mem.h 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422
  1. /*
  2. * Copyright (c) Meta Platforms, Inc. and affiliates.
  3. * All rights reserved.
  4. *
  5. * This source code is licensed under both the BSD-style license (found in the
  6. * LICENSE file in the root directory of this source tree) and the GPLv2 (found
  7. * in the COPYING file in the root directory of this source tree).
  8. * You may select, at your option, one of the above-listed licenses.
  9. */
  10. #ifndef MEM_H_MODULE
  11. #define MEM_H_MODULE
  12. /*-****************************************
  13. * Dependencies
  14. ******************************************/
  15. #include <stddef.h> /* size_t, ptrdiff_t */
  16. #include "compiler.h" /* __has_builtin */
  17. #include "debug.h" /* DEBUG_STATIC_ASSERT */
  18. #include "zstd_deps.h" /* ZSTD_memcpy */
  19. /*-****************************************
  20. * Compiler specifics
  21. ******************************************/
  22. #if defined(_MSC_VER) /* Visual Studio */
  23. # include <stdlib.h> /* _byteswap_ulong */
  24. # include <intrin.h> /* _byteswap_* */
  25. #elif defined(__ICCARM__)
  26. # include <intrinsics.h>
  27. #endif
  28. /*-**************************************************************
  29. * Basic Types
  30. *****************************************************************/
  31. #if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
  32. # if defined(_AIX)
  33. # include <inttypes.h>
  34. # else
  35. # include <stdint.h> /* intptr_t */
  36. # endif
  37. typedef uint8_t BYTE;
  38. typedef uint8_t U8;
  39. typedef int8_t S8;
  40. typedef uint16_t U16;
  41. typedef int16_t S16;
  42. typedef uint32_t U32;
  43. typedef int32_t S32;
  44. typedef uint64_t U64;
  45. typedef int64_t S64;
  46. #else
  47. # include <limits.h>
  48. #if CHAR_BIT != 8
  49. # error "this implementation requires char to be exactly 8-bit type"
  50. #endif
  51. typedef unsigned char BYTE;
  52. typedef unsigned char U8;
  53. typedef signed char S8;
  54. #if USHRT_MAX != 65535
  55. # error "this implementation requires short to be exactly 16-bit type"
  56. #endif
  57. typedef unsigned short U16;
  58. typedef signed short S16;
  59. #if UINT_MAX != 4294967295
  60. # error "this implementation requires int to be exactly 32-bit type"
  61. #endif
  62. typedef unsigned int U32;
  63. typedef signed int S32;
  64. /* note : there are no limits defined for long long type in C90.
  65. * limits exist in C99, however, in such case, <stdint.h> is preferred */
  66. typedef unsigned long long U64;
  67. typedef signed long long S64;
  68. #endif
  69. /*-**************************************************************
  70. * Memory I/O API
  71. *****************************************************************/
  72. /*=== Static platform detection ===*/
  73. MEM_STATIC unsigned MEM_32bits(void);
  74. MEM_STATIC unsigned MEM_64bits(void);
  75. MEM_STATIC unsigned MEM_isLittleEndian(void);
  76. /*=== Native unaligned read/write ===*/
  77. MEM_STATIC U16 MEM_read16(const void* memPtr);
  78. MEM_STATIC U32 MEM_read32(const void* memPtr);
  79. MEM_STATIC U64 MEM_read64(const void* memPtr);
  80. MEM_STATIC size_t MEM_readST(const void* memPtr);
  81. MEM_STATIC void MEM_write16(void* memPtr, U16 value);
  82. MEM_STATIC void MEM_write32(void* memPtr, U32 value);
  83. MEM_STATIC void MEM_write64(void* memPtr, U64 value);
  84. /*=== Little endian unaligned read/write ===*/
  85. MEM_STATIC U16 MEM_readLE16(const void* memPtr);
  86. MEM_STATIC U32 MEM_readLE24(const void* memPtr);
  87. MEM_STATIC U32 MEM_readLE32(const void* memPtr);
  88. MEM_STATIC U64 MEM_readLE64(const void* memPtr);
  89. MEM_STATIC size_t MEM_readLEST(const void* memPtr);
  90. MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val);
  91. MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val);
  92. MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32);
