1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039 |
- //===- MatmulOptimizer.cpp -----------------------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- #include "polly/MatmulOptimizer.h"
- #include "polly/DependenceInfo.h"
- #include "polly/Options.h"
- #include "polly/ScheduleTreeTransform.h"
- #include "polly/ScopInfo.h"
- #include "polly/ScopPass.h"
- #include "polly/Simplify.h"
- #include "polly/Support/ISLTools.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/Sequence.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Module.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/TypeSize.h"
- #include "llvm/Support/raw_ostream.h"
- #include "isl/ctx.h"
- #include "isl/schedule_node.h"
- #include "isl/schedule_type.h"
- #include "isl/union_map.h"
- #include "isl/union_set.h"
- #include <algorithm>
- #include <cassert>
- #include <cmath>
- #include <cstdint>
- #include <string>
- #include <vector>
- #define DEBUG_TYPE "polly-opt-isl"
- using namespace llvm;
- using namespace polly;
- namespace llvm {
- class Value;
- }
- static cl::opt<int> LatencyVectorFma(
- "polly-target-latency-vector-fma",
- cl::desc("The minimal number of cycles between issuing two "
- "dependent consecutive vector fused multiply-add "
- "instructions."),
- cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
- static cl::opt<int> ThroughputVectorFma(
- "polly-target-throughput-vector-fma",
- cl::desc("A throughput of the processor floating-point arithmetic units "
- "expressed in the number of vector fused multiply-add "
- "instructions per clock cycle."),
- cl::Hidden, cl::init(1), cl::ZeroOrMore, cl::cat(PollyCategory));
- static cl::opt<int> FirstCacheLevelSize(
- "polly-target-1st-cache-level-size",
- cl::desc("The size of the first cache level specified in bytes."),
- cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
- static cl::opt<int> FirstCacheLevelDefaultSize(
- "polly-target-1st-cache-level-default-size",
- cl::desc("The default size of the first cache level specified in bytes"
- " (if not enough were provided by the TargetTransformInfo)."),
- cl::Hidden, cl::init(32768), cl::ZeroOrMore, cl::cat(PollyCategory));
- static cl::opt<int> SecondCacheLevelSize(
- "polly-target-2nd-cache-level-size",
- cl::desc("The size of the second level specified in bytes."), cl::Hidden,
- cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
- static cl::opt<int> SecondCacheLevelDefaultSize(
- "polly-target-2nd-cache-level-default-size",
- cl::desc("The default size of the second cache level specified in bytes"
- " (if not enough were provided by the TargetTransformInfo)."),
- cl::Hidden, cl::init(262144), cl::ZeroOrMore, cl::cat(PollyCategory));
- // This option, along with --polly-target-2nd-cache-level-associativity,
- // --polly-target-1st-cache-level-size, and --polly-target-2st-cache-level-size
- // represent the parameters of the target cache, which do not have typical
- // values that can be used by default. However, to apply the pattern matching
- // optimizations, we use the values of the parameters of Intel Core i7-3820
- // SandyBridge in case the parameters are not specified or not provided by the
- // TargetTransformInfo.
- static cl::opt<int> FirstCacheLevelAssociativity(
- "polly-target-1st-cache-level-associativity",
- cl::desc("The associativity of the first cache level."), cl::Hidden,
- cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
- static cl::opt<int> FirstCacheLevelDefaultAssociativity(
- "polly-target-1st-cache-level-default-associativity",
- cl::desc("The default associativity of the first cache level"
- " (if not enough were provided by the TargetTransformInfo)."),
- cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
- static cl::opt<int> SecondCacheLevelAssociativity(
- "polly-target-2nd-cache-level-associativity",
- cl::desc("The associativity of the second cache level."), cl::Hidden,
- cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
- static cl::opt<int> SecondCacheLevelDefaultAssociativity(
- "polly-target-2nd-cache-level-default-associativity",
- cl::desc("The default associativity of the second cache level"
- " (if not enough were provided by the TargetTransformInfo)."),
- cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
- static cl::opt<int> VectorRegisterBitwidth(
- "polly-target-vector-register-bitwidth",
- cl::desc("The size in bits of a vector register (if not set, this "
- "information is taken from LLVM's target information."),
- cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
- static cl::opt<int> PollyPatternMatchingNcQuotient(
- "polly-pattern-matching-nc-quotient",
- cl::desc("Quotient that is obtained by dividing Nc, the parameter of the"
- "macro-kernel, by Nr, the parameter of the micro-kernel"),
- cl::Hidden, cl::init(256), cl::ZeroOrMore, cl::cat(PollyCategory));
- namespace {
- /// Parameters of the micro kernel.
- ///
- /// Parameters, which determine sizes of rank-1 (i.e., outer product) update
- /// used in the optimized matrix multiplication.
- struct MicroKernelParamsTy {
- int Mr;
- int Nr;
- };
- /// Parameters of the macro kernel.
- ///
- /// Parameters, which determine sizes of blocks of partitioned matrices
- /// used in the optimized matrix multiplication.
- struct MacroKernelParamsTy {
- int Mc;
- int Nc;
- int Kc;
- };
- /// Parameters of the matrix multiplication operands.
- ///
- /// Parameters, which describe access relations that represent operands of the
- /// matrix multiplication.
- struct MatMulInfoTy {
- MemoryAccess *A = nullptr;
- MemoryAccess *B = nullptr;
- MemoryAccess *ReadFromC = nullptr;
- MemoryAccess *WriteToC = nullptr;
- int i = -1;
- int j = -1;
- int k = -1;
- };
- /// Create an isl::union_set, which describes the option of the form
- /// [isolate[] -> unroll[x]].
- ///
- /// @param Ctx An isl::ctx, which is used to create the isl::union_set.
