//===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for modules (C++ modules syntax, // Objective-C modules syntax, and Clang header modules). // //===----------------------------------------------------------------------===// #include "clang/AST/ASTConsumer.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/Preprocessor.h" #include "clang/Sema/SemaInternal.h" #include using namespace clang; using namespace sema; static void checkModuleImportContext(Sema &S, Module *M, SourceLocation ImportLoc, DeclContext *DC, bool FromInclude = false) { SourceLocation ExternCLoc; if (auto *LSD = dyn_cast(DC)) { switch (LSD->getLanguage()) { case LinkageSpecDecl::lang_c: if (ExternCLoc.isInvalid()) ExternCLoc = LSD->getBeginLoc(); break; case LinkageSpecDecl::lang_cxx: break; } DC = LSD->getParent(); } while (isa(DC) || isa(DC)) DC = DC->getParent(); if (!isa(DC)) { S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M)) ? diag::ext_module_import_not_at_top_level_noop : diag::err_module_import_not_at_top_level_fatal) << M->getFullModuleName() << DC; S.Diag(cast(DC)->getBeginLoc(), diag::note_module_import_not_at_top_level) << DC; } else if (!M->IsExternC && ExternCLoc.isValid()) { S.Diag(ImportLoc, diag::ext_module_import_in_extern_c) << M->getFullModuleName(); S.Diag(ExternCLoc, diag::note_extern_c_begins_here); } } // We represent the primary and partition names as 'Paths' which are sections // of the hierarchical access path for a clang module. However for C++20 // the periods in a name are just another character, and we will need to // flatten them into a string. static std::string stringFromPath(ModuleIdPath Path) { std::string Name; if (Path.empty()) return Name; for (auto &Piece : Path) { if (!Name.empty()) Name += "."; Name += Piece.first->getName(); } return Name; } Sema::DeclGroupPtrTy Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc) { if (!ModuleScopes.empty() && ModuleScopes.back().Module->Kind == Module::GlobalModuleFragment) { // Under -std=c++2a -fmodules-ts, we can find an explicit 'module;' after // already implicitly entering the global module fragment. That's OK. assert(getLangOpts().CPlusPlusModules && getLangOpts().ModulesTS && "unexpectedly encountered multiple global module fragment decls"); ModuleScopes.back().BeginLoc = ModuleLoc; return nullptr; } // We start in the global module; all those declarations are implicitly // module-private (though they do not have module linkage). Module *GlobalModule = PushGlobalModuleFragment(ModuleLoc, /*IsImplicit=*/false); // All declarations created from now on are owned by the global module. auto *TU = Context.getTranslationUnitDecl(); // [module.global.frag]p2 // A global-module-fragment specifies the contents of the global module // fragment for a module unit. The global module fragment can be used to // provide declarations that are attached to the global module and usable // within the module unit. // // So the declations in the global module shouldn't be visible by default. TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); TU->setLocalOwningModule(GlobalModule); // FIXME: Consider creating an explicit representation of this declaration. return nullptr; } void Sema::HandleStartOfHeaderUnit() { assert(getLangOpts().CPlusPlusModules && "Header units are only valid for C++20 modules"); SourceLocation StartOfTU = SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()); StringRef HUName = getLangOpts().CurrentModule; if (HUName.empty()) { HUName = SourceMgr.getFileEntryForID(SourceMgr.getMainFileID())->getName(); const_cast(getLangOpts()).CurrentModule = HUName.str(); } // TODO: Make the C++20 header lookup independent. // When the input is pre-processed source, we need a file ref to the original // file for the header map. auto F = SourceMgr.getFileManager().getOptionalFileRef(HUName); // For the sake of error recovery (if someone has moved the original header // after creating the pre-processed output) fall back to obtaining the file // ref for the input file, which must be present. if (!F) F = SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID()); assert(F && "failed to find the header unit source?"); Module::Header H{HUName.str(), HUName.str(), *F}; auto &Map = PP.getHeaderSearchInfo().getModuleMap(); Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H); assert(Mod && "module creation should not fail"); ModuleScopes.push_back({}); // No GMF ModuleScopes.back().BeginLoc = StartOfTU; ModuleScopes.back().Module = Mod; ModuleScopes.back().ModuleInterface = true; ModuleScopes.back().IsPartition = false; VisibleModules.setVisible(Mod, StartOfTU); // From now on, we have an owning module for all declarations we see. // All of these are implicitly exported. auto *TU = Context.getTranslationUnitDecl(); TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible); TU->setLocalOwningModule(Mod); } /// Tests whether the given identifier is reserved as a module name and /// diagnoses if it is. Returns true if a diagnostic is emitted and false /// otherwise. static bool DiagReservedModuleName(Sema &S, const IdentifierInfo *II, SourceLocation Loc) { enum { Valid = -1, Invalid = 0, Reserved = 1, } Reason = Valid; if (II->isStr("module") || II->isStr("import")) Reason = Invalid; else if (II->isReserved(S.getLangOpts()) != ReservedIdentifierStatus::NotReserved) Reason = Reserved; // If the identifier is reserved (not invalid) but is in a system header, // we do not diagnose (because we expect system headers to use reserved // identifiers). if (Reason == Reserved && S.getSourceManager().isInSystemHeader(Loc)) Reason = Valid; if (Reason != Valid) { S.Diag(Loc, diag::err_invalid_module_name) << II << (int)Reason; return true; } return false; } Sema::DeclGroupPtrTy Sema::ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc, ModuleDeclKind MDK, ModuleIdPath Path, ModuleIdPath Partition, ModuleImportState &ImportState) { assert((getLangOpts().ModulesTS || getLangOpts().CPlusPlusModules) && "should only have module decl in Modules TS or C++20"); bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl; bool SeenGMF = ImportState == ModuleImportState::GlobalFragment; // If any of the steps here fail, we count that as invalidating C++20 // module state; ImportState = ModuleImportState::NotACXX20Module; bool IsPartition = !Partition.empty(); if (IsPartition) switch (MDK) { case ModuleDeclKind::Implementation: MDK = ModuleDeclKind::PartitionImplementation; break; case ModuleDeclKind::Interface: MDK = ModuleDeclKind::PartitionInterface; break; default: llvm_unreachable("how did we get a partition type set?"); } // A (non-partition) module implementation unit requires that we are not // compiling a module of any kind. A partition implementation emits an // interface (and the AST for the implementation), which will subsequently // be consumed to emit a binary. // A module interface unit requires that we are not compiling a module map. switch (getLangOpts().getCompilingModule()) { case LangOptions::CMK_None: // It's OK to compile a module interface as a normal translation unit. break; case LangOptions::CMK_ModuleInterface: if (MDK != ModuleDeclKind::Implementation) break; // We were asked to compile a module interface unit but this is a module // implementation unit. Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch) << FixItHint::CreateInsertion(ModuleLoc, "export "); MDK = ModuleDeclKind::Interface; break; case LangOptions::CMK_ModuleMap: Diag(ModuleLoc, diag::err_module_decl_in_module_map_module); return nullptr; case LangOptions::CMK_HeaderUnit: Diag(ModuleLoc, diag::err_module_decl_in_header_unit); return nullptr; } assert(ModuleScopes.size() <= 1 && "expected to be at global module scope"); // FIXME: Most of this work should be done by the preprocessor rather than // here, in order to support macro import. // Only one module-declaration is permitted per source file. if (isCurrentModulePurview()) { Diag(ModuleLoc, diag::err_module_redeclaration); Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module), diag::note_prev_module_declaration); return nullptr; } assert((!getLangOpts().CPlusPlusModules || getLangOpts().ModulesTS || SeenGMF == (bool)this->GlobalModuleFragment) && "mismatched global module state"); // In C++20, the module-declaration must be the first declaration if there // is no global module fragment. if (getLangOpts().CPlusPlusModules && !IsFirstDecl && !SeenGMF) { Diag(ModuleLoc, diag::err_module_decl_not_at_start); SourceLocation BeginLoc = ModuleScopes.empty() ? SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()) : ModuleScopes.back().BeginLoc; if (BeginLoc.isValid()) { Diag(BeginLoc, diag::note_global_module_introducer_missing) << FixItHint::CreateInsertion(BeginLoc, "module;\n"); } } // C++2b [module.unit]p1: ... The identifiers module and import shall not // appear as identifiers in a module-name or module-partition. All // module-names either beginning with an identifier consisting of std // followed by zero or more digits or containing a reserved identifier // ([lex.name]) are reserved and shall not be specified in a // module-declaration; no diagnostic is required. // Test the first part of the path to see if it's std[0-9]+ but allow the // name in a system header. StringRef FirstComponentName = Path[0].first->getName(); if (!getSourceManager().isInSystemHeader(Path[0].second) && (FirstComponentName == "std" || (FirstComponentName.startswith("std") && llvm::all_of(FirstComponentName.drop_front(3), &llvm::isDigit)))) { Diag(Path[0].second, diag::err_invalid_module_name) << Path[0].first << /*reserved*/ 1; return nullptr; } // Then test all of the components in the path to see if any of them are // using another kind of reserved or invalid identifier. for (auto Part : Path) { if (DiagReservedModuleName(*this, Part.first, Part.second)) return nullptr; } // Flatten the dots in a module name. Unlike Clang's hierarchical module map // modules, the dots here are just another character that can appear in a // module name. std::string ModuleName = stringFromPath(Path); if (IsPartition) { ModuleName += ":"; ModuleName += stringFromPath(Partition); } // If a module name was explicitly specified on the command line, it must be // correct. if (!getLangOpts().CurrentModule.empty() && getLangOpts().CurrentModule != ModuleName) { Diag(Path.front().second, diag::err_current_module_name_mismatch) << SourceRange(Path.front().second, IsPartition ? Partition.back().second : Path.back().second) << getLangOpts().CurrentModule; return nullptr; } const_cast(getLangOpts()).CurrentModule = ModuleName; auto &Map = PP.getHeaderSearchInfo().getModuleMap(); Module *Mod; switch (MDK) { case ModuleDeclKind::Interface: case ModuleDeclKind::PartitionInterface: { // We can't have parsed or imported a definition of this module or parsed a // module map defining it already. if (auto *M = Map.findModule(ModuleName)) { Diag(Path[0].second, diag::err_module_redefinition) << ModuleName; if (M->DefinitionLoc.isValid()) Diag(M->DefinitionLoc, diag::note_prev_module_definition); else if (OptionalFileEntryRef FE = M->getASTFile()) Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file) << FE->getName(); Mod = M; break; } // Create a Module for the module that we're defining. Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); if (MDK == ModuleDeclKind::PartitionInterface) Mod->Kind = Module::ModulePartitionInterface; assert(Mod && "module creation should not fail"); break; } case ModuleDeclKind::Implementation: { // C++20 A module-declaration that contains neither an export- // keyword nor a module-partition implicitly imports the primary // module interface unit of the module as if by a module-import- // declaration. std::pair ModuleNameLoc( PP.getIdentifierInfo(ModuleName), Path[0].second); // The module loader will assume we're trying to import the module that // we're building if `LangOpts.CurrentModule` equals to 'ModuleName'. // Change the value for `LangOpts.CurrentModule` temporarily to make the // module loader work properly. const_cast(getLangOpts()).CurrentModule = ""; Mod = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc}, Module::AllVisible, /*IsInclusionDirective=*/false); const_cast(getLangOpts()).CurrentModule = ModuleName; if (!Mod) { Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName; // Create an empty module interface unit for error recovery. Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); } } break; case ModuleDeclKind::PartitionImplementation: // Create an interface, but note that it is an implementation // unit. Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); Mod->Kind = Module::ModulePartitionImplementation; break; } if (!this->GlobalModuleFragment) { ModuleScopes.push_back({}); if (getLangOpts().ModulesLocalVisibility) ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); } else { // We're done with the global module fragment now. ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global); } // Switch from the global module fragment (if any) to the named module. ModuleScopes.back().BeginLoc = StartLoc; ModuleScopes.back().Module = Mod; ModuleScopes.back().ModuleInterface = MDK != ModuleDeclKind::Implementation; ModuleScopes.back().IsPartition = IsPartition; VisibleModules.setVisible(Mod, ModuleLoc); // From now on, we have an owning module for all declarations we see. // In C++20 modules, those declaration would be reachable when imported // unless explicitily exported. // Otherwise, those declarations are module-private unless explicitly // exported. auto *TU = Context.getTranslationUnitDecl(); TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); TU->setLocalOwningModule(Mod); // We are in the module purview, but before any other (non import) // statements, so imports are allowed. ImportState = ModuleImportState::ImportAllowed; // For an implementation, We already made an implicit import (its interface). // Make and return the import decl to be added to the current TU. if (MDK == ModuleDeclKind::Implementation) { // Make the import decl for the interface. ImportDecl *Import = ImportDecl::Create(Context, CurContext, ModuleLoc, Mod, Path[0].second); // and return it to be added. return ConvertDeclToDeclGroup(Import); } // FIXME: Create a ModuleDecl. return nullptr; } Sema::DeclGroupPtrTy Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc, SourceLocation PrivateLoc) { // C++20 [basic.link]/2: // A private-module-fragment shall appear only in a primary module // interface unit. switch (ModuleScopes.empty() ? Module::GlobalModuleFragment : ModuleScopes.back().Module->Kind) { case Module::ModuleMapModule: case Module::GlobalModuleFragment: case Module::ModulePartitionImplementation: case Module::ModulePartitionInterface: case Module::ModuleHeaderUnit: Diag(PrivateLoc, diag::err_private_module_fragment_not_module); return nullptr; case Module::PrivateModuleFragment: Diag(PrivateLoc, diag::err_private_module_fragment_redefined); Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition); return nullptr; case Module::ModuleInterfaceUnit: break; } if (!ModuleScopes.back().ModuleInterface) { Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface); Diag(ModuleScopes.back().BeginLoc, diag::note_not_module_interface_add_export) << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); return nullptr; } // FIXME: Check this isn't a module interface partition. // FIXME: Check that this translation unit does not import any partitions; // such imports would violate [basic.link]/2's "shall be the only module unit" // restriction. // We've finished the public fragment of the translation unit. ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal); auto &Map = PP.getHeaderSearchInfo().getModuleMap(); Module *PrivateModuleFragment = Map.createPrivateModuleFragmentForInterfaceUnit( ModuleScopes.back().Module, PrivateLoc); assert(PrivateModuleFragment && "module creation should not fail"); // Enter the scope of the private module fragment. ModuleScopes.push_back({}); ModuleScopes.back().BeginLoc = ModuleLoc; ModuleScopes.back().Module = PrivateModuleFragment; ModuleScopes.back().ModuleInterface = true; VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc); // All declarations created from now on are scoped to the private module // fragment (and are neither visible nor reachable in importers of the module // interface). auto *TU = Context.getTranslationUnitDecl(); TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate); TU->setLocalOwningModule(PrivateModuleFragment); // FIXME: Consider creating an explicit representation of this declaration. return nullptr; } DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, SourceLocation ExportLoc, SourceLocation ImportLoc, ModuleIdPath Path, bool IsPartition) { bool Cxx20Mode = getLangOpts().CPlusPlusModules || getLangOpts().ModulesTS; assert((!IsPartition || Cxx20Mode) && "partition seen in non-C++20 code?"); // For a C++20 module name, flatten into a single identifier with the source // location of the first component. std::pair ModuleNameLoc; std::string ModuleName; if (IsPartition) { // We already checked that we are in a module purview in the parser. assert(!ModuleScopes.empty() && "in a module purview, but no