error in Python function argument list")
- if s.sy == '**':
- s.next()
- starstar_arg = p_py_arg_decl(s, annotated=annotated)
- if s.sy == ',':
- s.next()
- return (args, star_arg, starstar_arg)
- def p_py_arg_decl(s, annotated = 1):
- pos = s.position()
- name = p_ident(s)
- annotation = None
- if annotated and s.sy == ':':
- s.next()
- annotation = p_test(s)
- return Nodes.PyArgDeclNode(pos, name = name, annotation = annotation)
- def p_class_statement(s, decorators):
- # s.sy == 'class'
- pos = s.position()
- s.next()
- class_name = EncodedString(p_ident(s))
- class_name.encoding = s.source_encoding # FIXME: why is this needed?
- arg_tuple = None
- keyword_dict = None
- if s.sy == '(':
- positional_args, keyword_args = p_call_parse_args(s, allow_genexp=False)
- arg_tuple, keyword_dict = p_call_build_packed_args(pos, positional_args, keyword_args)
- if arg_tuple is None:
- # XXX: empty arg_tuple
- arg_tuple = ExprNodes.TupleNode(pos, args=[])
- doc, body = p_suite_with_docstring(s, Ctx(level='class'))
- return Nodes.PyClassDefNode(
- pos, name=class_name,
- bases=arg_tuple,
- keyword_args=keyword_dict,
- doc=doc, body=body, decorators=decorators,
- force_py3_semantics=s.context.language_level >= 3)
- def p_c_class_definition(s, pos, ctx):
- # s.sy == 'class'
- s.next()
- module_path = []
- class_name = p_ident(s)
- while s.sy == '.':
- s.next()
- module_path.append(class_name)
- class_name = p_ident(s)
- if module_path and ctx.visibility != 'extern':
- error(pos, "Qualified class name only allowed for 'extern' C class")
- if module_path and s.sy == 'IDENT' and s.systring == 'as':
- s.next()
- as_name = p_ident(s)
- else:
- as_name = class_name
- objstruct_name = None
- typeobj_name = None
- bases = None
- check_size = None
- if s.sy == '(':
- positional_args, keyword_args = p_call_parse_args(s, allow_genexp=False)
- if keyword_args:
- s.error("C classes cannot take keyword bases.")
- bases, _ = p_call_build_packed_args(pos, positional_args, keyword_args)
- if bases is None:
- bases = ExprNodes.TupleNode(pos, args=[])
- if s.sy == '[':
- if ctx.visibility not in ('public', 'extern') and not ctx.api:
- error(s.position(), "Name options only allowed for 'public', 'api', or 'extern' C class")
- objstruct_name, typeobj_name, check_size = p_c_class_options(s)
- if s.sy == ':':
- if ctx.level == 'module_pxd':
- body_level = 'c_class_pxd'
- else:
- body_level = 'c_class'
- doc, body = p_suite_with_docstring(s, Ctx(level=body_level))
- else:
- s.expect_newline("Syntax error in C class definition")
- doc = None
- body = None
- if ctx.visibility == 'extern':
- if not module_path:
- error(pos, "Module name required for 'extern' C class")
- if typeobj_name:
- error(pos, "Type object name specification not allowed for 'extern' C class")
- elif ctx.visibility == 'public':
- if not objstruct_name:
- error(pos, "Object struct name specification required for 'public' C class")
- if not typeobj_name:
- error(pos, "Type object name specification required for 'public' C class")
- elif ctx.visibility == 'private':
- if ctx.api:
- if not objstruct_name:
- error(pos, "Object struct name specification required for 'api' C class")
- if not typeobj_name:
- error(pos, "Type object name specification required for 'api' C class")
- else:
- error(pos, "Invalid class visibility '%s'" % ctx.visibility)
- return Nodes.CClassDefNode(pos,
- visibility = ctx.visibility,
- typedef_flag = ctx.typedef_flag,
- api = ctx.api,
- module_name = ".".join(module_path),
- class_name = class_name,
- as_name = as_name,
- bases = bases,
- objstruct_name = objstruct_name,
- typeobj_name = typeobj_name,
- check_size = check_size,
- in_pxd = ctx.level == 'module_pxd',
- doc = doc,
- body = body)
- def p_c_class_options(s):
- objstruct_name = None
- typeobj_name = None
- check_size = None
- s.expect('[')
- while 1:
- if s.sy != 'IDENT':
- break
- if s.systring == 'object':
- s.next()
- objstruct_name = p_ident(s)
- elif s.systring == 'type':
- s.next()
- typeobj_name = p_ident(s)
- elif s.systring == 'check_size':
- s.next()
- check_size = p_ident(s)
- if check_size not in ('ignore', 'warn', 'error'):
- s.error("Expected one of ignore, warn or error, found %r" % check_size)
- if s.sy != ',':
- break
- s.next()
- s.expect(']', "Expected 'object', 'type' or 'check_size'")
- return objstruct_name, typeobj_name, check_size
- def p_property_decl(s):
- pos = s.position()
- s.next() # 'property'
- name = p_ident(s)
- doc, body = p_suite_with_docstring(
- s, Ctx(level='property'), with_doc_only=True)
- return Nodes.PropertyNode(pos, name=name, doc=doc, body=body)
- def p_ignorable_statement(s):
- """
- Parses any kind of ignorable statement that is allowed in .pxd files.