- static isl::union_set getUnrollIsolatedSetOptions(isl::ctx Ctx) {
- isl::space Space = isl::space(Ctx, 0, 0, 1);
- isl::map UnrollIsolatedSetOption = isl::map::universe(Space);
- isl::id DimInId = isl::id::alloc(Ctx, "isolate", nullptr);
- isl::id DimOutId = isl::id::alloc(Ctx, "unroll", nullptr);
- UnrollIsolatedSetOption =
- UnrollIsolatedSetOption.set_tuple_id(isl::dim::in, DimInId);
- UnrollIsolatedSetOption =
- UnrollIsolatedSetOption.set_tuple_id(isl::dim::out, DimOutId);
- return UnrollIsolatedSetOption.wrap();
- }
- /// Permute the two dimensions of the isl map.
- ///
- /// Permute @p DstPos and @p SrcPos dimensions of the isl map @p Map that
- /// have type @p DimType.
- ///
- /// @param Map The isl map to be modified.
- /// @param DimType The type of the dimensions.
- /// @param DstPos The first dimension.
- /// @param SrcPos The second dimension.
- /// @return The modified map.
- static isl::map permuteDimensions(isl::map Map, isl::dim DimType,
- unsigned DstPos, unsigned SrcPos) {
- assert(DstPos < unsignedFromIslSize(Map.dim(DimType)) &&
- SrcPos < unsignedFromIslSize(Map.dim(DimType)));
- if (DstPos == SrcPos)
- return Map;
- isl::id DimId;
- if (Map.has_tuple_id(DimType))
- DimId = Map.get_tuple_id(DimType);
- auto FreeDim = DimType == isl::dim::in ? isl::dim::out : isl::dim::in;
- isl::id FreeDimId;
- if (Map.has_tuple_id(FreeDim))
- FreeDimId = Map.get_tuple_id(FreeDim);
- auto MaxDim = std::max(DstPos, SrcPos);
- auto MinDim = std::min(DstPos, SrcPos);
- Map = Map.move_dims(FreeDim, 0, DimType, MaxDim, 1);
- Map = Map.move_dims(FreeDim, 0, DimType, MinDim, 1);
- Map = Map.move_dims(DimType, MinDim, FreeDim, 1, 1);
- Map = Map.move_dims(DimType, MaxDim, FreeDim, 0, 1);
- if (!DimId.is_null())
- Map = Map.set_tuple_id(DimType, DimId);
- if (!FreeDimId.is_null())
- Map = Map.set_tuple_id(FreeDim, FreeDimId);
- return Map;
- }
- /// Check the form of the access relation.
- ///
- /// Check that the access relation @p AccMap has the form M[i][j], where i
- /// is a @p FirstPos and j is a @p SecondPos.
- ///
- /// @param AccMap The access relation to be checked.
- /// @param FirstPos The index of the input dimension that is mapped to
- /// the first output dimension.
- /// @param SecondPos The index of the input dimension that is mapped to the
- /// second output dimension.
- /// @return True in case @p AccMap has the expected form and false,
- /// otherwise.
- static bool isMatMulOperandAcc(isl::set Domain, isl::map AccMap, int &FirstPos,
- int &SecondPos) {
- isl::space Space = AccMap.get_space();
- isl::map Universe = isl::map::universe(Space);
- if (unsignedFromIslSize(Space.dim(isl::dim::out)) != 2)
- return false;
- // MatMul has the form:
- // for (i = 0; i < N; i++)
- // for (j = 0; j < M; j++)
- // for (k = 0; k < P; k++)
- // C[i, j] += A[i, k] * B[k, j]
- //
- // Permutation of three outer loops: 3! = 6 possibilities.
- int FirstDims[] = {0, 0, 1, 1, 2, 2};
- int SecondDims[] = {1, 2, 2, 0, 0, 1};
- for (int i = 0; i < 6; i += 1) {
- auto PossibleMatMul =
- Universe.equate(isl::dim::in, FirstDims[i], isl::dim::out, 0)
- .equate(isl::dim::in, SecondDims[i], isl::dim::out, 1);
- AccMap = AccMap.intersect_domain(Domain);
- PossibleMatMul = PossibleMatMul.intersect_domain(Domain);
- // If AccMap spans entire domain (Non-partial write),
- // compute FirstPos and SecondPos.
- // If AccMap != PossibleMatMul here (the two maps have been gisted at
- // this point), it means that the writes are not complete, or in other
- // words, it is a Partial write and Partial writes must be rejected.
- if (AccMap.is_equal(PossibleMatMul)) {
- if (FirstPos != -1 && FirstPos != FirstDims[i])
- continue;
- FirstPos = FirstDims[i];
- if (SecondPos != -1 && SecondPos != SecondDims[i])
- continue;
- SecondPos = SecondDims[i];
- return true;
- }
- }
- return false;
- }
- /// Does the memory access represent a non-scalar operand of the matrix
- /// multiplication.
- ///
- /// Check that the memory access @p MemAccess is the read access to a non-scalar
- /// operand of the matrix multiplication or its result.
- ///
- /// @param MemAccess The memory access to be checked.
- /// @param MMI Parameters of the matrix multiplication operands.
- /// @return True in case the memory access represents the read access
- /// to a non-scalar operand of the matrix multiplication and
- /// false, otherwise.
- static bool isMatMulNonScalarReadAccess(MemoryAccess *MemAccess,
- MatMulInfoTy &MMI) {
- if (!MemAccess->isLatestArrayKind() || !MemAccess->isRead())
- return false;
- auto AccMap = MemAccess->getLatestAccessRelation();
- isl::set StmtDomain = MemAccess->getStatement()->getDomain();
- if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.j) && !MMI.ReadFromC) {
- MMI.ReadFromC = MemAccess;
- return true;
- }
- if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.k) && !MMI.A) {
- MMI.A = MemAccess;
- return true;
- }
- if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.k, MMI.j) && !MMI.B) {
- MMI.B = MemAccess;
- return true;
- }
- return false;
- }
- /// Check accesses to operands of the matrix multiplication.
- ///
- /// Check that accesses of the SCoP statement, which corresponds to
- /// the partial schedule @p PartialSchedule, are scalar in terms of loops
- /// containing the matrix multiplication, in case they do not represent
- /// accesses to the non-scalar operands of the matrix multiplication or
- /// its result.
