123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561 |
- // Copyright 2018 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- //
- // -----------------------------------------------------------------------------
- // File: flat_hash_set.h
- // -----------------------------------------------------------------------------
- //
- // An `absl::flat_hash_set<T>` is an unordered associative container designed to
- // be a more efficient replacement for `std::unordered_set`. Like
- // `unordered_set`, search, insertion, and deletion of set elements can be done
- // as an `O(1)` operation. However, `flat_hash_set` (and other unordered
- // associative containers known as the collection of Abseil "Swiss tables")
- // contain other optimizations that result in both memory and computation
- // advantages.
- //
- // In most cases, your default choice for a hash set should be a set of type
- // `flat_hash_set`.
- //
- // `flat_hash_set` is not exception-safe.
- #ifndef ABSL_CONTAINER_FLAT_HASH_SET_H_
- #define ABSL_CONTAINER_FLAT_HASH_SET_H_
- #include <cstddef>
- #include <memory>
- #include <type_traits>
- #include <utility>
- #include "absl/algorithm/container.h"
- #include "absl/base/attributes.h"
- #include "absl/base/macros.h"
- #include "absl/container/hash_container_defaults.h"
- #include "absl/container/internal/container_memory.h"
- #include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export
- #include "absl/memory/memory.h"
- #include "absl/meta/type_traits.h"
- namespace absl {
- ABSL_NAMESPACE_BEGIN
- namespace container_internal {
- template <typename T>
- struct FlatHashSetPolicy;
- } // namespace container_internal
- // -----------------------------------------------------------------------------
- // absl::flat_hash_set
- // -----------------------------------------------------------------------------
- //
- // An `absl::flat_hash_set<T>` is an unordered associative container which has
- // been optimized for both speed and memory footprint in most common use cases.
- // Its interface is similar to that of `std::unordered_set<T>` with the
- // following notable differences:
- //
- // * Requires keys that are CopyConstructible
- // * Supports heterogeneous lookup, through `find()` and `insert()`, provided
- // that the set is provided a compatible heterogeneous hashing function and
- // equality operator. See below for details.
- // * Invalidates any references and pointers to elements within the table after
- // `rehash()` and when the table is moved.
- // * Contains a `capacity()` member function indicating the number of element
- // slots (open, deleted, and empty) within the hash set.
- // * Returns `void` from the `erase(iterator)` overload.
- //
- // By default, `flat_hash_set` uses the `absl::Hash` hashing framework. All
- // fundamental and Abseil types that support the `absl::Hash` framework have a
- // compatible equality operator for comparing insertions into `flat_hash_set`.
- // If your type is not yet supported by the `absl::Hash` framework, see
- // absl/hash/hash.h for information on extending Abseil hashing to user-defined
- // types.
- //
- // Using `absl::flat_hash_set` at interface boundaries in dynamically loaded
- // libraries (e.g. .dll, .so) is unsupported due to way `absl::Hash` values may
- // be randomized across dynamically loaded libraries.
- //
- // To achieve heterogeneous lookup for custom types either `Hash` and `Eq` type
- // parameters can be used or `T` should have public inner types
- // `absl_container_hash` and (optionally) `absl_container_eq`. In either case,
- // `typename Hash::is_transparent` and `typename Eq::is_transparent` should be
- // well-formed. Both types are basically functors:
- // * `Hash` should support `size_t operator()(U val) const` that returns a hash
- // for the given `val`.
- // * `Eq` should support `bool operator()(U lhs, V rhs) const` that returns true
- // if `lhs` is equal to `rhs`.
- //
- // In most cases `T` needs only to provide the `absl_container_hash`. In this
- // case `std::equal_to<void>` will be used instead of `eq` part.
- //
- // NOTE: A `flat_hash_set` stores its keys directly inside its implementation
- // array to avoid memory indirection. Because a `flat_hash_set` is designed to
- // move data when rehashed, set keys will not retain pointer stability. If you
- // require pointer stability, consider using
- // `absl::flat_hash_set<std::unique_ptr<T>>`. If your type is not moveable and
- // you require pointer stability, consider `absl::node_hash_set` instead.