module?"); Module *NamedMod = ModuleScopes.back().Module; // If we are importing into a partition, find the owning named module, // otherwise, the name of the importing named module. ModuleName = NamedMod->getPrimaryModuleInterfaceName().str(); ModuleName += ":"; ModuleName += stringFromPath(Path); ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; Path = ModuleIdPath(ModuleNameLoc); } else if (Cxx20Mode) { ModuleName = stringFromPath(Path); ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; Path = ModuleIdPath(ModuleNameLoc); } // Diagnose self-import before attempting a load. // [module.import]/9 // A module implementation unit of a module M that is not a module partition // shall not contain a module-import-declaration nominating M. // (for an implementation, the module interface is imported implicitly, // but that's handled in the module decl code). if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() && getCurrentModule()->Name == ModuleName) { Diag(ImportLoc, diag::err_module_self_import_cxx20) << ModuleName << !ModuleScopes.back().ModuleInterface; return true; } Module *Mod = getModuleLoader().loadModule( ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false); if (!Mod) return true; return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path); } /// Determine whether \p D is lexically within an export-declaration. static const ExportDecl *getEnclosingExportDecl(const Decl *D) { for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent()) if (auto *ED = dyn_cast(DC)) return ED; return nullptr; } DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, SourceLocation ExportLoc, SourceLocation ImportLoc, Module *Mod, ModuleIdPath Path) { VisibleModules.setVisible(Mod, ImportLoc); checkModuleImportContext(*this, Mod, ImportLoc, CurContext); // FIXME: we should support importing a submodule within a different submodule // of the same top-level module. Until we do, make it an error rather than // silently ignoring the import. // FIXME: Should we warn on a redundant import of the current module? if (Mod->isForBuilding(getLangOpts()) && (getLangOpts().isCompilingModule() || !getLangOpts().ModulesTS)) { Diag(ImportLoc, getLangOpts().isCompilingModule() ? diag::err_module_self_import : diag::err_module_import_in_implementation) << Mod->getFullModuleName() << getLangOpts().CurrentModule; } SmallVector IdentifierLocs; if (Path.empty()) { // If this was a header import, pad out with dummy locations. // FIXME: Pass in and use the location of the header-name token in this // case. for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent) IdentifierLocs.push_back(SourceLocation()); } else if (getLangOpts().CPlusPlusModules && !Mod->Parent) { // A single identifier for the whole name. IdentifierLocs.push_back(Path[0].second); } else { Module *ModCheck = Mod; for (unsigned I = 0, N = Path.size(); I != N; ++I) { // If we've run out of module parents, just drop the remaining // identifiers. We need the length to be consistent. if (!ModCheck) break; ModCheck = ModCheck->Parent; IdentifierLocs.push_back(Path[I].second); } } ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc, Mod, IdentifierLocs); CurContext->addDecl(Import); // Sequence initialization of the imported module before that of the current // module, if any. if (!ModuleScopes.empty()) Context.addModuleInitializer(ModuleScopes.back().Module, Import); // A module (partition) implementation unit shall not be exported. if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() && Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) { Diag(ExportLoc, diag::err_export_partition_impl) << SourceRange(ExportLoc, Path.back().second); } else if (!ModuleScopes.empty() && (ModuleScopes.back().ModuleInterface || (getLangOpts().CPlusPlusModules && ModuleScopes.back().Module->isGlobalModule()))) { // Re-export the module if the imported module is exported. // Note that we don't need to add re-exported module to Imports field // since `Exports` implies the module is imported already. if (ExportLoc.isValid() || getEnclosingExportDecl(Import)) getCurrentModule()->Exports.emplace_back(Mod, false); else getCurrentModule()->Imports.insert(Mod); } else if (ExportLoc.isValid()) { // [module.interface]p1: // An export-declaration shall inhabit a namespace scope and appear