- ///
- /// @param PartialSchedule The partial schedule of the SCoP statement.
- /// @param MMI Parameters of the matrix multiplication operands.
- /// @return True in case the corresponding SCoP statement
- /// represents matrix multiplication and false,
- /// otherwise.
- static bool containsOnlyMatrMultAcc(isl::map PartialSchedule,
- MatMulInfoTy &MMI) {
- auto InputDimId = PartialSchedule.get_tuple_id(isl::dim::in);
- auto *Stmt = static_cast<ScopStmt *>(InputDimId.get_user());
- unsigned OutDimNum = unsignedFromIslSize(PartialSchedule.range_tuple_dim());
- assert(OutDimNum > 2 && "In case of the matrix multiplication the loop nest "
- "and, consequently, the corresponding scheduling "
- "functions have at least three dimensions.");
- auto MapI =
- permuteDimensions(PartialSchedule, isl::dim::out, MMI.i, OutDimNum - 1);
- auto MapJ =
- permuteDimensions(PartialSchedule, isl::dim::out, MMI.j, OutDimNum - 1);
- auto MapK =
- permuteDimensions(PartialSchedule, isl::dim::out, MMI.k, OutDimNum - 1);
- auto Accesses = getAccessesInOrder(*Stmt);
- for (auto *MemA = Accesses.begin(); MemA != Accesses.end() - 1; MemA++) {
- auto *MemAccessPtr = *MemA;
- if (MemAccessPtr->isLatestArrayKind() && MemAccessPtr != MMI.WriteToC &&
- !isMatMulNonScalarReadAccess(MemAccessPtr, MMI) &&
- !(MemAccessPtr->isStrideZero(MapI) &&
- MemAccessPtr->isStrideZero(MapJ) && MemAccessPtr->isStrideZero(MapK)))
- return false;
- }
- return true;
- }
- /// Check for dependencies corresponding to the matrix multiplication.
- ///
- /// Check that there is only true dependence of the form
- /// S(..., k, ...) -> S(..., k + 1, …), where S is the SCoP statement
- /// represented by @p Schedule and k is @p Pos. Such a dependence corresponds
- /// to the dependency produced by the matrix multiplication.
- ///
- /// @param Schedule The schedule of the SCoP statement.
- /// @param D The SCoP dependencies.
- /// @param Pos The parameter to describe an acceptable true dependence.
- /// In case it has a negative value, try to determine its
- /// acceptable value.
- /// @return True in case dependencies correspond to the matrix multiplication
- /// and false, otherwise.
- static bool containsOnlyMatMulDep(isl::map Schedule, const Dependences *D,
- int &Pos) {
- isl::union_map Dep = D->getDependences(Dependences::TYPE_RAW);
- isl::union_map Red = D->getDependences(Dependences::TYPE_RED);
- if (!Red.is_null())
- Dep = Dep.unite(Red);
- auto DomainSpace = Schedule.get_space().domain();
- auto Space = DomainSpace.map_from_domain_and_range(DomainSpace);
- auto Deltas = Dep.extract_map(Space).deltas();
- int DeltasDimNum = unsignedFromIslSize(Deltas.dim(isl::dim::set));
- for (int i = 0; i < DeltasDimNum; i++) {
- auto Val = Deltas.plain_get_val_if_fixed(isl::dim::set, i);
- Pos = Pos < 0 && Val.is_one() ? i : Pos;
- if (Val.is_nan() || !(Val.is_zero() || (i == Pos && Val.is_one())))
- return false;
- }
- if (DeltasDimNum == 0 || Pos < 0)
- return false;
- return true;
- }
- /// Check if the SCoP statement could probably be optimized with analytical
- /// modeling.
- ///
- /// containsMatrMult tries to determine whether the following conditions
- /// are true:
- /// 1. The last memory access modeling an array, MA1, represents writing to
- /// memory and has the form S(..., i1, ..., i2, ...) -> M(i1, i2) or
- /// S(..., i2, ..., i1, ...) -> M(i1, i2), where S is the SCoP statement
- /// under consideration.
- /// 2. There is only one loop-carried true dependency, and it has the
- /// form S(..., i3, ...) -> S(..., i3 + 1, ...), and there are no
- /// loop-carried or anti dependencies.
- /// 3. SCoP contains three access relations, MA2, MA3, and MA4 that represent
- /// reading from memory and have the form S(..., i3, ...) -> M(i1, i3),
- /// S(..., i3, ...) -> M(i3, i2), S(...) -> M(i1, i2), respectively,
- /// and all memory accesses of the SCoP that are different from MA1, MA2,
- /// MA3, and MA4 have stride 0, if the innermost loop is exchanged with any
- /// of loops i1, i2 and i3.
- ///
- /// @param PartialSchedule The PartialSchedule that contains a SCoP statement
- /// to check.
- /// @D The SCoP dependencies.
- /// @MMI Parameters of the matrix multiplication operands.
- static bool containsMatrMult(isl::map PartialSchedule, const Dependences *D,
- MatMulInfoTy &MMI) {
- auto InputDimsId = PartialSchedule.get_tuple_id(isl::dim::in);
- auto *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
- if (Stmt->size() <= 1)
- return false;
- auto Accesses = getAccessesInOrder(*Stmt);
- for (auto *MemA = Accesses.end() - 1; MemA != Accesses.begin(); MemA--) {
- auto *MemAccessPtr = *MemA;
- if (!MemAccessPtr->isLatestArrayKind())
- continue;
- if (!MemAccessPtr->isWrite())
- return false;
- auto AccMap = MemAccessPtr->getLatestAccessRelation();
- if (!isMatMulOperandAcc(Stmt->getDomain(), AccMap, MMI.i, MMI.j))
- return false;
- MMI.WriteToC = MemAccessPtr;
- break;
- }
- if (!containsOnlyMatMulDep(PartialSchedule, D, MMI.k))
- return false;
- if (!MMI.WriteToC || !containsOnlyMatrMultAcc(PartialSchedule, MMI))
- return false;
- if (!MMI.A || !MMI.B || !MMI.ReadFromC)
- return false;
- return true;
- }
- /// Permute two dimensions of the band node.