- //
- // Example:
- //
- // // Create a flat hash set of three strings
- // absl::flat_hash_set<std::string> ducks =
- // {"huey", "dewey", "louie"};
- //
- // // Insert a new element into the flat hash set
- // ducks.insert("donald");
- //
- // // Force a rehash of the flat hash set
- // ducks.rehash(0);
- //
- // // See if "dewey" is present
- // if (ducks.contains("dewey")) {
- // std::cout << "We found dewey!" << std::endl;
- // }
- template <class T, class Hash = DefaultHashContainerHash<T>,
- class Eq = DefaultHashContainerEq<T>,
- class Allocator = std::allocator<T>>
- class ABSL_INTERNAL_ATTRIBUTE_OWNER flat_hash_set
- : public absl::container_internal::raw_hash_set<
- absl::container_internal::FlatHashSetPolicy<T>, Hash, Eq, Allocator> {
- using Base = typename flat_hash_set::raw_hash_set;
- public:
- // Constructors and Assignment Operators
- //
- // A flat_hash_set supports the same overload set as `std::unordered_set`
- // for construction and assignment:
- //
- // * Default constructor
- //
- // // No allocation for the table's elements is made.
- // absl::flat_hash_set<std::string> set1;
- //
- // * Initializer List constructor
- //
- // absl::flat_hash_set<std::string> set2 =
- // {{"huey"}, {"dewey"}, {"louie"},};
- //
- // * Copy constructor
- //
- // absl::flat_hash_set<std::string> set3(set2);
- //
- // * Copy assignment operator
- //
- // // Hash functor and Comparator are copied as well
- // absl::flat_hash_set<std::string> set4;
- // set4 = set3;
- //
- // * Move constructor
- //
- // // Move is guaranteed efficient
- // absl::flat_hash_set<std::string> set5(std::move(set4));
- //
- // * Move assignment operator
- //
- // // May be efficient if allocators are compatible
- // absl::flat_hash_set<std::string> set6;
- // set6 = std::move(set5);
- //
- // * Range constructor
- //
- // std::vector<std::string> v = {"a", "b"};
- // absl::flat_hash_set<std::string> set7(v.begin(), v.end());
- flat_hash_set() {}
- using Base::Base;
- // flat_hash_set::begin()
- //
- // Returns an iterator to the beginning of the `flat_hash_set`.
- using Base::begin;
- // flat_hash_set::cbegin()
- //
- // Returns a const iterator to the beginning of the `flat_hash_set`.
- using Base::cbegin;
- // flat_hash_set::cend()
- //
- // Returns a const iterator to the end of the `flat_hash_set`.
- using Base::cend;
- // flat_hash_set::end()
- //
- // Returns an iterator to the end of the `flat_hash_set`.
- using Base::end;
- // flat_hash_set::capacity()
- //
- // Returns the number of element slots (assigned, deleted, and empty)
- // available within the `flat_hash_set`.
- //
- // NOTE: this member function is particular to `absl::flat_hash_set` and is
- // not provided in the `std::unordered_set` API.
- using Base::capacity;
- // flat_hash_set::empty()
- //
- // Returns whether or not the `flat_hash_set` is empty.
- using Base::empty;
- // flat_hash_set::max_size()
- //
- // Returns the largest theoretical possible number of elements within a
- // `flat_hash_set` under current memory constraints. This value can be thought
- // of the largest value of `std::distance(begin(), end())` for a
- // `flat_hash_set<T>`.
- using Base::max_size;
- // flat_hash_set::size()
- //
- // Returns the number of elements currently within the `flat_hash_set`.
- using Base::size;
- // flat_hash_set::clear()
- //
- // Removes all elements from the `flat_hash_set`. Invalidates any references,
- // pointers, or iterators referring to contained elements.
- //
- // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
- // the underlying buffer call `erase(begin(), end())`.