- """
- if s.sy == 'BEGIN_STRING':
- pos = s.position()
- string_node = p_atom(s)
- s.expect_newline("Syntax error in string", ignore_semicolon=True)
- return Nodes.ExprStatNode(pos, expr=string_node)
- return None
- def p_doc_string(s):
- if s.sy == 'BEGIN_STRING':
- pos = s.position()
- kind, bytes_result, unicode_result = p_cat_string_literal(s)
- s.expect_newline("Syntax error in doc string", ignore_semicolon=True)
- if kind in ('u', ''):
- return unicode_result
- warning(pos, "Python 3 requires docstrings to be unicode strings")
- return bytes_result
- else:
- return None
- def _extract_docstring(node):
- """
- Extract a docstring from a statement or from the first statement
- in a list. Remove the statement if found. Return a tuple
- (plain-docstring or None, node).
- """
- doc_node = None
- if node is None:
- pass
- elif isinstance(node, Nodes.ExprStatNode):
- if node.expr.is_string_literal:
- doc_node = node.expr
- node = Nodes.StatListNode(node.pos, stats=[])
- elif isinstance(node, Nodes.StatListNode) and node.stats:
- stats = node.stats
- if isinstance(stats[0], Nodes.ExprStatNode):
- if stats[0].expr.is_string_literal:
- doc_node = stats[0].expr
- del stats[0]
- if doc_node is None:
- doc = None
- elif isinstance(doc_node, ExprNodes.BytesNode):
- warning(node.pos,
- "Python 3 requires docstrings to be unicode strings")
- doc = doc_node.value
- elif isinstance(doc_node, ExprNodes.StringNode):
- doc = doc_node.unicode_value
- if doc is None:
- doc = doc_node.value
- else:
- doc = doc_node.value
- return doc, node
- def p_code(s, level=None, ctx=Ctx):
- body = p_statement_list(s, ctx(level = level), first_statement = 1)
- if s.sy != 'EOF':
- s.error("Syntax error in statement [%s,%s]" % (
- repr(s.sy), repr(s.systring)))
- return body
- _match_compiler_directive_comment = cython.declare(object, re.compile(
- r"^#\s*cython\s*:\s*((\w|[.])+\s*=.*)$").match)
- def p_compiler_directive_comments(s):
- result = {}
- while s.sy == 'commentline':
- pos = s.position()
- m = _match_compiler_directive_comment(s.systring)
- if m:
- directives_string = m.group(1).strip()
- try:
- new_directives = Options.parse_directive_list(directives_string, ignore_unknown=True)
- except ValueError as e:
- s.error(e.args[0], fatal=False)
- s.next()
- continue
- for name in new_directives:
- if name not in result:
- pass
- elif new_directives[name] == result[name]:
- warning(pos, "Duplicate directive found: %s" % (name,))
- else:
- s.error("Conflicting settings found for top-level directive %s: %r and %r" % (
- name, result[name], new_directives[name]), pos=pos)
- if 'language_level' in new_directives:
- # Make sure we apply the language level already to the first token that follows the comments.
- s.context.set_language_level(new_directives['language_level'])
- result.update(new_directives)
- s.next()
- return result
- def p_module(s, pxd, full_module_name, ctx=Ctx):
- pos = s.position()
- directive_comments = p_compiler_directive_comments(s)
- s.parse_comments = False
- if s.context.language_level is None:
- s.context.set_language_level(2) # Arcadia default.