- ///
- /// Permute FirstDim and SecondDim dimensions of the Node.
- ///
- /// @param Node The band node to be modified.
- /// @param FirstDim The first dimension to be permuted.
- /// @param SecondDim The second dimension to be permuted.
- static isl::schedule_node permuteBandNodeDimensions(isl::schedule_node Node,
- unsigned FirstDim,
- unsigned SecondDim) {
- assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band &&
- (unsigned)isl_schedule_node_band_n_member(Node.get()) >
- std::max(FirstDim, SecondDim));
- auto PartialSchedule =
- isl::manage(isl_schedule_node_band_get_partial_schedule(Node.get()));
- auto PartialScheduleFirstDim = PartialSchedule.at(FirstDim);
- auto PartialScheduleSecondDim = PartialSchedule.at(SecondDim);
- PartialSchedule =
- PartialSchedule.set_union_pw_aff(SecondDim, PartialScheduleFirstDim);
- PartialSchedule =
- PartialSchedule.set_union_pw_aff(FirstDim, PartialScheduleSecondDim);
- Node = isl::manage(isl_schedule_node_delete(Node.release()));
- return Node.insert_partial_schedule(PartialSchedule);
- }
- static isl::schedule_node
- createMicroKernel(isl::schedule_node Node,
- MicroKernelParamsTy MicroKernelParams) {
- Node = applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr},
- 1);
- Node = Node.parent().parent();
- return permuteBandNodeDimensions(Node, 0, 1).child(0).child(0);
- }
- /// Create the BLIS macro-kernel.
- ///
- /// We create the BLIS macro-kernel by applying a combination of tiling
- /// of dimensions of the band node and interchanging of two innermost
- /// modified dimensions. The values of of MacroKernelParams's fields are used
- /// as tile sizes.
- ///
- /// @param Node The schedule node to be modified.
- /// @param MacroKernelParams Parameters of the macro kernel
- /// to be used as tile sizes.
- static isl::schedule_node
- createMacroKernel(isl::schedule_node Node,
- MacroKernelParamsTy MacroKernelParams) {
- assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
- if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 &&
- MacroKernelParams.Kc == 1)
- return Node;
- int DimOutNum = isl_schedule_node_band_n_member(Node.get());
- std::vector<int> TileSizes(DimOutNum, 1);
- TileSizes[DimOutNum - 3] = MacroKernelParams.Mc;
- TileSizes[DimOutNum - 2] = MacroKernelParams.Nc;
- TileSizes[DimOutNum - 1] = MacroKernelParams.Kc;
- Node = tileNode(Node, "1st level tiling", TileSizes, 1);
- Node = Node.parent().parent();
- Node = permuteBandNodeDimensions(Node, DimOutNum - 2, DimOutNum - 1);
- Node = permuteBandNodeDimensions(Node, DimOutNum - 3, DimOutNum - 1);
- // Mark the outermost loop as parallelizable.
- Node = Node.as<isl::schedule_node_band>().member_set_coincident(0, true);
- return Node.child(0).child(0);
- }
- /// Get the size of the widest type of the matrix multiplication operands
- /// in bytes, including alignment padding.
- ///
- /// @param MMI Parameters of the matrix multiplication operands.
- /// @return The size of the widest type of the matrix multiplication operands
- /// in bytes, including alignment padding.
- static uint64_t getMatMulAlignTypeSize(MatMulInfoTy MMI) {
- auto *S = MMI.A->getStatement()->getParent();
- auto &DL = S->getFunction().getParent()->getDataLayout();
- auto ElementSizeA = DL.getTypeAllocSize(MMI.A->getElementType());
- auto ElementSizeB = DL.getTypeAllocSize(MMI.B->getElementType());
- auto ElementSizeC = DL.getTypeAllocSize(MMI.WriteToC->getElementType());
- return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
- }
- /// Get the size of the widest type of the matrix multiplication operands
- /// in bits.
- ///
- /// @param MMI Parameters of the matrix multiplication operands.
- /// @return The size of the widest type of the matrix multiplication operands
- /// in bits.
- static uint64_t getMatMulTypeSize(MatMulInfoTy MMI) {
- auto *S = MMI.A->getStatement()->getParent();
- auto &DL = S->getFunction().getParent()->getDataLayout();
- auto ElementSizeA = DL.getTypeSizeInBits(MMI.A->getElementType());
- auto ElementSizeB = DL.getTypeSizeInBits(MMI.B->getElementType());
- auto ElementSizeC = DL.getTypeSizeInBits(MMI.WriteToC->getElementType());
- return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
- }
- /// Get parameters of the BLIS micro kernel.
- ///
- /// We choose the Mr and Nr parameters of the micro kernel to be large enough
- /// such that no stalls caused by the combination of latencies and dependencies
- /// are introduced during the updates of the resulting matrix of the matrix
- /// multiplication. However, they should also be as small as possible to
- /// release more registers for entries of multiplied matrices.
- ///
- /// @param TTI Target Transform Info.
- /// @param MMI Parameters of the matrix multiplication operands.
- /// @return The structure of type MicroKernelParamsTy.
- /// @see MicroKernelParamsTy
- static struct MicroKernelParamsTy
- getMicroKernelParams(const TargetTransformInfo *TTI, MatMulInfoTy MMI) {
- assert(TTI && "The target transform info should be provided.");
- // Nvec - Number of double-precision floating-point numbers that can be hold
- // by a vector register. Use 2 by default.
