AArch64PostLegalizerCombiner.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449
  1. //=== AArch64PostLegalizerCombiner.cpp --------------------------*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. ///
  9. /// \file
  10. /// Post-legalization combines on generic MachineInstrs.
  11. ///
  12. /// The combines here must preserve instruction legality.
  13. ///
  14. /// Lowering combines (e.g. pseudo matching) should be handled by
  15. /// AArch64PostLegalizerLowering.
  16. ///
  17. /// Combines which don't rely on instruction legality should go in the
  18. /// AArch64PreLegalizerCombiner.
  19. ///
  20. //===----------------------------------------------------------------------===//
  21. #include "AArch64TargetMachine.h"
  22. #include "llvm/CodeGen/GlobalISel/Combiner.h"
  23. #include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
  24. #include "llvm/CodeGen/GlobalISel/CombinerInfo.h"
  25. #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
  26. #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
  27. #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
  28. #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
  29. #include "llvm/CodeGen/GlobalISel/Utils.h"
  30. #include "llvm/CodeGen/MachineDominators.h"
  31. #include "llvm/CodeGen/MachineFunctionPass.h"
  32. #include "llvm/CodeGen/MachineRegisterInfo.h"
  33. #include "llvm/CodeGen/TargetOpcodes.h"
  34. #include "llvm/CodeGen/TargetPassConfig.h"
  35. #include "llvm/Support/Debug.h"
  36. #define DEBUG_TYPE "aarch64-postlegalizer-combiner"
  37. using namespace llvm;
  38. using namespace MIPatternMatch;
  39. /// This combine tries do what performExtractVectorEltCombine does in SDAG.
  40. /// Rewrite for pairwise fadd pattern
  41. /// (s32 (g_extract_vector_elt
  42. /// (g_fadd (vXs32 Other)
  43. /// (g_vector_shuffle (vXs32 Other) undef <1,X,...> )) 0))
  44. /// ->
  45. /// (s32 (g_fadd (g_extract_vector_elt (vXs32 Other) 0)
  46. /// (g_extract_vector_elt (vXs32 Other) 1))
  47. bool matchExtractVecEltPairwiseAdd(
  48. MachineInstr &MI, MachineRegisterInfo &MRI,
  49. std::tuple<unsigned, LLT, Register> &MatchInfo) {
  50. Register Src1 = MI.getOperand(1).getReg();
  51. Register Src2 = MI.getOperand(2).getReg();
  52. LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
  53. auto Cst = getIConstantVRegValWithLookThrough(Src2, MRI);
  54. if (!Cst || Cst->Value != 0)
  55. return false;
  56. // SDAG also checks for FullFP16, but this looks to be beneficial anyway.
  57. // Now check for an fadd operation. TODO: expand this for integer add?
  58. auto *FAddMI = getOpcodeDef(TargetOpcode::G_FADD, Src1, MRI);
  59. if (!FAddMI)
  60. return false;
  61. // If we add support for integer add, must restrict these types to just s64.
  62. unsigned DstSize = DstTy.getSizeInBits();
  63. if (DstSize != 16 && DstSize != 32 && DstSize != 64)
  64. return false;
  65. Register Src1Op1 = FAddMI->getOperand(1).getReg();
  66. Register Src1Op2 = FAddMI->getOperand(2).getReg();
  67. MachineInstr *Shuffle =
  68. getOpcodeDef(TargetOpcode::G_SHUFFLE_VECTOR, Src1Op2, MRI);
  69. MachineInstr *Other = MRI.getVRegDef(Src1Op1);
  70. if (!Shuffle) {
  71. Shuffle = getOpcodeDef(TargetOpcode::G_SHUFFLE_VECTOR, Src1Op1, MRI);
  72. Other = MRI.getVRegDef(Src1Op2);
  73. }
  74. // We're looking for a shuffle that moves the second element to index 0.
  75. if (Shuffle && Shuffle->getOperand(3).getShuffleMask()[0] == 1 &&
  76. Other == MRI.getVRegDef(Shuffle->getOperand(1).getReg())) {
  77. std::get<0>(MatchInfo) = TargetOpcode::G_FADD;
  78. std::get<1>(MatchInfo) = DstTy;
  79. std::get<2>(MatchInfo) = Other->getOperand(0).getReg();
  80. return true;
  81. }
  82. return false;
  83. }
  84. bool applyExtractVecEltPairwiseAdd(
  85. MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B,
  86. std::tuple<unsigned, LLT, Register> &MatchInfo) {
  87. unsigned Opc = std::get<0>(MatchInfo);
  88. assert(Opc == TargetOpcode::G_FADD && "Unexpected opcode!");
  89. // We want to generate two extracts of elements 0 and 1, and add them.
