123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455 |
- //===--- OptimizedStructLayout.cpp - Optimal data layout algorithm ----------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the performOptimizedStructLayout interface.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Support/OptimizedStructLayout.h"
- using namespace llvm;
- using Field = OptimizedStructLayoutField;
- #ifndef NDEBUG
- static void checkValidLayout(ArrayRef<Field> Fields, uint64_t Size,
- Align MaxAlign) {
- uint64_t LastEnd = 0;
- Align ComputedMaxAlign;
- for (auto &Field : Fields) {
- assert(Field.hasFixedOffset() &&
- "didn't assign a fixed offset to field");
- assert(isAligned(Field.Alignment, Field.Offset) &&
- "didn't assign a correctly-aligned offset to field");
- assert(Field.Offset >= LastEnd &&
- "didn't assign offsets in ascending order");
- LastEnd = Field.getEndOffset();
- assert(Field.Alignment <= MaxAlign &&
- "didn't compute MaxAlign correctly");
- ComputedMaxAlign = std::max(Field.Alignment, MaxAlign);
- }
- assert(LastEnd == Size && "didn't compute LastEnd correctly");
- assert(ComputedMaxAlign == MaxAlign && "didn't compute MaxAlign correctly");
- }
- #endif
- std::pair<uint64_t, Align>
- llvm::performOptimizedStructLayout(MutableArrayRef<Field> Fields) {
- #ifndef NDEBUG
- // Do some simple precondition checks.
- {
- bool InFixedPrefix = true;
- size_t LastEnd = 0;
- for (auto &Field : Fields) {
- assert(Field.Size > 0 && "field of zero size");
- if (Field.hasFixedOffset()) {
- assert(InFixedPrefix &&
- "fixed-offset fields are not a strict prefix of array");
- assert(LastEnd <= Field.Offset &&
- "fixed-offset fields overlap or are not in order");
- LastEnd = Field.getEndOffset();
- assert(LastEnd > Field.Offset &&
- "overflow in fixed-offset end offset");
- } else {
- InFixedPrefix = false;
- }
- }
- }
- #endif
- // Do an initial pass over the fields.
- Align MaxAlign;
- // Find the first flexible-offset field, tracking MaxAlign.
- auto FirstFlexible = Fields.begin(), E = Fields.end();
- while (FirstFlexible != E && FirstFlexible->hasFixedOffset()) {
- MaxAlign = std::max(MaxAlign, FirstFlexible->Alignment);
- ++FirstFlexible;
- }
- // If there are no flexible fields, we're done.
- if (FirstFlexible == E) {
- uint64_t Size = 0;
- if (!Fields.empty())
- Size = Fields.back().getEndOffset();
- #ifndef NDEBUG
- checkValidLayout(Fields, Size, MaxAlign);
- #endif
- return std::make_pair(Size, MaxAlign);
- }
- // Walk over the flexible-offset fields, tracking MaxAlign and
- // assigning them a unique number in order of their appearance.
- // We'll use this unique number in the comparison below so that
- // we can use array_pod_sort, which isn't stable. We won't use it
- // past that point.
- {
- uintptr_t UniqueNumber = 0;
- for (auto I = FirstFlexible; I != E; ++I) {
- I->Scratch = reinterpret_cast<void*>(UniqueNumber++);
- MaxAlign = std::max(MaxAlign, I->Alignment);
- }
- }
- // Sort the flexible elements in order of decreasing alignment,
- // then decreasing size, and then the original order as recorded
- // in Scratch. The decreasing-size aspect of this is only really
- // important if we get into the gap-filling stage below, but it
- // doesn't hurt here.
- array_pod_sort(FirstFlexible, E,
- [](const Field *lhs, const Field *rhs) -> int {
- // Decreasing alignment.
- if (lhs->Alignment != rhs->Alignment)
- return (lhs->Alignment < rhs->Alignment ? 1 : -1);
- // Decreasing size.
- if (lhs->Size != rhs->Size)
- return (lhs->Size < rhs->Size ? 1 : -1);
- // Original order.
