// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/numeric/int128.h" #include #include #include #include // NOLINT(readability/streams) #include #include #include #include "absl/base/optimization.h" #include "absl/numeric/bits.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace { // Returns the 0-based position of the last set bit (i.e., most significant bit) // in the given uint128. The argument is not 0. // // For example: // Given: 5 (decimal) == 101 (binary) // Returns: 2 inline ABSL_ATTRIBUTE_ALWAYS_INLINE int Fls128(uint128 n) { if (uint64_t hi = Uint128High64(n)) { ABSL_ASSUME(hi != 0); return 127 - countl_zero(hi); } const uint64_t low = Uint128Low64(n); ABSL_ASSUME(low != 0); return 63 - countl_zero(low); } // Long division/modulo for uint128 implemented using the shift-subtract // division algorithm adapted from: // https://stackoverflow.com/questions/5386377/division-without-using inline void DivModImpl(uint128 dividend, uint128 divisor, uint128* quotient_ret, uint128* remainder_ret) { assert(divisor != 0); if (divisor > dividend) { *quotient_ret = 0; *remainder_ret = dividend; return; } if (divisor == dividend) { *quotient_ret = 1; *remainder_ret = 0; return; } uint128 denominator = divisor; uint128 quotient = 0; // Left aligns the MSB of the denominator and the dividend. const int shift = Fls128(dividend) - Fls128(denominator); denominator <<= shift; // Uses shift-subtract algorithm to divide dividend by denominator. The // remainder will be left in dividend. for (int i = 0; i <= shift; ++i) { quotient <<= 1; if (dividend >= denominator) { dividend -= denominator; quotient |= 1; } denominator >>= 1; } *quotient_ret = quotient; *remainder_ret = dividend; } template uint128 MakeUint128FromFloat(T v) { static_assert(std::is_floating_point::value, ""); // Rounding behavior is towards zero, same as for built-in types. // Undefined behavior if v is NaN or cannot fit into uint128. assert(std::isfinite(v) && v > -1 && (std::numeric_limits::max_exponent <= 128 || v < std::ldexp(static_cast(1), 128))); if (v >= std::ldexp(static_cast(1), 64)) { uint64_t hi = static_cast(std::ldexp(v, -64)); uint64_t lo = static_cast(v - std::ldexp(static_cast(hi), 64)); return MakeUint128(hi, lo); } return MakeUint128(0, static_cast(v)); } #if defined(__clang__) && (__clang_major__ < 9) && !defined(__SSE3__) // Workaround for clang bug: https://bugs.llvm.org/show_bug.cgi?id=38289 // Casting from long double to uint64_t is miscompiled and drops bits. // It is more work, so only use when we need the workaround. uint128 MakeUint128FromFloat(long double v) { // Go 50 bits at a time, that fits in a double static_assert(std::numeric_limits::digits >= 50, ""); static_assert(std::numeric_limits::digits <= 150, ""); // Undefined behavior if v is not finite or cannot fit into uint128. assert(std::isfinite(v) && v > -1 && v < std::ldexp(1.0L, 128)); v = std::ldexp(v, -100); uint64_t w0 = static_cast(static_cast(std::trunc(v))); v = std::ldexp(v - static_cast(w0), 50); uint64_t w1 = static_cast(static_cast(std::trunc(v))); v = std::ldexp(v - static_cast(w1), 50); uint64_t w2 = static_cast(static_cast(std::trunc(v))); return (static_cast(w0) << 100) | (static_cast(w1) << 50) | static_cast(w2); } #endif // __clang__ && (__clang_major__ < 9) && !__SSE3__ } // namespace uint128::uint128(float v) : uint128(MakeUint128FromFloat(v)) {} uint128::uint128(double v) : uint128(MakeUint128FromFloat(v)) {} uint128::uint128(long double v) : uint128(MakeUint128FromFloat(v)) {} #if !defined(ABSL_HAVE_INTRINSIC_INT128) uint128 operator/(uint128 lhs, uint128 rhs) { uint128 quotient = 0; uint128 remainder = 0; DivModImpl(lhs, rhs, "ient, &remainder); return quotient; } uint128 operator%(uint128 lhs, uint128 rhs) { uint128 quotient = 0; uint128 remainder = 0; DivModImpl(lhs, rhs, "ient, &remainder); return remainder; } #endif // !defined(ABSL_HAVE_INTRINSIC_INT128) namespace { std::string Uint128ToFormattedString(uint128 v, std::ios_base::fmtflags flags) { // Select a divisor which is the largest power of the base < 2^64. uint128 div; int div_base_log; switch (flags & std::ios::basefield) { case std::ios::hex: div = 0x1000000000000000; // 16^15 div_base_log = 15; break; case std::ios::oct: div = 01000000000000000000000; // 8^21 div_base_log = 21; break; default: // std::ios::dec div = 10000000000000000000u; // 10^19 div_base_log = 19; break; } // Now piece together the uint128 representation from three chunks of the // original value, each less than "div" and therefore representable as a // uint64_t. std::ostringstream os; std::ios_base::fmtflags copy_mask = std::ios::basefield | std::ios::showbase | std::ios::uppercase; os.setf(flags & copy_mask, copy_mask); uint128 high = v; uint128 low; DivModImpl(high, div, &high, &low); uint128 mid; DivModImpl(high, div, &high, &mid); if (Uint128Low64(high) != 0) { os << Uint128Low64(high); os << std::noshowbase << std::setfill('0') << std::setw(div_base_log); os << Uint128Low64(mid); os << std::setw(div_base_log); } else if (Uint128Low64(mid) != 0) { os << Uint128Low64(mid); os << std::noshowbase << std::setfill('0') << std::setw(div_base_log); } os << Uint128Low64(low); return os.str(); } } // namespace std::string uint128::ToString() const { return Uint128ToFormattedString(*this, std::ios_base::dec); } std::ostream& operator<<(std::ostream& os, uint128 v) { std::ios_base::fmtflags flags = os.flags(); std::string rep = Uint128ToFormattedString(v, flags); // Add the requisite padding. std::streamsize width = os.width(0); if (static_cast(width) > rep.size()) { const size_t count = static_cast(width) - rep.size(); std::ios::fmtflags adjustfield = flags & std::ios::adjustfield; if (adjustfield == std::ios::left) { rep.append(count, os.fill()); } else if (adjustfield == std::ios::internal && (flags & std::ios::showbase) && (flags & std::ios::basefield) == std::ios::hex && v != 0) { rep.insert(size_t{2}, count, os.fill()); } else { rep.insert(size_t{0}, count, os.fill()); } } return os << rep; } namespace { uint128 UnsignedAbsoluteValue(int128 v) { // Cast to uint128 before possibly negating because -Int128Min() is undefined. return Int128High64(v) < 0 ? -uint128(v) : uint128(v); } } // namespace #if !defined(ABSL_HAVE_INTRINSIC_INT128) namespace { template int128 MakeInt128FromFloat(T v) { // Conversion when v is NaN or cannot fit into int128 would be undefined // behavior if using an intrinsic 128-bit integer. assert(std::isfinite(v) && (std::numeric_limits::max_exponent <= 127 || (v >= -std::ldexp(static_cast(1), 127) && v < std::ldexp(static_cast(1), 127)))); // We must convert the absolute value and then negate as needed, because // floating point types are typically sign-magnitude. Otherwise, the // difference between the high and low 64 bits when interpreted as two's // complement overwhelms the precision of the mantissa. uint128 result = v < 0 ? -MakeUint128FromFloat(-v) : MakeUint128FromFloat(v); return MakeInt128(int128_internal::BitCastToSigned(Uint128High64(result)), Uint128Low64(result)); } } // namespace int128::int128(float v) : int128(MakeInt128FromFloat(v)) {} int128::int128(double v) : int128(MakeInt128FromFloat(v)) {} int128::int128(long double v) : int128(MakeInt128FromFloat(v)) {} int128 operator/(int128 lhs, int128 rhs) { assert(lhs != Int128Min() || rhs != -1); // UB on two's complement. uint128 quotient = 0; uint128 remainder = 0; DivModImpl(UnsignedAbsoluteValue(lhs), UnsignedAbsoluteValue(rhs), "ient, &remainder); if ((Int128High64(lhs) < 0) != (Int128High64(rhs) < 0)) quotient = -quotient; return MakeInt128(int128_internal::BitCastToSigned(Uint128High64(quotient)), Uint128Low64(quotient)); } int128 operator%(int128 lhs, int128 rhs) { assert(lhs != Int128Min() || rhs != -1); // UB on two's complement. uint128 quotient = 0; uint128 remainder = 0; DivModImpl(UnsignedAbsoluteValue(lhs), UnsignedAbsoluteValue(rhs), "ient, &remainder); if (Int128High64(lhs) < 0) remainder = -remainder; return MakeInt128(int128_internal::BitCastToSigned(Uint128High64(remainder)), Uint128Low64(remainder)); } #endif // ABSL_HAVE_INTRINSIC_INT128 std::string int128::ToString() const { std::string rep; if (Int128High64(*this) < 0) rep = "-"; rep.append(Uint128ToFormattedString(UnsignedAbsoluteValue(*this), std::ios_base::dec)); return rep; } std::ostream& operator<<(std::ostream& os, int128 v) { std::ios_base::fmtflags flags = os.flags(); std::string rep; // Add the sign if needed. bool print_as_decimal = (flags & std::ios::basefield) == std::ios::dec || (flags & std::ios::basefield) == std::ios_base::fmtflags(); if (print_as_decimal) { if (Int128High64(v) < 0) { rep = "-"; } else if (flags & std::ios::showpos) { rep = "+"; } } rep.append(Uint128ToFormattedString( print_as_decimal ? UnsignedAbsoluteValue(v) : uint128(v), os.flags())); // Add the requisite padding. std::streamsize width = os.width(0); if (static_cast(width) > rep.size()) { const size_t count = static_cast(width) - rep.size(); switch (flags & std::ios::adjustfield) { case std::ios::left: rep.append(count, os.fill()); break; case std::ios::internal: if (print_as_decimal && (rep[0] == '+' || rep[0] == '-')) { rep.insert(size_t{1}, count, os.fill()); } else if ((flags & std::ios::basefield) == std::ios::hex && (flags & std::ios::showbase) && v != 0) { rep.insert(size_t{2}, count, os.fill()); } else { rep.insert(size_t{0}, count, os.fill()); } break; default: // std::ios::right rep.insert(size_t{0}, count, os.fill()); break; } } return os << rep; } ABSL_NAMESPACE_END } // namespace absl #ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL namespace std { constexpr bool numeric_limits::is_specialized; constexpr bool numeric_limits::is_signed; constexpr bool numeric_limits::is_integer; constexpr bool numeric_limits::is_exact; constexpr bool numeric_limits::has_infinity; constexpr bool numeric_limits::has_quiet_NaN; constexpr bool numeric_limits::has_signaling_NaN; constexpr float_denorm_style numeric_limits::has_denorm; constexpr bool numeric_limits::has_denorm_loss; constexpr float_round_style numeric_limits::round_style; constexpr bool numeric_limits::is_iec559; constexpr bool numeric_limits::is_bounded; constexpr bool numeric_limits::is_modulo; constexpr int numeric_limits::digits; constexpr int numeric_limits::digits10; constexpr int numeric_limits::max_digits10; constexpr int numeric_limits::radix; constexpr int numeric_limits::min_exponent; constexpr int numeric_limits::min_exponent10; constexpr int numeric_limits::max_exponent; constexpr int numeric_limits::max_exponent10; constexpr bool numeric_limits::traps; constexpr bool numeric_limits::tinyness_before; constexpr bool numeric_limits::is_specialized; constexpr bool numeric_limits::is_signed; constexpr bool numeric_limits::is_integer; constexpr bool numeric_limits::is_exact; constexpr bool numeric_limits::has_infinity; constexpr bool numeric_limits::has_quiet_NaN; constexpr bool numeric_limits::has_signaling_NaN; constexpr float_denorm_style numeric_limits::has_denorm; constexpr bool numeric_limits::has_denorm_loss; constexpr float_round_style numeric_limits::round_style; constexpr bool numeric_limits::is_iec559; constexpr bool numeric_limits::is_bounded; constexpr bool numeric_limits::is_modulo; constexpr int numeric_limits::digits; constexpr int numeric_limits::digits10; constexpr int numeric_limits::max_digits10; constexpr int numeric_limits::radix; constexpr int numeric_limits::min_exponent; constexpr int numeric_limits::min_exponent10; constexpr int numeric_limits::max_exponent; constexpr int numeric_limits::max_exponent10; constexpr bool numeric_limits::traps; constexpr bool numeric_limits::tinyness_before; } // namespace std #endif