  90. LLT Ty = std::get<1>(MatchInfo);
  91. Register Src = std::get<2>(MatchInfo);
  92. LLT s64 = LLT::scalar(64);
  93. B.setInstrAndDebugLoc(MI);
  94. auto Elt0 = B.buildExtractVectorElement(Ty, Src, B.buildConstant(s64, 0));
  95. auto Elt1 = B.buildExtractVectorElement(Ty, Src, B.buildConstant(s64, 1));
  96. B.buildInstr(Opc, {MI.getOperand(0).getReg()}, {Elt0, Elt1});
  97. MI.eraseFromParent();
  98. return true;
  99. }
  100. static bool isSignExtended(Register R, MachineRegisterInfo &MRI) {
  101. // TODO: check if extended build vector as well.
  102. unsigned Opc = MRI.getVRegDef(R)->getOpcode();
  103. return Opc == TargetOpcode::G_SEXT || Opc == TargetOpcode::G_SEXT_INREG;
  104. }
  105. static bool isZeroExtended(Register R, MachineRegisterInfo &MRI) {
  106. // TODO: check if extended build vector as well.
  107. return MRI.getVRegDef(R)->getOpcode() == TargetOpcode::G_ZEXT;
  108. }
  109. bool matchAArch64MulConstCombine(
  110. MachineInstr &MI, MachineRegisterInfo &MRI,
  111. std::function<void(MachineIRBuilder &B, Register DstReg)> &ApplyFn) {
  112. assert(MI.getOpcode() == TargetOpcode::G_MUL);
  113. Register LHS = MI.getOperand(1).getReg();
  114. Register RHS = MI.getOperand(2).getReg();
  115. Register Dst = MI.getOperand(0).getReg();
  116. const LLT Ty = MRI.getType(LHS);
  117. // The below optimizations require a constant RHS.
  118. auto Const = getIConstantVRegValWithLookThrough(RHS, MRI);
  119. if (!Const)
  120. return false;
  121. const APInt ConstValue = Const->Value.sextOrSelf(Ty.getSizeInBits());
  122. // The following code is ported from AArch64ISelLowering.
  123. // Multiplication of a power of two plus/minus one can be done more
  124. // cheaply as as shift+add/sub. For now, this is true unilaterally. If
  125. // future CPUs have a cheaper MADD instruction, this may need to be
  126. // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
  127. // 64-bit is 5 cycles, so this is always a win.
  128. // More aggressively, some multiplications N0 * C can be lowered to
  129. // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
  130. // e.g. 6=3*2=(2+1)*2.
  131. // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
  132. // which equals to (1+2)*16-(1+2).
  133. // TrailingZeroes is used to test if the mul can be lowered to
  134. // shift+add+shift.
  135. unsigned TrailingZeroes = ConstValue.countTrailingZeros();
  136. if (TrailingZeroes) {
  137. // Conservatively do not lower to shift+add+shift if the mul might be
  138. // folded into smul or umul.
  139. if (MRI.hasOneNonDBGUse(LHS) &&
  140. (isSignExtended(LHS, MRI) || isZeroExtended(LHS, MRI)))
  141. return false;
  142. // Conservatively do not lower to shift+add+shift if the mul might be
  143. // folded into madd or msub.
  144. if (MRI.hasOneNonDBGUse(Dst)) {
  145. MachineInstr &UseMI = *MRI.use_instr_begin(Dst);
  146. unsigned UseOpc = UseMI.getOpcode();
  147. if (UseOpc == TargetOpcode::G_ADD || UseOpc == TargetOpcode::G_PTR_ADD ||
  148. UseOpc == TargetOpcode::G_SUB)
  149. return false;
  150. }
  151. }
  152. // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
  153. // and shift+add+shift.
  154. APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes);
  155. unsigned ShiftAmt, AddSubOpc;
  156. // Is the shifted value the LHS operand of the add/sub?
  157. bool ShiftValUseIsLHS = true;
  158. // Do we need to negate the result?