- auto lhsNumber = reinterpret_cast<uintptr_t>(lhs->Scratch);
- auto rhsNumber = reinterpret_cast<uintptr_t>(rhs->Scratch);
- if (lhsNumber != rhsNumber)
- return (lhsNumber < rhsNumber ? -1 : 1);
- return 0;
- });
- // Do a quick check for whether that sort alone has given us a perfect
- // layout with no interior padding. This is very common: if the
- // fixed-layout fields have no interior padding, and they end at a
- // sufficiently-aligned offset for all the flexible-layout fields,
- // and the flexible-layout fields all have sizes that are multiples
- // of their alignment, then this will reliably trigger.
- {
- bool HasPadding = false;
- uint64_t LastEnd = 0;
- // Walk the fixed-offset fields.
- for (auto I = Fields.begin(); I != FirstFlexible; ++I) {
- assert(I->hasFixedOffset());
- if (LastEnd != I->Offset) {
- HasPadding = true;
- break;
- }
- LastEnd = I->getEndOffset();
- }
- // Walk the flexible-offset fields, optimistically assigning fixed
- // offsets. Note that we maintain a strict division between the
- // fixed-offset and flexible-offset fields, so if we end up
- // discovering padding later in this loop, we can just abandon this
- // work and we'll ignore the offsets we already assigned.
- if (!HasPadding) {
- for (auto I = FirstFlexible; I != E; ++I) {
- auto Offset = alignTo(LastEnd, I->Alignment);
- if (LastEnd != Offset) {
- HasPadding = true;
- break;
- }
- I->Offset = Offset;
- LastEnd = I->getEndOffset();
- }
- }
- // If we already have a perfect layout, we're done.
- if (!HasPadding) {
- #ifndef NDEBUG
- checkValidLayout(Fields, LastEnd, MaxAlign);
- #endif
- return std::make_pair(LastEnd, MaxAlign);
- }
- }
- // The algorithm sketch at this point is as follows.
- //
- // Consider the padding gaps between fixed-offset fields in ascending
- // order. Let LastEnd be the offset of the first byte following the
- // field before the gap, or 0 if the gap is at the beginning of the
- // structure. Find the "best" flexible-offset field according to the
- // criteria below. If no such field exists, proceed to the next gap.
- // Otherwise, add the field at the first properly-aligned offset for
- // that field that is >= LastEnd, then update LastEnd and repeat in
- // order to fill any remaining gap following that field.
- //
- // Next, let LastEnd to be the offset of the first byte following the
- // last fixed-offset field, or 0 if there are no fixed-offset fields.
- // While there are flexible-offset fields remaining, find the "best"
- // flexible-offset field according to the criteria below, add it at
- // the first properly-aligned offset for that field that is >= LastEnd,
- // and update LastEnd to the first byte following the field.
- //
- // The "best" field is chosen by the following criteria, considered
- // strictly in order:
- //
- // - When filling a gap betweeen fields, the field must fit.
- // - A field is preferred if it requires less padding following LastEnd.
- // - A field is preferred if it is more aligned.
- // - A field is preferred if it is larger.
- // - A field is preferred if it appeared earlier in the initial order.
- //
- // Minimizing leading padding is a greedy attempt to avoid padding
- // entirely. Preferring more-aligned fields is an attempt to eliminate
- // stricter constraints earlier, with the idea that weaker alignment
- // constraints may be resolvable with less padding elsewhere. These
- // These two rules are sufficient to ensure that we get the optimal
- // layout in the "C-style" case. Preferring larger fields tends to take
- // better advantage of large gaps and may be more likely to have a size
- // that's a multiple of a useful alignment. Preferring the initial
- // order may help somewhat with locality but is mostly just a way of
- // ensuring deterministic output.
- //
- // Note that this algorithm does not guarantee a minimal layout. Picking
- // a larger object greedily may leave a gap that cannot be filled as
- // efficiently. Unfortunately, solving this perfectly is an NP-complete
- // problem (by reduction from bin-packing: let B_i be the bin sizes and
- // O_j be the object sizes; add fixed-offset fields such that the gaps
- // between them have size B_i, and add flexible-offset fields with
- // alignment 1 and size O_j; if the layout size is equal to the end of
- // the last fixed-layout field, the objects fit in the bins; note that
- // this doesn't even require the complexity of alignment).
- // The implementation below is essentially just an optimized version of
- // scanning the list of remaining fields looking for the best, which
- // would be O(n^2). In the worst case, it doesn't improve on that.
