//===- SwitchLoweringUtils.cpp - Switch Lowering --------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains switch inst lowering optimizations and utilities for // codegen, so that it can be used for both SelectionDAG and GlobalISel. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/SwitchLoweringUtils.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; using namespace SwitchCG; uint64_t SwitchCG::getJumpTableRange(const CaseClusterVector &Clusters, unsigned First, unsigned Last) { assert(Last >= First); const APInt &LowCase = Clusters[First].Low->getValue(); const APInt &HighCase = Clusters[Last].High->getValue(); assert(LowCase.getBitWidth() == HighCase.getBitWidth()); // FIXME: A range of consecutive cases has 100% density, but only requires one // comparison to lower. We should discriminate against such consecutive ranges // in jump tables. return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; } uint64_t SwitchCG::getJumpTableNumCases(const SmallVectorImpl &TotalCases, unsigned First, unsigned Last) { assert(Last >= First); assert(TotalCases[Last] >= TotalCases[First]); uint64_t NumCases = TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); return NumCases; } void SwitchCG::SwitchLowering::findJumpTables(CaseClusterVector &Clusters, const SwitchInst *SI, MachineBasicBlock *DefaultMBB, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { #ifndef NDEBUG // Clusters must be non-empty, sorted, and only contain Range clusters. assert(!Clusters.empty()); for (CaseCluster &C : Clusters) assert(C.Kind == CC_Range); for (unsigned i = 1, e = Clusters.size(); i < e; ++i) assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); #endif assert(TLI && "TLI not set!"); if (!TLI->areJTsAllowed(SI->getParent()->getParent())) return; const unsigned MinJumpTableEntries = TLI->getMinimumJumpTableEntries(); const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; // Bail if not enough cases. const int64_t N = Clusters.size(); if (N < 2 || N < MinJumpTableEntries) return; // Accumulated number of cases in each cluster and those prior to it. SmallVector TotalCases(N); for (unsigned i = 0; i < N; ++i) { const APInt &Hi = Clusters[i].High->getValue(); const APInt &Lo = Clusters[i].Low->getValue(); TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; if (i != 0) TotalCases[i] += TotalCases[i - 1]; } uint64_t Range = getJumpTableRange(Clusters,0, N - 1); uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); assert(NumCases < UINT64_MAX / 100); assert(Range >= NumCases); // Cheap case: the whole range may be suitable for jump table. if (TLI->isSuitableForJumpTable(SI, NumCases, Range, PSI, BFI)) { CaseCluster JTCluster; if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { Clusters[0] = JTCluster; Clusters.resize(1); return; } } // The algorithm below is not suitable for -O0. if (TM->getOptLevel() == CodeGenOpt::None) return; // Split Clusters into minimum number of dense partitions. The algorithm uses // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code // for the Case Statement'" (1994), but builds the MinPartitions array in // reverse order to make it easier to reconstruct the partitions in ascending // order. In the choice between two optimal partitionings, it picks the one // which yields more jump tables. // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. SmallVector MinPartitions(N); // LastElement[i] is the last element of the partition starting at i. SmallVector LastElement(N); // PartitionsScore[i] is used to break ties when choosing between two // partitionings resulting in the same number of partitions. SmallVector PartitionsScore(N); // For PartitionsScore, a small number of comparisons is considered as good as // a jump table and a single comparison is considered better than a jump // table. enum PartitionScores : unsigned { NoTable = 0, Table = 1, FewCases = 1, SingleCase = 2 }; // Base case: There is only one way to partition Clusters[N-1]. MinPartitions[N - 1] = 1; LastElement[N - 1] = N - 1; PartitionsScore[N - 1] = PartitionScores::SingleCase; // Note: loop indexes are signed to avoid underflow. for (int64_t i = N - 2; i >= 0; i--) { // Find optimal partitioning of Clusters[i..N-1]. // Baseline: Put Clusters[i] into a partition on its own. MinPartitions[i] = MinPartitions[i + 1] + 1; LastElement[i] = i; PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; // Search for a solution that results in fewer partitions. for (int64_t j = N - 1; j > i; j--) { // Try building a partition from Clusters[i..j]. Range = getJumpTableRange(Clusters, i, j); NumCases = getJumpTableNumCases(TotalCases, i, j); assert(NumCases < UINT64_MAX / 100); assert(Range >= NumCases); if (TLI->isSuitableForJumpTable(SI, NumCases, Range, PSI, BFI)) { unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; int64_t NumEntries = j - i + 1; if (NumEntries == 1) Score += PartitionScores::SingleCase; else if (NumEntries <= SmallNumberOfEntries) Score += PartitionScores::FewCases; else if (NumEntries >= MinJumpTableEntries) Score += PartitionScores::Table; // If this leads to fewer partitions, or to the same number of // partitions with better score, it is a better partitioning. if (NumPartitions < MinPartitions[i] || (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { MinPartitions[i] = NumPartitions; LastElement[i] = j; PartitionsScore[i] = Score; } } } } // Iterate over the partitions, replacing some with jump tables in-place. unsigned DstIndex = 0; for (unsigned First = 0, Last; First < N; First = Last + 1) { Last = LastElement[First]; assert(Last >= First); assert(DstIndex <= First); unsigned NumClusters = Last - First + 1; CaseCluster JTCluster; if (NumClusters >= MinJumpTableEntries && buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { Clusters[DstIndex++] = JTCluster; } else { for (unsigned I = First; I <= Last; ++I) std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); } } Clusters.resize(DstIndex); } bool SwitchCG::SwitchLowering::buildJumpTable(const CaseClusterVector &Clusters, unsigned First, unsigned Last, const SwitchInst *SI, MachineBasicBlock *DefaultMBB, CaseCluster &JTCluster) { assert(First <= Last); auto Prob = BranchProbability::getZero(); unsigned NumCmps = 0; std::vector Table; DenseMap JTProbs; // Initialize probabilities in JTProbs. for (unsigned I = First; I <= Last; ++I) JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); for (unsigned I = First; I <= Last; ++I) { assert(Clusters[I].Kind == CC_Range); Prob += Clusters[I].Prob; const APInt &Low = Clusters[I].Low->getValue(); const APInt &High = Clusters[I].High->getValue(); NumCmps += (Low == High) ? 1 : 2; if (I != First) { // Fill the gap between this and the previous cluster. const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); assert(PreviousHigh.slt(Low)); uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; for (uint64_t J = 0; J < Gap; J++) Table.push_back(DefaultMBB); } uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; for (uint64_t J = 0; J < ClusterSize; ++J) Table.push_back(Clusters[I].MBB); JTProbs[Clusters[I].MBB] += Clusters[I].Prob; } unsigned NumDests = JTProbs.size(); if (TLI->isSuitableForBitTests(NumDests, NumCmps, Clusters[First].Low->getValue(), Clusters[Last].High->getValue(), *DL)) { // Clusters[First..Last] should be lowered as bit tests instead. return false; } // Create the MBB that will load from and jump through the table. // Note: We create it here, but it's not inserted into the function yet. MachineFunction *CurMF = FuncInfo.MF; MachineBasicBlock *JumpTableMBB = CurMF->CreateMachineBasicBlock(SI->getParent()); // Add successors. Note: use table order for determinism. SmallPtrSet Done; for (MachineBasicBlock *Succ : Table) { if (Done.count(Succ)) continue; addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); Done.insert(Succ); } JumpTableMBB->normalizeSuccProbs(); unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI->getJumpTableEncoding()) ->createJumpTableIndex(Table); // Set up the jump table info. JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); JumpTableHeader JTH(Clusters[First].Low->getValue(), Clusters[Last].High->getValue(), SI->getCondition(), nullptr, false); JTCases.emplace_back(std::move(JTH), std::move(JT)); JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, JTCases.size() - 1, Prob); return true; } void SwitchCG::SwitchLowering::findBitTestClusters(CaseClusterVector &Clusters, const SwitchInst *SI) { // Partition Clusters into as few subsets as possible, where each subset has a // range that fits in a machine word and has <= 3 unique destinations. #ifndef NDEBUG // Clusters must be sorted and contain Range or JumpTable clusters. assert(!Clusters.empty()); assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); for (const CaseCluster &C : Clusters) assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); for (unsigned i = 1; i < Clusters.size(); ++i) assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); #endif // The algorithm below is not suitable for -O0. if (TM->getOptLevel() == CodeGenOpt::None) return; // If target does not have legal shift left, do not emit bit tests at all. EVT PTy = TLI->getPointerTy(*DL); if (!TLI->isOperationLegal(ISD::SHL, PTy)) return; int BitWidth = PTy.getSizeInBits(); const int64_t N = Clusters.size(); // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. SmallVector MinPartitions(N); // LastElement[i] is the last element of the partition starting at i. SmallVector LastElement(N); // FIXME: This might not be the best algorithm for finding bit test clusters. // Base case: There is only one way to partition Clusters[N-1]. MinPartitions[N - 1] = 1; LastElement[N - 1] = N - 1; // Note: loop indexes are signed to avoid underflow. for (int64_t i = N - 2; i >= 0; --i) { // Find optimal partitioning of Clusters[i..N-1]. // Baseline: Put Clusters[i] into a partition on its own. MinPartitions[i] = MinPartitions[i + 1] + 1; LastElement[i] = i; // Search for a solution that results in fewer partitions. // Note: the search is limited by BitWidth, reducing time