  93. MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64);
  94. MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val);
  95. /*=== Big endian unaligned read/write ===*/
  96. MEM_STATIC U32 MEM_readBE32(const void* memPtr);
  97. MEM_STATIC U64 MEM_readBE64(const void* memPtr);
  98. MEM_STATIC size_t MEM_readBEST(const void* memPtr);
  99. MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32);
  100. MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64);
  101. MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val);
  102. /*=== Byteswap ===*/
  103. MEM_STATIC U32 MEM_swap32(U32 in);
  104. MEM_STATIC U64 MEM_swap64(U64 in);
  105. MEM_STATIC size_t MEM_swapST(size_t in);
  106. /*-**************************************************************
  107. * Memory I/O Implementation
  108. *****************************************************************/
  109. /* MEM_FORCE_MEMORY_ACCESS : For accessing unaligned memory:
  110. * Method 0 : always use `memcpy()`. Safe and portable.
  111. * Method 1 : Use compiler extension to set unaligned access.
  112. * Method 2 : direct access. This method is portable but violate C standard.
  113. * It can generate buggy code on targets depending on alignment.
  114. * Default : method 1 if supported, else method 0
  115. */
  116. #ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
  117. # ifdef __GNUC__
  118. # define MEM_FORCE_MEMORY_ACCESS 1
  119. # endif
  120. #endif
  121. MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; }
  122. MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; }
  123. MEM_STATIC unsigned MEM_isLittleEndian(void)
  124. {
  125. #if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
  126. return 1;
  127. #elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
  128. return 0;
  129. #elif defined(__clang__) && __LITTLE_ENDIAN__
  130. return 1;
  131. #elif defined(__clang__) && __BIG_ENDIAN__
  132. return 0;
  133. #elif defined(_MSC_VER) && (_M_X64 || _M_IX86)
  134. return 1;
  135. #elif defined(__DMC__) && defined(_M_IX86)
  136. return 1;
  137. #elif defined(__IAR_SYSTEMS_ICC__) && __LITTLE_ENDIAN__
  138. return 1;
  139. #else
  140. const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
  141. return one.c[0];
  142. #endif
  143. }
  144. #if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
  145. /* violates C standard, by lying on structure alignment.
  146. Only use if no other choice to achieve best performance on target platform */
  147. MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
  148. MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
  149. MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
  150. MEM_STATIC size_t MEM_readST(const void* memPtr) { return *(const size_t*) memPtr; }
  151. MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
  152. MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(U32*)memPtr = value; }
  153. MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; }
  154. #elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
  155. typedef __attribute__((aligned(1))) U16 unalign16;
  156. typedef __attribute__((aligned(1))) U32 unalign32;
  157. typedef __attribute__((aligned(1))) U64 unalign64;
  158. typedef __attribute__((aligned(1))) size_t unalignArch;
  159. MEM_STATIC U16 MEM_read16(const void* ptr) { return *(const unalign16*)ptr; }
  160. MEM_STATIC U32 MEM_read32(const void* ptr) { return *(const unalign32*)ptr; }
  161. MEM_STATIC U64 MEM_read64(const void* ptr) { return *(const unalign64*)ptr; }
  162. MEM_STATIC size_t MEM_readST(const void* ptr) { return *(const unalignArch*)ptr; }
  163. MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(unalign16*)memPtr = value; }
  164. MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(unalign32*)memPtr = value; }
  165. MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(unalign64*)memPtr = value; }
  166. #else
  167. /* default method, safe and standard.