- long RegisterBitwidth = VectorRegisterBitwidth;
- if (RegisterBitwidth == -1)
- RegisterBitwidth =
- TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector);
- auto ElementSize = getMatMulTypeSize(MMI);
- assert(ElementSize > 0 && "The element size of the matrix multiplication "
- "operands should be greater than zero.");
- auto Nvec = RegisterBitwidth / ElementSize;
- if (Nvec == 0)
- Nvec = 2;
- int Nr = ceil(sqrt((double)(Nvec * LatencyVectorFma * ThroughputVectorFma)) /
- Nvec) *
- Nvec;
- int Mr = ceil((double)(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr));
- return {Mr, Nr};
- }
- /// Determine parameters of the target cache.
- ///
- /// @param TTI Target Transform Info.
- static void getTargetCacheParameters(const llvm::TargetTransformInfo *TTI) {
- auto L1DCache = llvm::TargetTransformInfo::CacheLevel::L1D;
- auto L2DCache = llvm::TargetTransformInfo::CacheLevel::L2D;
- if (FirstCacheLevelSize == -1) {
- if (TTI->getCacheSize(L1DCache).hasValue())
- FirstCacheLevelSize = TTI->getCacheSize(L1DCache).getValue();
- else
- FirstCacheLevelSize = static_cast<int>(FirstCacheLevelDefaultSize);
- }
- if (SecondCacheLevelSize == -1) {
- if (TTI->getCacheSize(L2DCache).hasValue())
- SecondCacheLevelSize = TTI->getCacheSize(L2DCache).getValue();
- else
- SecondCacheLevelSize = static_cast<int>(SecondCacheLevelDefaultSize);
- }
- if (FirstCacheLevelAssociativity == -1) {
- if (TTI->getCacheAssociativity(L1DCache).hasValue())
- FirstCacheLevelAssociativity =
- TTI->getCacheAssociativity(L1DCache).getValue();
- else
- FirstCacheLevelAssociativity =
- static_cast<int>(FirstCacheLevelDefaultAssociativity);
- }
- if (SecondCacheLevelAssociativity == -1) {
- if (TTI->getCacheAssociativity(L2DCache).hasValue())
- SecondCacheLevelAssociativity =
- TTI->getCacheAssociativity(L2DCache).getValue();
- else
- SecondCacheLevelAssociativity =
- static_cast<int>(SecondCacheLevelDefaultAssociativity);
- }
- }
- /// Get parameters of the BLIS macro kernel.
- ///
- /// During the computation of matrix multiplication, blocks of partitioned
- /// matrices are mapped to different layers of the memory hierarchy.
- /// To optimize data reuse, blocks should be ideally kept in cache between
- /// iterations. Since parameters of the macro kernel determine sizes of these
- /// blocks, there are upper and lower bounds on these parameters.
- ///
- /// @param TTI Target Transform Info.
- /// @param MicroKernelParams Parameters of the micro-kernel
- /// to be taken into account.
- /// @param MMI Parameters of the matrix multiplication operands.
- /// @return The structure of type MacroKernelParamsTy.
- /// @see MacroKernelParamsTy
- /// @see MicroKernelParamsTy
- static struct MacroKernelParamsTy
- getMacroKernelParams(const llvm::TargetTransformInfo *TTI,
- const MicroKernelParamsTy &MicroKernelParams,
- MatMulInfoTy MMI) {
- getTargetCacheParameters(TTI);
- // According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf,
- // it requires information about the first two levels of a cache to determine
- // all the parameters of a macro-kernel. It also checks that an associativity
- // degree of a cache level is greater than two. Otherwise, another algorithm
- // for determination of the parameters should be used.
- if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 &&
- FirstCacheLevelSize > 0 && SecondCacheLevelSize > 0 &&
- FirstCacheLevelAssociativity > 2 && SecondCacheLevelAssociativity > 2))
- return {1, 1, 1};
- // The quotient should be greater than zero.
- if (PollyPatternMatchingNcQuotient <= 0)
- return {1, 1, 1};
- int Car = floor(
- (FirstCacheLevelAssociativity - 1) /
- (1 + static_cast<double>(MicroKernelParams.Nr) / MicroKernelParams.Mr));
- // Car can be computed to be zero since it is floor to int.
- // On Mac OS, division by 0 does not raise a signal. This causes negative
- // tile sizes to be computed. Prevent division by Cac==0 by early returning
- // if this happens.
- if (Car == 0)
- return {1, 1, 1};
- auto ElementSize = getMatMulAlignTypeSize(MMI);
- assert(ElementSize > 0 && "The element size of the matrix multiplication "
- "operands should be greater than zero.");
- int Kc = (Car * FirstCacheLevelSize) /
- (MicroKernelParams.Mr * FirstCacheLevelAssociativity * ElementSize);
- double Cac =
- static_cast<double>(Kc * ElementSize * SecondCacheLevelAssociativity) /
- SecondCacheLevelSize;
- int Mc = floor((SecondCacheLevelAssociativity - 2) / Cac);
- int Nc = PollyPatternMatchingNcQuotient * MicroKernelParams.Nr;
- assert(Mc > 0 && Nc > 0 && Kc > 0 &&
- "Matrix block sizes should be greater than zero");
- return {Mc, Nc, Kc};
- }
- /// Create an access relation that is specific to
- /// the matrix multiplication pattern.
- ///
- /// Create an access relation of the following form:
- /// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [OI, O5, OJ]
- /// where I is @p FirstDim, J is @p SecondDim.
- ///
- /// It can be used, for example, to create relations that helps to consequently
- /// access elements of operands of a matrix multiplication after creation of
- /// the BLIS micro and macro kernels.
- ///
- /// @see ScheduleTreeOptimizer::createMicroKernel
- /// @see ScheduleTreeOptimizer::createMacroKernel
- ///
- /// Subsequently, the described access relation is applied to the range of
- /// @p MapOldIndVar, that is used to map original induction variables to
- /// the ones, which are produced by schedule transformations. It helps to
- /// define relations using a new space and, at the same time, keep them
- /// in the original one.
- ///
- /// @param MapOldIndVar The relation, which maps original induction variables
- /// to the ones, which are produced by schedule
- /// transformations.