complexity. for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { // Try building a partition from Clusters[i..j]. // Check the range. if (!TLI->rangeFitsInWord(Clusters[i].Low->getValue(), Clusters[j].High->getValue(), *DL)) continue; // Check nbr of destinations and cluster types. // FIXME: This works, but doesn't seem very efficient. bool RangesOnly = true; BitVector Dests(FuncInfo.MF->getNumBlockIDs()); for (int64_t k = i; k <= j; k++) { if (Clusters[k].Kind != CC_Range) { RangesOnly = false; break; } Dests.set(Clusters[k].MBB->getNumber()); } if (!RangesOnly || Dests.count() > 3) break; // Check if it's a better partition. unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); if (NumPartitions < MinPartitions[i]) { // Found a better partition. MinPartitions[i] = NumPartitions; LastElement[i] = j; } } } // Iterate over the partitions, replacing with bit-test clusters in-place. unsigned DstIndex = 0; for (unsigned First = 0, Last; First < N; First = Last + 1) { Last = LastElement[First]; assert(First <= Last); assert(DstIndex <= First); CaseCluster BitTestCluster; if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { Clusters[DstIndex++] = BitTestCluster; } else { size_t NumClusters = Last - First + 1; std::memmove(&Clusters[DstIndex], &Clusters[First], sizeof(Clusters[0]) * NumClusters); DstIndex += NumClusters; } } Clusters.resize(DstIndex); } bool SwitchCG::SwitchLowering::buildBitTests(CaseClusterVector &Clusters, unsigned First, unsigned Last, const SwitchInst *SI, CaseCluster &BTCluster) { assert(First <= Last); if (First == Last) return false; BitVector Dests(FuncInfo.MF->getNumBlockIDs()); unsigned NumCmps = 0; for (int64_t I = First; I <= Last; ++I) { assert(Clusters[I].Kind == CC_Range); Dests.set(Clusters[I].MBB->getNumber()); NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; } unsigned NumDests = Dests.count(); APInt Low = Clusters[First].Low->getValue(); APInt High = Clusters[Last].High->getValue(); assert(Low.slt(High)); if (!TLI->isSuitableForBitTests(NumDests, NumCmps, Low, High, *DL)) return false; APInt LowBound; APInt CmpRange; const int BitWidth = TLI->getPointerTy(*DL).getSizeInBits(); assert(TLI->rangeFitsInWord(Low, High, *DL) && "Case range must fit in bit mask!"); // Check if the clusters cover a contiguous range such that no value in the // range will jump to the default statement. bool ContiguousRange = true; for (int64_t I = First + 1; I <= Last; ++I) { if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { ContiguousRange = false; break; } } if (Low.isStrictlyPositive() && High.slt(BitWidth)) { // Optimize the case where all the case values fit in a word without having // to subtract minValue. In this case, we can optimize away the subtraction. LowBound = APInt::getZero(Low.getBitWidth()); CmpRange = High; ContiguousRange = false; } else { LowBound = Low; CmpRange = High - Low; } CaseBitsVector CBV; auto TotalProb = BranchProbability::getZero(); for (unsigned i = First; i <= Last; ++i) { // Find the CaseBits for this destination. unsigned j; for (j = 0; j < CBV.size(); ++j) if (CBV[j].BB == Clusters[i].MBB) break; if (j == CBV.size()) CBV.push_back( CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); CaseBits *CB = &CBV[j]; // Update Mask, Bits and ExtraProb. uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; CB->Bits += Hi - Lo + 1; CB->ExtraProb += Clusters[i].Prob; TotalProb += Clusters[i].Prob; } BitTestInfo BTI; llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) { // Sort by probability first, number of bits second, bit mask third. if (a.ExtraProb != b.ExtraProb) return a.ExtraProb > b.ExtraProb; if (a.Bits != b.Bits) return a.Bits > b.Bits; return a.Mask < b.Mask; }); for (auto &CB : CBV) { MachineBasicBlock *BitTestBB = FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); } BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), SI->getCondition(), -1U, MVT::Other, false, ContiguousRange, nullptr, nullptr, std::move(BTI), TotalProb); BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, BitTestCases.size() - 1, TotalProb); return true; } void SwitchCG::sortAndRangeify(CaseClusterVector &Clusters) { #ifndef NDEBUG for (const CaseCluster &CC : Clusters) assert(CC.Low == CC.High && "Input clusters must be single-case"); #endif llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) { return a.Low->getValue().slt(b.Low->getValue()); }); // Merge adjacent clusters with the same destination. const unsigned N = Clusters.size(); unsigned DstIndex = 0; for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { CaseCluster &CC = Clusters[SrcIndex]; const ConstantInt *CaseVal = CC.Low; MachineBasicBlock *Succ = CC.MBB; if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { // If this case has the same successor and is a neighbour, merge it into // the previous cluster. Clusters[DstIndex - 1].High = CaseVal; Clusters[DstIndex - 1].Prob += CC.Prob; } else { std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], sizeof(Clusters[SrcIndex])); } } Clusters.resize(DstIndex); }