- using Base::clear;
- // flat_hash_set::erase()
- //
- // Erases elements within the `flat_hash_set`. Erasing does not trigger a
- // rehash. Overloads are listed below.
- //
- // void erase(const_iterator pos):
- //
- // Erases the element at `position` of the `flat_hash_set`, returning
- // `void`.
- //
- // NOTE: returning `void` in this case is different than that of STL
- // containers in general and `std::unordered_set` in particular (which
- // return an iterator to the element following the erased element). If that
- // iterator is needed, simply post increment the iterator:
- //
- // set.erase(it++);
- //
- // iterator erase(const_iterator first, const_iterator last):
- //
- // Erases the elements in the open interval [`first`, `last`), returning an
- // iterator pointing to `last`. The special case of calling
- // `erase(begin(), end())` resets the reserved growth such that if
- // `reserve(N)` has previously been called and there has been no intervening
- // call to `clear()`, then after calling `erase(begin(), end())`, it is safe
- // to assume that inserting N elements will not cause a rehash.
- //
- // size_type erase(const key_type& key):
- //
- // Erases the element with the matching key, if it exists, returning the
- // number of elements erased (0 or 1).
- using Base::erase;
- // flat_hash_set::insert()
- //
- // Inserts an element of the specified value into the `flat_hash_set`,
- // returning an iterator pointing to the newly inserted element, provided that
- // an element with the given key does not already exist. If rehashing occurs
- // due to the insertion, all iterators are invalidated. Overloads are listed
- // below.
- //
- // std::pair<iterator,bool> insert(const T& value):
- //
- // Inserts a value into the `flat_hash_set`. Returns a pair consisting of an
- // iterator to the inserted element (or to the element that prevented the
- // insertion) and a bool denoting whether the insertion took place.
- //
- // std::pair<iterator,bool> insert(T&& value):
- //
- // Inserts a moveable value into the `flat_hash_set`. Returns a pair
- // consisting of an iterator to the inserted element (or to the element that
- // prevented the insertion) and a bool denoting whether the insertion took
- // place.
- //
- // iterator insert(const_iterator hint, const T& value):
- // iterator insert(const_iterator hint, T&& value):
- //
- // Inserts a value, using the position of `hint` as a non-binding suggestion
- // for where to begin the insertion search. Returns an iterator to the
- // inserted element, or to the existing element that prevented the
- // insertion.
- //
- // void insert(InputIterator first, InputIterator last):
- //
- // Inserts a range of values [`first`, `last`).
- //
- // NOTE: Although the STL does not specify which element may be inserted if
- // multiple keys compare equivalently, for `flat_hash_set` we guarantee the
- // first match is inserted.
- //
- // void insert(std::initializer_list<T> ilist):
- //
- // Inserts the elements within the initializer list `ilist`.
- //
- // NOTE: Although the STL does not specify which element may be inserted if
- // multiple keys compare equivalently within the initializer list, for
- // `flat_hash_set` we guarantee the first match is inserted.
- using Base::insert;
- // flat_hash_set::emplace()
- //
- // Inserts an element of the specified value by constructing it in-place
- // within the `flat_hash_set`, provided that no element with the given key
- // already exists.
- //
- // The element may be constructed even if there already is an element with the
- // key in the container, in which case the newly constructed element will be
- // destroyed immediately.
- //
- // If rehashing occurs due to the insertion, all iterators are invalidated.
- using Base::emplace;
- // flat_hash_set::emplace_hint()
- //
- // Inserts an element of the specified value by constructing it in-place
- // within the `flat_hash_set`, using the position of `hint` as a non-binding
- // suggestion for where to begin the insertion search, and only inserts
- // provided that no element with the given key already exists.
- //
- // The element may be constructed even if there already is an element with the
- // key in the container, in which case the newly constructed element will be
- // destroyed immediately.
- //
- // If rehashing occurs due to the insertion, all iterators are invalidated.