- /// @param FirstDim, SecondDim The input dimensions that are used to define
- /// the specified access relation.
- /// @return The specified access relation.
- static isl::map getMatMulAccRel(isl::map MapOldIndVar, unsigned FirstDim,
- unsigned SecondDim) {
- auto AccessRelSpace = isl::space(MapOldIndVar.ctx(), 0, 9, 3);
- auto AccessRel = isl::map::universe(AccessRelSpace);
- AccessRel = AccessRel.equate(isl::dim::in, FirstDim, isl::dim::out, 0);
- AccessRel = AccessRel.equate(isl::dim::in, 5, isl::dim::out, 1);
- AccessRel = AccessRel.equate(isl::dim::in, SecondDim, isl::dim::out, 2);
- return MapOldIndVar.apply_range(AccessRel);
- }
- static isl::schedule_node createExtensionNode(isl::schedule_node Node,
- isl::map ExtensionMap) {
- auto Extension = isl::union_map(ExtensionMap);
- auto NewNode = isl::schedule_node::from_extension(Extension);
- return Node.graft_before(NewNode);
- }
- static isl::schedule_node optimizePackedB(isl::schedule_node Node,
- ScopStmt *Stmt, isl::map MapOldIndVar,
- MicroKernelParamsTy MicroParams,
- MacroKernelParamsTy MacroParams,
- MatMulInfoTy &MMI) {
- Scop *S = Stmt->getParent();
- isl::set Domain = Stmt->getDomain();
- // Create packed array.
- unsigned FirstDimSize = MacroParams.Nc / MicroParams.Nr;
- unsigned SecondDimSize = MacroParams.Kc;
- unsigned ThirdDimSize = MicroParams.Nr;
- ScopArrayInfo *PackedB =
- S->createScopArrayInfo(MMI.B->getElementType(), "Packed_B",
- {FirstDimSize, SecondDimSize, ThirdDimSize});
- // Compute the access relation for copying from B to PackedB.
- isl::map AccRelB = MMI.B->getLatestAccessRelation();
- isl::map AccRelPackedB = getMatMulAccRel(MapOldIndVar, 3, 7);
- AccRelPackedB =
- AccRelPackedB.set_tuple_id(isl::dim::out, PackedB->getBasePtrId());
- // Create the copy statement and redirect access.
- ScopStmt *CopyStmt = S->addScopStmt(AccRelB, AccRelPackedB, Domain);
- MMI.B->setNewAccessRelation(AccRelPackedB);
- unsigned Dim = unsignedFromIslSize(MapOldIndVar.range_tuple_dim());
- assert(Dim >= 2);
- // Insert into the schedule tree.
- isl::map ExtMap = MapOldIndVar.project_out(isl::dim::out, 2, Dim - 2);
- ExtMap = ExtMap.reverse();
- ExtMap = ExtMap.fix_si(isl::dim::out, MMI.i, 0);
- ExtMap = ExtMap.intersect_range(Domain);
- ExtMap = ExtMap.set_tuple_id(isl::dim::out, CopyStmt->getDomainId());
- return createExtensionNode(Node, ExtMap);
- }
- static isl::schedule_node optimizePackedA(isl::schedule_node Node, ScopStmt *,
- isl::map MapOldIndVar,
- MicroKernelParamsTy MicroParams,
- MacroKernelParamsTy MacroParams,
- MatMulInfoTy &MMI) {
- isl::id InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in);
- ScopStmt *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
- isl::set Domain = Stmt->getDomain();
- isl::id DomainId = Domain.get_tuple_id();
- // Create the packed array.
- unsigned FirstDimSize = MacroParams.Mc / MicroParams.Mr;
- unsigned SecondDimSize = MacroParams.Kc;
- unsigned ThirdDimSize = MicroParams.Mr;
- ScopArrayInfo *PackedA = Stmt->getParent()->createScopArrayInfo(
- MMI.A->getElementType(), "Packed_A",
- {FirstDimSize, SecondDimSize, ThirdDimSize});
- // Compute the access relation for copying from A to PackedA.
- isl::map AccRelA = MMI.A->getLatestAccessRelation();
- isl::map AccRelPackedA = getMatMulAccRel(MapOldIndVar, 4, 6);
- AccRelPackedA =
- AccRelPackedA.set_tuple_id(isl::dim::out, PackedA->getBasePtrId());
- // { MemrefA[] -> PackedA[] }
- isl::map PackedATranslator = AccRelPackedA.apply_domain(AccRelA);
- // Compute the domain for the copy statement.
- // Construct the copy statement domain out of the 3 outermost scatter
- // dimensions (to match the 3 band nodes surrounding the extension node) and
- // the array elements to copy (one statement instance per array element).
- // { Scatter[] }
- isl::set ScatterDomain = MapOldIndVar.intersect_domain(Domain).range();
- // { Scatter[] -> OutermostScatter[] }
- isl::map OuterDomainMap =
- makeIdentityMap(ScatterDomain, true).project_out(isl::dim::out, 3, 6);
- // { Scatter[] -> MemrefA[] }
- isl::map CopyFrom = MapOldIndVar.reverse().apply_range(AccRelA);
- // { Scatter[] -> CopyStmt[] }
- isl::map DomainTranslator = OuterDomainMap.range_product(CopyFrom);
- // { CopyStmt[] }
- isl::set CopyDomain = DomainTranslator.range();
- // Translate the access relations to the new domain.
- // { CopyStmt[] -> MemrefA[] }
- CopyFrom = CopyFrom.apply_domain(DomainTranslator);
- // { CopyStmt[] -> PackedA[] }
- isl::map CopyTo = CopyFrom.apply_range(PackedATranslator);
- // Create the copy statement and redirect access.
- ScopStmt *CopyStmt =
- Stmt->getParent()->addScopStmt(CopyFrom, CopyTo, CopyDomain);
- MMI.A->setNewAccessRelation(AccRelPackedA);
- // Insert into the schedule tree.