- if s.context.language_level is None:
- s.context.set_language_level(2)
- if pos[0].filename:
- import warnings
- warnings.warn(
- "Cython directive 'language_level' not set, using 2 for now (Py2). "
- "This will change in a later release! File: %s" % pos[0].filename,
- FutureWarning,
- stacklevel=1 if cython.compiled else 2,
- )
- doc = p_doc_string(s)
- if pxd:
- level = 'module_pxd'
- else:
- level = 'module'
- body = p_statement_list(s, ctx(level=level), first_statement = 1)
- if s.sy != 'EOF':
- s.error("Syntax error in statement [%s,%s]" % (
- repr(s.sy), repr(s.systring)))
- return ModuleNode(pos, doc = doc, body = body,
- full_module_name = full_module_name,
- directive_comments = directive_comments)
- def p_template_definition(s):
- name = p_ident(s)
- if s.sy == '=':
- s.expect('=')
- s.expect('*')
- required = False
- else:
- required = True
- return name, required
- def p_cpp_class_definition(s, pos, ctx):
- # s.sy == 'cppclass'
- s.next()
- module_path = []
- class_name = p_ident(s)
- cname = p_opt_cname(s)
- if cname is None and ctx.namespace is not None:
- cname = ctx.namespace + "::" + class_name
- if s.sy == '.':
- error(pos, "Qualified class name not allowed C++ class")
- if s.sy == '[':
- s.next()
- templates = [p_template_definition(s)]
- while s.sy == ',':
- s.next()
- templates.append(p_template_definition(s))
- s.expect(']')
- template_names = [name for name, required in templates]
- else:
- templates = None
- template_names = None
- if s.sy == '(':
- s.next()
- base_classes = [p_c_base_type(s, templates = template_names)]
- while s.sy == ',':
- s.next()
- base_classes.append(p_c_base_type(s, templates = template_names))
- s.expect(')')
- else:
- base_classes = []
- if s.sy == '[':
- error(s.position(), "Name options not allowed for C++ class")
- nogil = p_nogil(s)
- if s.sy == ':':
- s.next()
- s.expect('NEWLINE')
- s.expect_indent()
- attributes = []
- body_ctx = Ctx(visibility = ctx.visibility, level='cpp_class', nogil=nogil or ctx.nogil)
- body_ctx.templates = template_names
- while s.sy != 'DEDENT':
- if s.sy != 'pass':
- attributes.append(p_cpp_class_attribute(s, body_ctx))
- else:
- s.next()
- s.expect_newline("Expected a newline")
- s.expect_dedent()
- else:
- attributes = None
- s.expect_newline("Syntax error in C++ class definition")
- return Nodes.CppClassNode(pos,
- name = class_name,
- cname = cname,
- base_classes = base_classes,
- visibility = ctx.visibility,
- in_pxd = ctx.level == 'module_pxd',
- attributes = attributes,
- templates = templates)
- def p_cpp_class_attribute(s, ctx):
- decorators = None
- if s.sy == '@':
- decorators = p_decorators(s)
- if s.systring == 'cppclass':
- return p_cpp_class_definition(s, s.position(), ctx)
- elif s.systring == 'ctypedef':
- return p_ctypedef_statement(s, ctx)
- elif s.sy == 'IDENT' and s.systring in struct_enum_union:
- if s.systring != 'enum':
- return p_cpp_class_definition(s, s.position(), ctx)
- else:
- return p_struct_enum(s, s.position(), ctx)
- else:
- node = p_c_func_or_var_declaration(s, s.position(), ctx)
- if decorators is not None:
- tup = Nodes.CFuncDefNode, Nodes.CVarDefNode, Nodes.CClassDefNode
- if ctx.allow_struct_enum_decorator:
- tup += Nodes.CStructOrUnionDefNode, Nodes.CEnumDefNode
- if not isinstance(node, tup):
- s.error("Decorators can only be followed by functions or classes")
- node.decorators = decorators
- return node
- #----------------------------------------------
- #
- # Debugging
- #
- #----------------------------------------------
- def print_parse_tree(f, node, level, key = None):
- ind = " " * level
- if node:
- f.write(ind)
- if key:
- f.write("%s: " % key)
- t = type(node)
- if t is tuple:
- f.write("(%s @ %s\n" % (node[0], node[1]))
- for i in range(2, len(node)):
- print_parse_tree(f, node[i], level+1)
- f.write("%s)\n" % ind)
- return
- elif isinstance(node, Nodes.Node):
- try:
- tag = node.tag
- except AttributeError:
- tag = node.__class__.__name__
- f.write("%s @ %s\n" % (tag, node.pos))
- for name, value in node.__dict__.items():
- if name != 'tag' and name != 'pos':
- print_parse_tree(f, value, level+1, name)
- return
- elif t is list:
- f.write("[\n")
- for i in range(len(node)):
- print_parse_tree(f, node[i], level+1)
- f.write("%s]\n" % ind)
- return
- f.write("%s%s\n" % (ind, node))
|