  159. bool NegateResult = false;
  160. if (ConstValue.isNonNegative()) {
  161. // (mul x, 2^N + 1) => (add (shl x, N), x)
  162. // (mul x, 2^N - 1) => (sub (shl x, N), x)
  163. // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
  164. APInt SCVMinus1 = ShiftedConstValue - 1;
  165. APInt CVPlus1 = ConstValue + 1;
  166. if (SCVMinus1.isPowerOf2()) {
  167. ShiftAmt = SCVMinus1.logBase2();
  168. AddSubOpc = TargetOpcode::G_ADD;
  169. } else if (CVPlus1.isPowerOf2()) {
  170. ShiftAmt = CVPlus1.logBase2();
  171. AddSubOpc = TargetOpcode::G_SUB;
  172. } else
  173. return false;
  174. } else {
  175. // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
  176. // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
  177. APInt CVNegPlus1 = -ConstValue + 1;
  178. APInt CVNegMinus1 = -ConstValue - 1;
  179. if (CVNegPlus1.isPowerOf2()) {
  180. ShiftAmt = CVNegPlus1.logBase2();
  181. AddSubOpc = TargetOpcode::G_SUB;
  182. ShiftValUseIsLHS = false;
  183. } else if (CVNegMinus1.isPowerOf2()) {
  184. ShiftAmt = CVNegMinus1.logBase2();
  185. AddSubOpc = TargetOpcode::G_ADD;
  186. NegateResult = true;
  187. } else
  188. return false;
  189. }
  190. if (NegateResult && TrailingZeroes)
  191. return false;
  192. ApplyFn = [=](MachineIRBuilder &B, Register DstReg) {
  193. auto Shift = B.buildConstant(LLT::scalar(64), ShiftAmt);
  194. auto ShiftedVal = B.buildShl(Ty, LHS, Shift);
  195. Register AddSubLHS = ShiftValUseIsLHS ? ShiftedVal.getReg(0) : LHS;
  196. Register AddSubRHS = ShiftValUseIsLHS ? LHS : ShiftedVal.getReg(0);
  197. auto Res = B.buildInstr(AddSubOpc, {Ty}, {AddSubLHS, AddSubRHS});
  198. assert(!(NegateResult && TrailingZeroes) &&
  199. "NegateResult and TrailingZeroes cannot both be true for now.");
  200. // Negate the result.
  201. if (NegateResult) {
  202. B.buildSub(DstReg, B.buildConstant(Ty, 0), Res);
  203. return;
  204. }
  205. // Shift the result.
  206. if (TrailingZeroes) {
  207. B.buildShl(DstReg, Res, B.buildConstant(LLT::scalar(64), TrailingZeroes));
  208. return;
  209. }
  210. B.buildCopy(DstReg, Res.getReg(0));
  211. };
  212. return true;
  213. }
  214. bool applyAArch64MulConstCombine(
  215. MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B,
  216. std::function<void(MachineIRBuilder &B, Register DstReg)> &ApplyFn) {
  217. B.setInstrAndDebugLoc(MI);
  218. ApplyFn(B, MI.getOperand(0).getReg());
  219. MI.eraseFromParent();
  220. return true;
  221. }
  222. /// Try to fold a G_MERGE_VALUES of 2 s32 sources, where the second source
  223. /// is a zero, into a G_ZEXT of the first.
  224. bool matchFoldMergeToZext(MachineInstr &MI, MachineRegisterInfo &MRI) {
  225. auto &Merge = cast<GMerge>(MI);
  226. LLT SrcTy = MRI.getType(Merge.getSourceReg(0));
  227. if (SrcTy != LLT::scalar(32) || Merge.getNumSources() != 2)
  228. return false;
  229. return mi_match(Merge.getSourceReg(1), MRI, m_SpecificICst(0));
  230. }
  231. void applyFoldMergeToZext(MachineInstr &MI, MachineRegisterInfo &MRI,
  232. MachineIRBuilder &B, GISelChangeObserver &Observer) {
  233. // Mutate %d(s64) = G_MERGE_VALUES %a(s32), 0(s32)
  234. // ->
  235. // %d(s64) = G_ZEXT %a(s32)
  236. Observer.changingInstr(MI);
  237. MI.setDesc(B.getTII().get(TargetOpcode::G_ZEXT));
  238. MI.RemoveOperand(2);
  239. Observer.changedInstr(MI);
  240. }
  241. /// \returns True if a G_ANYEXT instruction \p MI should be mutated to a G_ZEXT
  242. /// instruction.
  243. static bool matchMutateAnyExtToZExt(MachineInstr &MI, MachineRegisterInfo &MRI) {
  244. // If this is coming from a scalar compare then we can use a G_ZEXT instead of
  245. // a G_ANYEXT:
  246. //
  247. // %cmp:_(s32) = G_[I|F]CMP ... <-- produces 0/1.