- // { Scatter[] -> CopyStmt[] }
- isl::map ExtScatterCopy = makeIdentityMap(CopyStmt->getDomain(), true);
- ExtScatterCopy = ExtScatterCopy.project_out(isl::dim::in, 3, 2);
- return createExtensionNode(Node, ExtScatterCopy);
- }
- /// Apply the packing transformation.
- ///
- /// The packing transformation can be described as a data-layout
- /// transformation that requires to introduce a new array, copy data
- /// to the array, and change memory access locations to reference the array.
- /// It can be used to ensure that elements of the new array are read in-stride
- /// access, aligned to cache lines boundaries, and preloaded into certain cache
- /// levels.
- ///
- /// As an example let us consider the packing of the array A that would help
- /// to read its elements with in-stride access. An access to the array A
- /// is represented by an access relation that has the form
- /// S[i, j, k] -> A[i, k]. The scheduling function of the SCoP statement S has
- /// the form S[i,j, k] -> [floor((j mod Nc) / Nr), floor((i mod Mc) / Mr),
- /// k mod Kc, j mod Nr, i mod Mr].
- ///
- /// To ensure that elements of the array A are read in-stride access, we add
- /// a new array Packed_A[Mc/Mr][Kc][Mr] to the SCoP, using
- /// Scop::createScopArrayInfo, change the access relation
- /// S[i, j, k] -> A[i, k] to
- /// S[i, j, k] -> Packed_A[floor((i mod Mc) / Mr), k mod Kc, i mod Mr], using
- /// MemoryAccess::setNewAccessRelation, and copy the data to the array, using
- /// the copy statement created by Scop::addScopStmt.
- ///
- /// @param Node The schedule node to be optimized.
- /// @param MapOldIndVar The relation, which maps original induction variables
- /// to the ones, which are produced by schedule
- /// transformations.
- /// @param MicroParams, MacroParams Parameters of the BLIS kernel
- /// to be taken into account.
- /// @param MMI Parameters of the matrix multiplication operands.
- /// @return The optimized schedule node.
- static isl::schedule_node
- optimizeDataLayoutMatrMulPattern(isl::schedule_node Node, isl::map MapOldIndVar,
- MicroKernelParamsTy MicroParams,
- MacroKernelParamsTy MacroParams,
- MatMulInfoTy &MMI) {
- isl::id InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in);
- ScopStmt *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
- Node = Node.parent().parent().parent().parent().parent().parent();
- Node = isl::manage(isl_schedule_node_band_split(Node.release(), 2));
- Node = Node.child(0);
- Node =
- optimizePackedB(Node, Stmt, MapOldIndVar, MicroParams, MacroParams, MMI);
- Node = Node.child(0);
- Node =
- optimizePackedA(Node, Stmt, MapOldIndVar, MicroParams, MacroParams, MMI);
- return Node.child(0).child(0).child(0).child(0).child(0);
- }
- /// Get a relation mapping induction variables produced by schedule
- /// transformations to the original ones.
- ///
- /// @param Node The schedule node produced as the result of creation
- /// of the BLIS kernels.
- /// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel
- /// to be taken into account.
- /// @return The relation mapping original induction variables to the ones
- /// produced by schedule transformation.
- /// @see ScheduleTreeOptimizer::createMicroKernel
- /// @see ScheduleTreeOptimizer::createMacroKernel
- /// @see getMacroKernelParams
- static isl::map
- getInductionVariablesSubstitution(isl::schedule_node Node,
- MicroKernelParamsTy MicroKernelParams,
- MacroKernelParamsTy MacroKernelParams) {
- auto Child = Node.child(0);
- auto UnMapOldIndVar = Child.get_prefix_schedule_union_map();
- auto MapOldIndVar = isl::map::from_union_map(UnMapOldIndVar);
- unsigned Dim = unsignedFromIslSize(MapOldIndVar.range_tuple_dim());
- if (Dim > 9u)
- return MapOldIndVar.project_out(isl::dim::out, 0, Dim - 9);
- return MapOldIndVar;
- }
- /// Isolate a set of partial tile prefixes and unroll the isolated part.
- ///
- /// The set should ensure that it contains only partial tile prefixes that have
- /// exactly Mr x Nr iterations of the two innermost loops produced by
- /// the optimization of the matrix multiplication. Mr and Nr are parameters of
- /// the micro-kernel.
- ///
- /// In case of parametric bounds, this helps to auto-vectorize the unrolled
- /// innermost loops, using the SLP vectorizer.
- ///
- /// @param Node The schedule node to be modified.
- /// @param MicroKernelParams Parameters of the micro-kernel
- /// to be taken into account.
- /// @return The modified isl_schedule_node.
- static isl::schedule_node
- isolateAndUnrollMatMulInnerLoops(isl::schedule_node Node,
- struct MicroKernelParamsTy MicroKernelParams) {
- isl::schedule_node Child = Node.child(0);
- isl::union_map UnMapOldIndVar = Child.get_prefix_schedule_relation();
- isl::set Prefix = isl::map::from_union_map(UnMapOldIndVar).range();
- unsigned Dims = unsignedFromIslSize(Prefix.tuple_dim());
- assert(Dims >= 1);
- Prefix = Prefix.project_out(isl::dim::set, Dims - 1, 1);
- Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Nr);
- Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Mr);
- isl::union_set IsolateOption =
- getIsolateOptions(Prefix.add_dims(isl::dim::set, 3), 3);
- isl::ctx Ctx = Node.ctx();
- auto Options = IsolateOption.unite(getDimOptions(Ctx, "unroll"));
- Options = Options.unite(getUnrollIsolatedSetOptions(Ctx));
- Node = Node.as<isl::schedule_node_band>().set_ast_build_options(Options);
- Node = Node.parent().parent().parent();
- IsolateOption = getIsolateOptions(Prefix, 3);
- Options = IsolateOption.unite(getDimOptions(Ctx, "separate"));
- Node = Node.as<isl::schedule_node_band>().set_ast_build_options(Options);
- Node = Node.child(0).child(0).child(0);
- return Node;
- }
- /// Insert "Loop Vectorizer Disabled" mark node.