- using Base::emplace_hint;
- // flat_hash_set::extract()
- //
- // Extracts the indicated element, erasing it in the process, and returns it
- // as a C++17-compatible node handle. Overloads are listed below.
- //
- // node_type extract(const_iterator position):
- //
- // Extracts the element at the indicated position and returns a node handle
- // owning that extracted data.
- //
- // node_type extract(const key_type& x):
- //
- // Extracts the element with the key matching the passed key value and
- // returns a node handle owning that extracted data. If the `flat_hash_set`
- // does not contain an element with a matching key, this function returns an
- // empty node handle.
- using Base::extract;
- // flat_hash_set::merge()
- //
- // Extracts elements from a given `source` flat hash set into this
- // `flat_hash_set`. If the destination `flat_hash_set` already contains an
- // element with an equivalent key, that element is not extracted.
- using Base::merge;
- // flat_hash_set::swap(flat_hash_set& other)
- //
- // Exchanges the contents of this `flat_hash_set` with those of the `other`
- // flat hash set, avoiding invocation of any move, copy, or swap operations on
- // individual elements.
- //
- // All iterators and references on the `flat_hash_set` remain valid, excepting
- // for the past-the-end iterator, which is invalidated.
- //
- // `swap()` requires that the flat hash set's hashing and key equivalence
- // functions be Swappable, and are exchanged using unqualified calls to
- // non-member `swap()`. If the set's allocator has
- // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
- // set to `true`, the allocators are also exchanged using an unqualified call
- // to non-member `swap()`; otherwise, the allocators are not swapped.
- using Base::swap;
- // flat_hash_set::rehash(count)
- //
- // Rehashes the `flat_hash_set`, setting the number of slots to be at least
- // the passed value. If the new number of slots increases the load factor more
- // than the current maximum load factor
- // (`count` < `size()` / `max_load_factor()`), then the new number of slots
- // will be at least `size()` / `max_load_factor()`.
- //
- // To force a rehash, pass rehash(0).
- //
- // NOTE: unlike behavior in `std::unordered_set`, references are also
- // invalidated upon a `rehash()`.
- using Base::rehash;
- // flat_hash_set::reserve(count)
- //
- // Sets the number of slots in the `flat_hash_set` to the number needed to
- // accommodate at least `count` total elements without exceeding the current
- // maximum load factor, and may rehash the container if needed.
- using Base::reserve;
- // flat_hash_set::contains()
- //
- // Determines whether an element comparing equal to the given `key` exists
- // within the `flat_hash_set`, returning `true` if so or `false` otherwise.
- using Base::contains;
- // flat_hash_set::count(const Key& key) const
- //
- // Returns the number of elements comparing equal to the given `key` within
- // the `flat_hash_set`. note that this function will return either `1` or `0`
- // since duplicate elements are not allowed within a `flat_hash_set`.
- using Base::count;
- // flat_hash_set::equal_range()
- //
- // Returns a closed range [first, last], defined by a `std::pair` of two
- // iterators, containing all elements with the passed key in the
- // `flat_hash_set`.
- using Base::equal_range;
- // flat_hash_set::find()
- //
- // Finds an element with the passed `key` within the `flat_hash_set`.
- using Base::find;
- // flat_hash_set::bucket_count()
- //
- // Returns the number of "buckets" within the `flat_hash_set`. Note that
- // because a flat hash set contains all elements within its internal storage,
- // this value simply equals the current capacity of the `flat_hash_set`.
- using Base::bucket_count;
- // flat_hash_set::load_factor()
- //
- // Returns the current load factor of the `flat_hash_set` (the average number
- // of slots occupied with a value within the hash set).
- using Base::load_factor;
- // flat_hash_set::max_load_factor()
- //
- // Manages the maximum load factor of the `flat_hash_set`. Overloads are
- // listed below.
- //
- // float flat_hash_set::max_load_factor()
- //
- // Returns the current maximum load factor of the `flat_hash_set`.
- //
- // void flat_hash_set::max_load_factor(float ml)
- //
- // Sets the maximum load factor of the `flat_hash_set` to the passed value.