  248. // %ext:_(s64) = G_ANYEXT %cmp(s32)
  249. //
  250. // By doing this, we can leverage more KnownBits combines.
  251. assert(MI.getOpcode() == TargetOpcode::G_ANYEXT);
  252. Register Dst = MI.getOperand(0).getReg();
  253. Register Src = MI.getOperand(1).getReg();
  254. return MRI.getType(Dst).isScalar() &&
  255. mi_match(Src, MRI,
  256. m_any_of(m_GICmp(m_Pred(), m_Reg(), m_Reg()),
  257. m_GFCmp(m_Pred(), m_Reg(), m_Reg())));
  258. }
  259. static void applyMutateAnyExtToZExt(MachineInstr &MI, MachineRegisterInfo &MRI,
  260. MachineIRBuilder &B,
  261. GISelChangeObserver &Observer) {
  262. Observer.changingInstr(MI);
  263. MI.setDesc(B.getTII().get(TargetOpcode::G_ZEXT));
  264. Observer.changedInstr(MI);
  265. }
  266. /// Match a 128b store of zero and split it into two 64 bit stores, for
  267. /// size/performance reasons.
  268. static bool matchSplitStoreZero128(MachineInstr &MI, MachineRegisterInfo &MRI) {
  269. GStore &Store = cast<GStore>(MI);
  270. if (!Store.isSimple())
  271. return false;
  272. LLT ValTy = MRI.getType(Store.getValueReg());
  273. if (!ValTy.isVector() || ValTy.getSizeInBits() != 128)
  274. return false;
  275. if (ValTy.getSizeInBits() != Store.getMemSizeInBits())
  276. return false; // Don't split truncating stores.
  277. if (!MRI.hasOneNonDBGUse(Store.getValueReg()))
  278. return false;
  279. auto MaybeCst = isConstantOrConstantSplatVector(
  280. *MRI.getVRegDef(Store.getValueReg()), MRI);
  281. return MaybeCst && MaybeCst->isZero();
  282. }
  283. static void applySplitStoreZero128(MachineInstr &MI, MachineRegisterInfo &MRI,
  284. MachineIRBuilder &B,
  285. GISelChangeObserver &Observer) {
  286. B.setInstrAndDebugLoc(MI);
  287. GStore &Store = cast<GStore>(MI);
  288. assert(MRI.getType(Store.getValueReg()).isVector() &&
  289. "Expected a vector store value");
  290. LLT NewTy = LLT::scalar(64);
  291. Register PtrReg = Store.getPointerReg();
  292. auto Zero = B.buildConstant(NewTy, 0);
  293. auto HighPtr = B.buildPtrAdd(MRI.getType(PtrReg), PtrReg,
  294. B.buildConstant(LLT::scalar(64), 8));
  295. auto &MF = *MI.getMF();
  296. auto *LowMMO = MF.getMachineMemOperand(&Store.getMMO(), 0, NewTy);
  297. auto *HighMMO = MF.getMachineMemOperand(&Store.getMMO(), 8, NewTy);
  298. B.buildStore(Zero, PtrReg, *LowMMO);
  299. B.buildStore(Zero, HighPtr, *HighMMO);
  300. Store.eraseFromParent();
  301. }
  302. #define AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS
  303. #include "AArch64GenPostLegalizeGICombiner.inc"
  304. #undef AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS
  305. namespace {
  306. #define AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H
  307. #include "AArch64GenPostLegalizeGICombiner.inc"
  308. #undef AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H
  309. class AArch64PostLegalizerCombinerInfo : public CombinerInfo {
  310. GISelKnownBits *KB;
  311. MachineDominatorTree *MDT;
  312. public:
  313. AArch64GenPostLegalizerCombinerHelperRuleConfig GeneratedRuleCfg;
  314. AArch64PostLegalizerCombinerInfo(bool EnableOpt, bool OptSize, bool MinSize,
  315. GISelKnownBits *KB,
  316. MachineDominatorTree *MDT)
  317. : CombinerInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false,
  318. /*LegalizerInfo*/ nullptr, EnableOpt, OptSize, MinSize),
  319. KB(KB), MDT(MDT) {
  320. if (!GeneratedRuleCfg.parseCommandLineOption())
  321. report_fatal_error("Invalid rule identifier");
  322. }
  323. virtual bool combine(GISelChangeObserver &Observer, MachineInstr &MI,
  324. MachineIRBuilder &B) const override;
  325. };
  326. bool AArch64PostLegalizerCombinerInfo::combine(GISelChangeObserver &Observer,