- ///
- /// @param Node The child of the mark node to be inserted.
- /// @return The modified isl_schedule_node.
- static isl::schedule_node markLoopVectorizerDisabled(isl::schedule_node Node) {
- auto Id = isl::id::alloc(Node.ctx(), "Loop Vectorizer Disabled", nullptr);
- return Node.insert_mark(Id).child(0);
- }
- /// Restore the initial ordering of dimensions of the band node
- ///
- /// In case the band node represents all the dimensions of the iteration
- /// domain, recreate the band node to restore the initial ordering of the
- /// dimensions.
- ///
- /// @param Node The band node to be modified.
- /// @return The modified schedule node.
- static isl::schedule_node
- getBandNodeWithOriginDimOrder(isl::schedule_node Node) {
- assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
- if (isl_schedule_node_get_type(Node.child(0).get()) != isl_schedule_node_leaf)
- return Node;
- auto Domain = Node.get_universe_domain();
- assert(isl_union_set_n_set(Domain.get()) == 1);
- if (Node.get_schedule_depth().release() != 0 ||
- (unsignedFromIslSize(isl::set(Domain).tuple_dim()) !=
- unsignedFromIslSize(Node.as<isl::schedule_node_band>().n_member())))
- return Node;
- Node = isl::manage(isl_schedule_node_delete(Node.copy()));
- auto PartialSchedulePwAff = Domain.identity_union_pw_multi_aff();
- auto PartialScheduleMultiPwAff =
- isl::multi_union_pw_aff(PartialSchedulePwAff);
- PartialScheduleMultiPwAff =
- PartialScheduleMultiPwAff.reset_tuple_id(isl::dim::set);
- return Node.insert_partial_schedule(PartialScheduleMultiPwAff);
- }
- static isl::schedule_node optimizeMatMulPattern(isl::schedule_node Node,
- const TargetTransformInfo *TTI,
- MatMulInfoTy &MMI) {
- assert(TTI && "The target transform info should be provided.");
- int DimOutNum = isl_schedule_node_band_n_member(Node.get());
- assert(DimOutNum > 2 && "In case of the matrix multiplication the loop nest "
- "and, consequently, the corresponding scheduling "
- "functions have at least three dimensions.");
- Node = getBandNodeWithOriginDimOrder(Node);
- Node = permuteBandNodeDimensions(Node, MMI.i, DimOutNum - 3);
- int NewJ = MMI.j == DimOutNum - 3 ? MMI.i : MMI.j;
- int NewK = MMI.k == DimOutNum - 3 ? MMI.i : MMI.k;
- Node = permuteBandNodeDimensions(Node, NewJ, DimOutNum - 2);
- NewK = NewK == DimOutNum - 2 ? NewJ : NewK;
- Node = permuteBandNodeDimensions(Node, NewK, DimOutNum - 1);
- auto MicroKernelParams = getMicroKernelParams(TTI, MMI);
- auto MacroKernelParams = getMacroKernelParams(TTI, MicroKernelParams, MMI);
- Node = createMacroKernel(Node, MacroKernelParams);
- Node = createMicroKernel(Node, MicroKernelParams);
- if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 ||
- MacroKernelParams.Kc == 1)
- return Node;
- auto MapOldIndVar = getInductionVariablesSubstitution(Node, MicroKernelParams,
- MacroKernelParams);
- if (MapOldIndVar.is_null())
- return Node;
- Node = markLoopVectorizerDisabled(Node.parent()).child(0);
- Node = isolateAndUnrollMatMulInnerLoops(Node, MicroKernelParams);
- return optimizeDataLayoutMatrMulPattern(Node, MapOldIndVar, MicroKernelParams,
- MacroKernelParams, MMI);
- }
- /// Check if this node contains a partial schedule that could
- /// probably be optimized with analytical modeling.
- ///
- /// isMatrMultPattern tries to determine whether the following conditions
- /// are true:
- /// 1. the partial schedule contains only one statement.
- /// 2. there are exactly three input dimensions.
- /// 3. all memory accesses of the statement will have stride 0 or 1, if we
- /// interchange loops (switch the variable used in the inner loop to
- /// the outer loop).
- /// 4. all memory accesses of the statement except from the last one, are
- /// read memory access and the last one is write memory access.
- /// 5. all subscripts of the last memory access of the statement don't
- /// contain the variable used in the inner loop.
- /// If this is the case, we could try to use an approach that is similar to
- /// the one used to get close-to-peak performance of matrix multiplications.
- ///
- /// @param Node The node to check.
- /// @param D The SCoP dependencies.
- /// @param MMI Parameters of the matrix multiplication operands.
- static bool isMatrMultPattern(isl::schedule_node Node, const Dependences *D,
- MatMulInfoTy &MMI) {
- auto PartialSchedule = isl::manage(
- isl_schedule_node_band_get_partial_schedule_union_map(Node.get()));
- Node = Node.child(0);
- auto LeafType = isl_schedule_node_get_type(Node.get());
- Node = Node.parent();
- if (LeafType != isl_schedule_node_leaf ||
- isl_schedule_node_band_n_member(Node.get()) < 3 ||
- Node.get_schedule_depth().release() != 0 ||
- isl_union_map_n_map(PartialSchedule.get()) != 1)
- return false;
- auto NewPartialSchedule = isl::map::from_union_map(PartialSchedule);
- if (containsMatrMult(NewPartialSchedule, D, MMI))
- return true;
- return false;
- }
- } // namespace
- isl::schedule_node
- polly::tryOptimizeMatMulPattern(isl::schedule_node Node,
- const llvm::TargetTransformInfo *TTI,
- const Dependences *D) {
- MatMulInfoTy MMI;
- if (isMatrMultPattern(Node, D, MMI)) {
- LLVM_DEBUG(dbgs() << "The matrix multiplication pattern was detected\n");
- return optimizeMatMulPattern(Node, TTI, MMI);
- }
- return {};
- }
|