- //
- // NOTE: This overload is provided only for API compatibility with the STL;
- // `flat_hash_set` will ignore any set load factor and manage its rehashing
- // internally as an implementation detail.
- using Base::max_load_factor;
- // flat_hash_set::get_allocator()
- //
- // Returns the allocator function associated with this `flat_hash_set`.
- using Base::get_allocator;
- // flat_hash_set::hash_function()
- //
- // Returns the hashing function used to hash the keys within this
- // `flat_hash_set`.
- using Base::hash_function;
- // flat_hash_set::key_eq()
- //
- // Returns the function used for comparing keys equality.
- using Base::key_eq;
- };
- // erase_if(flat_hash_set<>, Pred)
- //
- // Erases all elements that satisfy the predicate `pred` from the container `c`.
- // Returns the number of erased elements.
- template <typename T, typename H, typename E, typename A, typename Predicate>
- typename flat_hash_set<T, H, E, A>::size_type erase_if(
- flat_hash_set<T, H, E, A>& c, Predicate pred) {
- return container_internal::EraseIf(pred, &c);
- }
- namespace container_internal {
- // c_for_each_fast(flat_hash_set<>, Function)
- //
- // Container-based version of the <algorithm> `std::for_each()` function to
- // apply a function to a container's elements.
- // There is no guarantees on the order of the function calls.
- // Erasure and/or insertion of elements in the function is not allowed.
- template <typename T, typename H, typename E, typename A, typename Function>
- decay_t<Function> c_for_each_fast(const flat_hash_set<T, H, E, A>& c,
- Function&& f) {
- container_internal::ForEach(f, &c);
- return f;
- }
- template <typename T, typename H, typename E, typename A, typename Function>
- decay_t<Function> c_for_each_fast(flat_hash_set<T, H, E, A>& c, Function&& f) {
- container_internal::ForEach(f, &c);
- return f;
- }
- template <typename T, typename H, typename E, typename A, typename Function>
- decay_t<Function> c_for_each_fast(flat_hash_set<T, H, E, A>&& c, Function&& f) {
- container_internal::ForEach(f, &c);
- return f;
- }
- } // namespace container_internal
- namespace container_internal {
- template <class T>
- struct FlatHashSetPolicy {
- using slot_type = T;
- using key_type = T;
- using init_type = T;
- using constant_iterators = std::true_type;
- template <class Allocator, class... Args>
- static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
- absl::allocator_traits<Allocator>::construct(*alloc, slot,
- std::forward<Args>(args)...);
- }
- // Return std::true_type in case destroy is trivial.
- template <class Allocator>
- static auto destroy(Allocator* alloc, slot_type* slot) {
- absl::allocator_traits<Allocator>::destroy(*alloc, slot);
- return IsDestructionTrivial<Allocator, slot_type>();
- }
- static T& element(slot_type* slot) { return *slot; }
- template <class F, class... Args>
- static decltype(absl::container_internal::DecomposeValue(
- std::declval<F>(), std::declval<Args>()...))
- apply(F&& f, Args&&... args) {
- return absl::container_internal::DecomposeValue(
- std::forward<F>(f), std::forward<Args>(args)...);
- }
- static size_t space_used(const T*) { return 0; }
- template <class Hash>
- static constexpr HashSlotFn get_hash_slot_fn() {
- return &TypeErasedApplyToSlotFn<Hash, T>;
- }
- };
- } // namespace container_internal
- namespace container_algorithm_internal {
- // Specialization of trait in absl/algorithm/container.h
- template <class Key, class Hash, class KeyEqual, class Allocator>
- struct IsUnorderedContainer<absl::flat_hash_set<Key, Hash, KeyEqual, Allocator>>
- : std::true_type {};
- } // namespace container_algorithm_internal
- ABSL_NAMESPACE_END
- } // namespace absl
- #endif // ABSL_CONTAINER_FLAT_HASH_SET_H_
|