  327. MachineInstr &MI,
  328. MachineIRBuilder &B) const {
  329. const auto *LI =
  330. MI.getParent()->getParent()->getSubtarget().getLegalizerInfo();
  331. CombinerHelper Helper(Observer, B, KB, MDT, LI);
  332. AArch64GenPostLegalizerCombinerHelper Generated(GeneratedRuleCfg);
  333. return Generated.tryCombineAll(Observer, MI, B, Helper);
  334. }
  335. #define AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP
  336. #include "AArch64GenPostLegalizeGICombiner.inc"
  337. #undef AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP
  338. class AArch64PostLegalizerCombiner : public MachineFunctionPass {
  339. public:
  340. static char ID;
  341. AArch64PostLegalizerCombiner(bool IsOptNone = false);
  342. StringRef getPassName() const override {
  343. return "AArch64PostLegalizerCombiner";
  344. }
  345. bool runOnMachineFunction(MachineFunction &MF) override;
  346. void getAnalysisUsage(AnalysisUsage &AU) const override;
  347. private:
  348. bool IsOptNone;
  349. };
  350. } // end anonymous namespace
  351. void AArch64PostLegalizerCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
  352. AU.addRequired<TargetPassConfig>();
  353. AU.setPreservesCFG();
  354. getSelectionDAGFallbackAnalysisUsage(AU);
  355. AU.addRequired<GISelKnownBitsAnalysis>();
  356. AU.addPreserved<GISelKnownBitsAnalysis>();
  357. if (!IsOptNone) {
  358. AU.addRequired<MachineDominatorTree>();
  359. AU.addPreserved<MachineDominatorTree>();
  360. AU.addRequired<GISelCSEAnalysisWrapperPass>();
  361. AU.addPreserved<GISelCSEAnalysisWrapperPass>();
  362. }
  363. MachineFunctionPass::getAnalysisUsage(AU);
  364. }
  365. AArch64PostLegalizerCombiner::AArch64PostLegalizerCombiner(bool IsOptNone)
  366. : MachineFunctionPass(ID), IsOptNone(IsOptNone) {
  367. initializeAArch64PostLegalizerCombinerPass(*PassRegistry::getPassRegistry());
  368. }
  369. bool AArch64PostLegalizerCombiner::runOnMachineFunction(MachineFunction &MF) {
  370. if (MF.getProperties().hasProperty(
  371. MachineFunctionProperties::Property::FailedISel))
  372. return false;
  373. assert(MF.getProperties().hasProperty(
  374. MachineFunctionProperties::Property::Legalized) &&
  375. "Expected a legalized function?");
  376. auto *TPC = &getAnalysis<TargetPassConfig>();
  377. const Function &F = MF.getFunction();
  378. bool EnableOpt =
  379. MF.getTarget().getOptLevel() != CodeGenOpt::None && !skipFunction(F);
  380. GISelKnownBits *KB = &getAnalysis<GISelKnownBitsAnalysis>().get(MF);
  381. MachineDominatorTree *MDT =
  382. IsOptNone ? nullptr : &getAnalysis<MachineDominatorTree>();
  383. AArch64PostLegalizerCombinerInfo PCInfo(EnableOpt, F.hasOptSize(),
  384. F.hasMinSize(), KB, MDT);
  385. GISelCSEAnalysisWrapper &Wrapper =
  386. getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
  387. auto *CSEInfo = &Wrapper.get(TPC->getCSEConfig());
  388. Combiner C(PCInfo, TPC);
  389. return C.combineMachineInstrs(MF, CSEInfo);
  390. }
  391. char AArch64PostLegalizerCombiner::ID = 0;
  392. INITIALIZE_PASS_BEGIN(AArch64PostLegalizerCombiner, DEBUG_TYPE,
  393. "Combine AArch64 MachineInstrs after legalization", false,
  394. false)
  395. INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
  396. INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis)
  397. INITIALIZE_PASS_END(AArch64PostLegalizerCombiner, DEBUG_TYPE,
  398. "Combine AArch64 MachineInstrs after legalization", false,
  399. false)
  400. namespace llvm {
  401. FunctionPass *createAArch64PostLegalizerCombiner(bool IsOptNone) {
  402. return new AArch64PostLegalizerCombiner(IsOptNone);
  403. }
  404. } // end namespace llvm