  168. can sometimes prove slower */
  169. MEM_STATIC U16 MEM_read16(const void* memPtr)
  170. {
  171. U16 val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val;
  172. }
  173. MEM_STATIC U32 MEM_read32(const void* memPtr)
  174. {
  175. U32 val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val;
  176. }
  177. MEM_STATIC U64 MEM_read64(const void* memPtr)
  178. {
  179. U64 val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val;
  180. }
  181. MEM_STATIC size_t MEM_readST(const void* memPtr)
  182. {
  183. size_t val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val;
  184. }
  185. MEM_STATIC void MEM_write16(void* memPtr, U16 value)
  186. {
  187. ZSTD_memcpy(memPtr, &value, sizeof(value));
  188. }
  189. MEM_STATIC void MEM_write32(void* memPtr, U32 value)
  190. {
  191. ZSTD_memcpy(memPtr, &value, sizeof(value));
  192. }
  193. MEM_STATIC void MEM_write64(void* memPtr, U64 value)
  194. {
  195. ZSTD_memcpy(memPtr, &value, sizeof(value));
  196. }
  197. #endif /* MEM_FORCE_MEMORY_ACCESS */
  198. MEM_STATIC U32 MEM_swap32_fallback(U32 in)
  199. {
  200. return ((in << 24) & 0xff000000 ) |
  201. ((in << 8) & 0x00ff0000 ) |
  202. ((in >> 8) & 0x0000ff00 ) |
  203. ((in >> 24) & 0x000000ff );
  204. }
  205. MEM_STATIC U32 MEM_swap32(U32 in)
  206. {
  207. #if defined(_MSC_VER) /* Visual Studio */
  208. return _byteswap_ulong(in);
  209. #elif (defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)) \
  210. || (defined(__clang__) && __has_builtin(__builtin_bswap32))
  211. return __builtin_bswap32(in);
  212. #elif defined(__ICCARM__)
  213. return __REV(in);
  214. #else
  215. return MEM_swap32_fallback(in);
  216. #endif
  217. }
  218. MEM_STATIC U64 MEM_swap64_fallback(U64 in)
  219. {
  220. return ((in << 56) & 0xff00000000000000ULL) |
  221. ((in << 40) & 0x00ff000000000000ULL) |
  222. ((in << 24) & 0x0000ff0000000000ULL) |
  223. ((in << 8) & 0x000000ff00000000ULL) |
  224. ((in >> 8) & 0x00000000ff000000ULL) |
  225. ((in >> 24) & 0x0000000000ff0000ULL) |
  226. ((in >> 40) & 0x000000000000ff00ULL) |
  227. ((in >> 56) & 0x00000000000000ffULL);
  228. }
  229. MEM_STATIC U64 MEM_swap64(U64 in)
  230. {
  231. #if defined(_MSC_VER) /* Visual Studio */
  232. return _byteswap_uint64(in);
  233. #elif (defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)) \
  234. || (defined(__clang__) && __has_builtin(__builtin_bswap64))
  235. return __builtin_bswap64(in);
  236. #else
  237. return MEM_swap64_fallback(in);
  238. #endif
  239. }
  240. MEM_STATIC size_t MEM_swapST(size_t in)
  241. {
  242. if (MEM_32bits())
  243. return (size_t)MEM_swap32((U32)in);
  244. else
  245. return (size_t)MEM_swap64((U64)in);
  246. }
  247. /*=== Little endian r/w ===*/
  248. MEM_STATIC U16 MEM_readLE16(const void* memPtr)
  249. {
  250. if (MEM_isLittleEndian())
  251. return MEM_read16(memPtr);
  252. else {
  253. const BYTE* p = (const BYTE*)memPtr;
  254. return (U16)(p[0] + (p[1]<<8));
  255. }
  256. }
  257. MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
  258. {
  259. if (MEM_isLittleEndian()) {