- // However, in practice it'll just scan the array of alignment bins
- // and consider the first few elements from one or two bins. The
- // number of bins is bounded by a small constant: alignments are powers
- // of two that are vanishingly unlikely to be over 64 and fairly unlikely
- // to be over 8. And multiple elements only need to be considered when
- // filling a gap between fixed-offset fields, which doesn't happen very
- // often. We could use a data structure within bins that optimizes for
- // finding the best-sized match, but it would require allocating memory
- // and copying data, so it's unlikely to be worthwhile.
- // Start by organizing the flexible-offset fields into bins according to
- // their alignment. We expect a small enough number of bins that we
- // don't care about the asymptotic costs of walking this.
- struct AlignmentQueue {
- /// The minimum size of anything currently in this queue.
- uint64_t MinSize;
- /// The head of the queue. A singly-linked list. The order here should
- /// be consistent with the earlier sort, i.e. the elements should be
- /// monotonically descending in size and otherwise in the original order.
- ///
- /// We remove the queue from the array as soon as this is empty.
- OptimizedStructLayoutField *Head;
- /// The alignment requirement of the queue.
- Align Alignment;
- static Field *getNext(Field *Cur) {
- return static_cast<Field *>(Cur->Scratch);
- }
- };
- SmallVector<AlignmentQueue, 8> FlexibleFieldsByAlignment;
- for (auto I = FirstFlexible; I != E; ) {
- auto Head = I;
- auto Alignment = I->Alignment;
- uint64_t MinSize = I->Size;
- auto LastInQueue = I;
- for (++I; I != E && I->Alignment == Alignment; ++I) {
- LastInQueue->Scratch = I;
- LastInQueue = I;
- MinSize = std::min(MinSize, I->Size);
- }
- LastInQueue->Scratch = nullptr;
- FlexibleFieldsByAlignment.push_back({MinSize, Head, Alignment});
- }
- #ifndef NDEBUG
- // Verify that we set the queues up correctly.
- auto checkQueues = [&]{
- bool FirstQueue = true;
- Align LastQueueAlignment;
- for (auto &Queue : FlexibleFieldsByAlignment) {
- assert((FirstQueue || Queue.Alignment < LastQueueAlignment) &&
- "bins not in order of descending alignment");
- LastQueueAlignment = Queue.Alignment;
- FirstQueue = false;
- assert(Queue.Head && "queue was empty");
- uint64_t LastSize = ~(uint64_t)0;
- for (auto I = Queue.Head; I; I = Queue.getNext(I)) {
- assert(I->Alignment == Queue.Alignment && "bad field in queue");
- assert(I->Size <= LastSize && "queue not in descending size order");
- LastSize = I->Size;
- }
- }
- };
- checkQueues();
- #endif
- /// Helper function to remove a field from a queue.
- auto spliceFromQueue = [&](AlignmentQueue *Queue, Field *Last, Field *Cur) {
- assert(Last ? Queue->getNext(Last) == Cur : Queue->Head == Cur);
- // If we're removing Cur from a non-initial position, splice it out
- // of the linked list.
- if (Last) {
- Last->Scratch = Cur->Scratch;
- // If Cur was the last field in the list, we need to update MinSize.
- // We can just use the last field's size because the list is in
- // descending order of size.
- if (!Cur->Scratch)
- Queue->MinSize = Last->Size;
- // Otherwise, replace the head.
- } else {
- if (auto NewHead = Queue->getNext(Cur))
- Queue->Head = NewHead;
- // If we just emptied the queue, destroy its bin.
- else
- FlexibleFieldsByAlignment.erase(Queue);
- }
- };
- // Do layout into a local array. Doing this in-place on Fields is
- // not really feasible.
- SmallVector<Field, 16> Layout;
- Layout.reserve(Fields.size());
- // The offset that we're currently looking to insert at (or after).
- uint64_t LastEnd = 0;
- // Helper function to splice Cur out of the given queue and add it
- // to the layout at the given offset.
- auto addToLayout = [&](AlignmentQueue *Queue, Field *Last, Field *Cur,
- uint64_t Offset) -> bool {
- assert(Offset == alignTo(LastEnd, Cur->Alignment));
- // Splice out. This potentially invalidates Queue.
- spliceFromQueue(Queue, Last, Cur);
- // Add Cur to the layout.
- Layout.push_back(*Cur);
- Layout.back().Offset = Offset;
- LastEnd = Layout.back().getEndOffset();
- // Always return true so that we can be tail-called.