in the // purview of a module interface unit. Diag(ExportLoc, diag::err_export_not_in_module_interface) << (!ModuleScopes.empty() && !ModuleScopes.back().ImplicitGlobalModuleFragment); } // In some cases we need to know if an entity was present in a directly- // imported module (as opposed to a transitive import). This avoids // searching both Imports and Exports. DirectModuleImports.insert(Mod); return Import; } void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); BuildModuleInclude(DirectiveLoc, Mod); } void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { // Determine whether we're in the #include buffer for a module. The #includes // in that buffer do not qualify as module imports; they're just an // implementation detail of us building the module. // // FIXME: Should we even get ActOnModuleInclude calls for those? bool IsInModuleIncludes = TUKind == TU_Module && getSourceManager().isWrittenInMainFile(DirectiveLoc); bool ShouldAddImport = !IsInModuleIncludes; // If this module import was due to an inclusion directive, create an // implicit import declaration to capture it in the AST. if (ShouldAddImport) { TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, DirectiveLoc, Mod, DirectiveLoc); if (!ModuleScopes.empty()) Context.addModuleInitializer(ModuleScopes.back().Module, ImportD); TU->addDecl(ImportD); Consumer.HandleImplicitImportDecl(ImportD); } getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc); VisibleModules.setVisible(Mod, DirectiveLoc); if (getLangOpts().isCompilingModule()) { Module *ThisModule = PP.getHeaderSearchInfo().lookupModule( getLangOpts().CurrentModule, DirectiveLoc, false, false); (void)ThisModule; assert(ThisModule && "was expecting a module if building one"); } } void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) { checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); ModuleScopes.push_back({}); ModuleScopes.back().Module = Mod; if (getLangOpts().ModulesLocalVisibility) ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); VisibleModules.setVisible(Mod, DirectiveLoc); // The enclosing context is now part of this module. // FIXME: Consider creating a child DeclContext to hold the entities // lexically within the module. if (getLangOpts().trackLocalOwningModule()) { for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { cast(DC)->setModuleOwnershipKind( getLangOpts().ModulesLocalVisibility ? Decl::ModuleOwnershipKind::VisibleWhenImported : Decl::ModuleOwnershipKind::Visible); cast(DC)->setLocalOwningModule(Mod); } } } void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) { if (getLangOpts().ModulesLocalVisibility) { VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules); // Leaving a module hides namespace names, so our visible namespace cache // is now out of date. VisibleNamespaceCache.clear(); } assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod && "left the wrong module scope"); ModuleScopes.pop_back(); // We got to the end of processing a local module. Create an // ImportDecl as we would for an imported module. FileID File = getSourceManager().getFileID(EomLoc); SourceLocation DirectiveLoc; if (EomLoc == getSourceManager().getLocForEndOfFile(File)) { // We reached the end of a #included module header. Use the #include loc. assert(File != getSourceManager().getMainFileID() && "end of submodule in main source file"); DirectiveLoc = getSourceManager().getIncludeLoc(File); } else { // We reached an EOM pragma. Use the pragma location. DirectiveLoc = EomLoc; } BuildModuleInclude(DirectiveLoc, Mod); // Any further declarations are in whatever module we returned to. if (getLangOpts().trackLocalOwningModule()) { // The parser guarantees that this is the same context that we entered // the module within. for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { cast(DC)->setLocalOwningModule(getCurrentModule()); if (!getCurrentModule()) cast(DC)->setModuleOwnershipKind( Decl::ModuleOwnershipKind::Unowned); } } } void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc, Module *Mod) { // Bail if we're not allowed to implicitly import a module here. if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery || VisibleModules.isVisible(Mod)) return; // Create the implicit import declaration. TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, Loc, Mod, Loc); TU->addDecl(ImportD); Consumer.HandleImplicitImportDecl(ImportD); // Make the module visible. getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc); VisibleModules.setVisible(Mod, Loc); } /// We have parsed the start of an export declaration, including the '{' /// (if present). Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc, SourceLocation LBraceLoc) { ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc); // Set this temporarily so we know the export-declaration was braced. D->setRBraceLoc(LBraceLoc); CurContext->addDecl(D); PushDeclContext(S, D); // C++2a [module.interface]p1: // An export-declaration shall appear only [...] in the purview of a module // interface unit. An export-declaration shall not appear directly or // indirectly within [...] a private-module-fragment. if (!isCurrentModulePurview()) { Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0; D->setInvalidDecl(); return D; } else if (!ModuleScopes.back().ModuleInterface) { Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1; Diag(ModuleScopes.back().BeginLoc, diag::note_not_module_interface_add_export) << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); D->setInvalidDecl(); return D; } else if (ModuleScopes.back().Module->Kind == Module::PrivateModuleFragment) { Diag(ExportLoc, diag::err_export_in_private_module_fragment); Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment); D->setInvalidDecl(); return D; } for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) { if (const auto *ND = dyn_cast(DC)) { // An export-declaration shall not appear directly or indirectly within // an unnamed namespace [...] if (ND->isAnonymousNamespace()) { Diag(ExportLoc, diag::err_export_within_anonymous_namespace); Diag(ND->getLocation(), diag::note_anonymous_namespace); // Don't diagnose internal-linkage declarations in this region. D->setInvalidDecl(); return D; } // A declaration is exported if it is [...] a namespace-definition // that contains an exported declaration. // // Defer exporting the namespace until after we leave it, in order to // avoid marking all subsequent declarations in the namespace as exported. if (!DeferredExportedNamespaces.insert(ND).second) break; } } // [...] its declaration or declaration-seq shall not contain an // export-declaration. if (auto *ED = getEnclosingExportDecl(D)) { Diag(ExportLoc, diag::err_export_within_export); if (ED->hasBraces()) Diag(ED->getLocation(), diag::note_export); D->setInvalidDecl(); return D; } D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); return D; } static bool checkExportedDeclContext(Sema &S, DeclContext *DC, SourceLocation BlockStart); namespace { enum class UnnamedDeclKind { Empty, StaticAssert, Asm, UsingDirective, Namespace, Context }; } static std::optional getUnnamedDeclKind(Decl *D) { if (isa(D)) return UnnamedDeclKind::Empty; if (isa(D)) return UnnamedDeclKind::StaticAssert; if (isa(D)) return UnnamedDeclKind::Asm; if (isa(D)) return UnnamedDeclKind::UsingDirective; // Everything else either introduces one or more names or is ill-formed. return std::nullopt; } unsigned getUnnamedDeclDiag(UnnamedDeclKind UDK, bool InBlock) { switch (UDK) { case UnnamedDeclKind::Empty: case UnnamedDeclKind::StaticAssert: // Allow empty-declarations and static_asserts in an export block as an // extension. return InBlock ? diag::ext_export_no_name_block : diag::err_export_no_name; case UnnamedDeclKind::UsingDirective: // Allow exporting using-directives as an extension. return diag::ext_export_using_directive; case UnnamedDeclKind::Namespace: // Anonymous namespace with no content. return diag::introduces_no_names; case UnnamedDeclKind::Context: // Allow exporting DeclContexts that transitively contain no declarations // as an extension. return diag::ext_export_no_names; case UnnamedDeclKind::Asm: return diag::err_export_no_name; } llvm_unreachable("unknown kind"); } static void diagExportedUnnamedDecl(Sema &S, UnnamedDeclKind UDK, Decl *D, SourceLocation BlockStart) { S.Diag(D->getLocation(), getUnnamedDeclDiag(UDK, BlockStart.isValid())) << (unsigned)UDK; if (BlockStart.isValid()) S.Diag(BlockStart, diag::note_export); } /// Check that it's valid to export \p D. static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) { // C++2a [module.interface]p3: // An exported declaration shall declare at least one name if (auto UDK = getUnnamedDeclKind(D)) diagExportedUnnamedDecl(S, *UDK, D, BlockStart); // [...] shall not declare a name with internal linkage. bool HasName = false; if (auto *ND = dyn_cast(D)) { // Don't diagnose anonymous union objects; we'll diagnose their members // instead. HasName = (bool)ND->getDeclName(); if (HasName && ND->getFormalLinkage() == InternalLinkage) { S.Diag(ND->getLocation(), diag::err_export_internal) << ND; if (BlockStart.isValid()) S.Diag(BlockStart, diag::note_export); } } // C++2a [module.interface]p5: // all entities to which all of the using-declarators ultimately refer // shall have been introduced with a name having external linkage if (auto *USD = dyn_cast(D)) { NamedDecl *Target = USD->getUnderlyingDecl(); Linkage Lk = Target->getFormalLinkage(); if (Lk == InternalLinkage || Lk == ModuleLinkage) { S.Diag(USD->getLocation(), diag::err_export_using_internal) << (Lk == InternalLinkage ? 0 : 1) << Target; S.Diag(Target->getLocation(), diag::note_using_decl_target); if (BlockStart.isValid()) S.Diag(BlockStart, diag::note_export); } } // Recurse into namespace-scope DeclContexts. (Only namespace-scope // declarations are exported.). if (auto *DC = dyn_cast(D)) { if (isa(D) && DC->decls().empty()) { if (!HasName) // We don't allow an empty anonymous namespace (we don't allow decls // in them either, but that's handled in the recursion). diagExportedUnnamedDecl(S, UnnamedDeclKind::Namespace, D, BlockStart); // We allow an empty named namespace decl. } else if (DC->getRedeclContext()->isFileContext() && !isa(D)) return checkExportedDeclContext(S, DC, BlockStart); } return false; } /// Check that it's valid to export all the declarations in \p DC. static bool checkExportedDeclContext(Sema &S, DeclContext *DC, SourceLocation BlockStart) { bool AllUnnamed = true; for (auto *D : DC->decls()) AllUnnamed &= checkExportedDecl(S, D, BlockStart); return AllUnnamed; } /// Complete the definition of an export declaration. Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) { auto *ED = cast(D); if (RBraceLoc.isValid()) ED->setRBraceLoc(RBraceLoc); PopDeclContext(); if (!D->isInvalidDecl()) { SourceLocation BlockStart = ED->hasBraces() ? ED->getBeginLoc() : SourceLocation(); for (auto *Child : ED->decls()) { if (checkExportedDecl(*this, Child, BlockStart)) { // If a top-level child is a linkage-spec declaration, it might contain // no declarations (transitively), in which case it's ill-formed. diagExportedUnnamedDecl(*this, UnnamedDeclKind::Context, Child, BlockStart); } if (auto *FD = dyn_cast(Child)) { // [dcl.inline]/7 // If an inline function or variable that is attached to a named module // is declared in a definition domain, it shall be defined in that // domain. // So, if the current declaration does not have a definition, we must // check at the end of the TU (or when the PMF starts) to see that we // have a definition at that point. if (FD->isInlineSpecified() && !FD->isDefined()) PendingInlineFuncDecls.insert(FD); } } } return D; } Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc, bool IsImplicit) { // We shouldn't create new global module fragment if there is already // one. if (!GlobalModuleFragment) { ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); GlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit( BeginLoc, getCurrentModule()); } assert(GlobalModuleFragment && "module creation should not fail"); // Enter the scope of the global module. ModuleScopes.push_back({BeginLoc, GlobalModuleFragment, /*ModuleInterface=*/false, /*IsPartition=*/false, /*ImplicitGlobalModuleFragment=*/IsImplicit, /*OuterVisibleModules=*/{}}); VisibleModules.setVisible(GlobalModuleFragment, BeginLoc); return GlobalModuleFragment; } void Sema::PopGlobalModuleFragment() { assert(!ModuleScopes.empty() && getCurrentModule()->isGlobalModule() && "left the wrong module scope, which is not global module fragment"); ModuleScopes.pop_back(); } bool Sema::isModuleUnitOfCurrentTU(const Module *M) const { assert(M); Module *CurrentModuleUnit = getCurrentModule(); // If we are not in a module currently, M must not be the module unit of // current TU. if (!CurrentModuleUnit) return false; return M->isSubModuleOf(CurrentModuleUnit->getTopLevelModule()); }