  260. MEM_write16(memPtr, val);
  261. } else {
  262. BYTE* p = (BYTE*)memPtr;
  263. p[0] = (BYTE)val;
  264. p[1] = (BYTE)(val>>8);
  265. }
  266. }
  267. MEM_STATIC U32 MEM_readLE24(const void* memPtr)
  268. {
  269. return (U32)MEM_readLE16(memPtr) + ((U32)(((const BYTE*)memPtr)[2]) << 16);
  270. }
  271. MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val)
  272. {
  273. MEM_writeLE16(memPtr, (U16)val);
  274. ((BYTE*)memPtr)[2] = (BYTE)(val>>16);
  275. }
  276. MEM_STATIC U32 MEM_readLE32(const void* memPtr)
  277. {
  278. if (MEM_isLittleEndian())
  279. return MEM_read32(memPtr);
  280. else
  281. return MEM_swap32(MEM_read32(memPtr));
  282. }
  283. MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32)
  284. {
  285. if (MEM_isLittleEndian())
  286. MEM_write32(memPtr, val32);
  287. else
  288. MEM_write32(memPtr, MEM_swap32(val32));
  289. }
  290. MEM_STATIC U64 MEM_readLE64(const void* memPtr)
  291. {
  292. if (MEM_isLittleEndian())
  293. return MEM_read64(memPtr);
  294. else
  295. return MEM_swap64(MEM_read64(memPtr));
  296. }
  297. MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64)
  298. {
  299. if (MEM_isLittleEndian())
  300. MEM_write64(memPtr, val64);
  301. else
  302. MEM_write64(memPtr, MEM_swap64(val64));
  303. }
  304. MEM_STATIC size_t MEM_readLEST(const void* memPtr)
  305. {
  306. if (MEM_32bits())
  307. return (size_t)MEM_readLE32(memPtr);
  308. else
  309. return (size_t)MEM_readLE64(memPtr);
  310. }
  311. MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val)
  312. {
  313. if (MEM_32bits())
  314. MEM_writeLE32(memPtr, (U32)val);
  315. else
  316. MEM_writeLE64(memPtr, (U64)val);
  317. }
  318. /*=== Big endian r/w ===*/
  319. MEM_STATIC U32 MEM_readBE32(const void* memPtr)
  320. {
  321. if (MEM_isLittleEndian())
  322. return MEM_swap32(MEM_read32(memPtr));
  323. else
  324. return MEM_read32(memPtr);
  325. }
  326. MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32)
  327. {
  328. if (MEM_isLittleEndian())
  329. MEM_write32(memPtr, MEM_swap32(val32));
  330. else
  331. MEM_write32(memPtr, val32);
  332. }
  333. MEM_STATIC U64 MEM_readBE64(const void* memPtr)
  334. {
  335. if (MEM_isLittleEndian())
  336. return MEM_swap64(MEM_read64(memPtr));
  337. else
  338. return MEM_read64(memPtr);
  339. }
  340. MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64)
  341. {
  342. if (MEM_isLittleEndian())
  343. MEM_write64(memPtr, MEM_swap64(val64));
  344. else
  345. MEM_write64(memPtr, val64);
  346. }
  347. MEM_STATIC size_t MEM_readBEST(const void* memPtr)
  348. {
  349. if (MEM_32bits())
  350. return (size_t)MEM_readBE32(memPtr);
  351. else
  352. return (size_t)MEM_readBE64(memPtr);
  353. }
  354. MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val)
  355. {
  356. if (MEM_32bits())
  357. MEM_writeBE32(memPtr, (U32)val);
  358. else
  359. MEM_writeBE64(memPtr, (U64)val);
  360. }
  361. /* code only tested on 32 and 64 bits systems */
  362. MEM_STATIC void MEM_check(void) { DEBUG_STATIC_ASSERT((sizeof(size_t)==4) || (sizeof(size_t)==8)); }
  363. #endif /* MEM_H_MODULE */