- return true;
- };
- // Helper function to try to find a field in the given queue that'll
- // fit starting at StartOffset but before EndOffset (if present).
- // Note that this never fails if EndOffset is not provided.
- auto tryAddFillerFromQueue = [&](AlignmentQueue *Queue,
- uint64_t StartOffset,
- Optional<uint64_t> EndOffset) -> bool {
- assert(Queue->Head);
- assert(StartOffset == alignTo(LastEnd, Queue->Alignment));
- assert(!EndOffset || StartOffset < *EndOffset);
- // Figure out the maximum size that a field can be, and ignore this
- // queue if there's nothing in it that small.
- auto MaxViableSize =
- (EndOffset ? *EndOffset - StartOffset : ~(uint64_t)0);
- if (Queue->MinSize > MaxViableSize) return false;
- // Find the matching field. Note that this should always find
- // something because of the MinSize check above.
- for (Field *Cur = Queue->Head, *Last = nullptr; true;
- Last = Cur, Cur = Queue->getNext(Cur)) {
- assert(Cur && "didn't find a match in queue despite its MinSize");
- if (Cur->Size <= MaxViableSize)
- return addToLayout(Queue, Last, Cur, StartOffset);
- }
- llvm_unreachable("didn't find a match in queue despite its MinSize");
- };
- // Helper function to find the "best" flexible-offset field according
- // to the criteria described above.
- auto tryAddBestField = [&](Optional<uint64_t> BeforeOffset) -> bool {
- assert(!BeforeOffset || LastEnd < *BeforeOffset);
- auto QueueB = FlexibleFieldsByAlignment.begin();
- auto QueueE = FlexibleFieldsByAlignment.end();
- // Start by looking for the most-aligned queue that doesn't need any
- // leading padding after LastEnd.
- auto FirstQueueToSearch = QueueB;
- for (; FirstQueueToSearch != QueueE; ++FirstQueueToSearch) {
- if (isAligned(FirstQueueToSearch->Alignment, LastEnd))
- break;
- }
- uint64_t Offset = LastEnd;
- while (true) {
- // Invariant: all of the queues in [FirstQueueToSearch, QueueE)
- // require the same initial padding offset.
- // Search those queues in descending order of alignment for a
- // satisfactory field.
- for (auto Queue = FirstQueueToSearch; Queue != QueueE; ++Queue) {
- if (tryAddFillerFromQueue(Queue, Offset, BeforeOffset))
- return true;
- }
- // Okay, we don't need to scan those again.
- QueueE = FirstQueueToSearch;
- // If we started from the first queue, we're done.
- if (FirstQueueToSearch == QueueB)
- return false;
- // Otherwise, scan backwards to find the most-aligned queue that
- // still has minimal leading padding after LastEnd. If that
- // minimal padding is already at or past the end point, we're done.
- --FirstQueueToSearch;
- Offset = alignTo(LastEnd, FirstQueueToSearch->Alignment);
- if (BeforeOffset && Offset >= *BeforeOffset)
- return false;
- while (FirstQueueToSearch != QueueB &&
- Offset == alignTo(LastEnd, FirstQueueToSearch[-1].Alignment))
- --FirstQueueToSearch;
- }
- };
- // Phase 1: fill the gaps between fixed-offset fields with the best
- // flexible-offset field that fits.
- for (auto I = Fields.begin(); I != FirstFlexible; ++I) {
- assert(LastEnd <= I->Offset);
- while (LastEnd != I->Offset) {
- if (!tryAddBestField(I->Offset))
- break;
- }
- Layout.push_back(*I);
- LastEnd = I->getEndOffset();
- }
- #ifndef NDEBUG
- checkQueues();
- #endif
- // Phase 2: repeatedly add the best flexible-offset field until
- // they're all gone.
- while (!FlexibleFieldsByAlignment.empty()) {
- bool Success = tryAddBestField(None);
- assert(Success && "didn't find a field with no fixed limit?");
- (void) Success;
- }
- // Copy the layout back into place.
- assert(Layout.size() == Fields.size());
- memcpy(Fields.data(), Layout.data(),
- Fields.size() * sizeof(OptimizedStructLayoutField));
- #ifndef NDEBUG
- // Make a final check that the layout is valid.
- checkValidLayout(Fields, LastEnd, MaxAlign);
- #endif
- return std::make_pair(LastEnd, MaxAlign);
- }
|