//===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass eliminates machine instruction PHI nodes by inserting copy // instructions. This destroys SSA information, but is the desired input for // some register allocators. // //===----------------------------------------------------------------------===// #include "PHIEliminationUtils.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/CodeGen/LiveInterval.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "phi-node-elimination" static cl::opt DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), cl::Hidden, cl::desc("Disable critical edge splitting " "during PHI elimination")); static cl::opt SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), cl::Hidden, cl::desc("Split all critical edges during " "PHI elimination")); static cl::opt NoPhiElimLiveOutEarlyExit( "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden, cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true.")); namespace { class PHIElimination : public MachineFunctionPass { MachineRegisterInfo *MRI; // Machine register information LiveVariables *LV; LiveIntervals *LIS; public: static char ID; // Pass identification, replacement for typeid PHIElimination() : MachineFunctionPass(ID) { initializePHIEliminationPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; void getAnalysisUsage(AnalysisUsage &AU) const override; private: /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions /// in predecessor basic blocks. bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); void LowerPHINode(MachineBasicBlock &MBB, MachineBasicBlock::iterator LastPHIIt); /// analyzePHINodes - Gather information about the PHI nodes in /// here. In particular, we want to map the number of uses of a virtual /// register which is used in a PHI node. We map that to the BB the /// vreg is coming from. This is used later to determine when the vreg /// is killed in the BB. void analyzePHINodes(const MachineFunction& MF); /// Split critical edges where necessary for good coalescer performance. bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, MachineLoopInfo *MLI, std::vector> *LiveInSets); // These functions are temporary abstractions around LiveVariables and // LiveIntervals, so they can go away when LiveVariables does. bool isLiveIn(Register Reg, const MachineBasicBlock *MBB); bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB); using BBVRegPair = std::pair; using VRegPHIUse = DenseMap; // Count the number of non-undef PHI uses of each register in each BB. VRegPHIUse VRegPHIUseCount; // Defs of PHI sources which are implicit_def. SmallPtrSet ImpDefs; // Map reusable lowered PHI node -> incoming join register. using LoweredPHIMap = DenseMap; LoweredPHIMap LoweredPHIs; }; } // end anonymous namespace STATISTIC(NumLowered, "Number of phis lowered"); STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); STATISTIC(NumReused, "Number of reused lowered phis"); char PHIElimination::ID = 0; char& llvm::PHIEliminationID = PHIElimination::ID; INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE, "Eliminate PHI nodes for register allocation", false, false) INITIALIZE_PASS_DEPENDENCY(LiveVariables) INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE, "Eliminate PHI nodes for register allocation", false, false) void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { AU.addUsedIfAvailable(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { MRI = &MF.getRegInfo(); LV = getAnalysisIfAvailable(); LIS = getAnalysisIfAvailable(); bool Changed = false; // Split critical edges to help the coalescer. if (!DisableEdgeSplitting && (LV || LIS)) { // A set of live-in regs for each MBB which is used to update LV // efficiently also with large functions. std::vector> LiveInSets; if (LV) { LiveInSets.resize(MF.size()); for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) { // Set the bit for this register for each MBB where it is // live-through or live-in (killed). Register VirtReg = Register::index2VirtReg(Index); MachineInstr *DefMI = MRI->getVRegDef(VirtReg); if (!DefMI) continue; LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg); SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin(); SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end(); while (AliveBlockItr != EndItr) { unsigned BlockNum = *(AliveBlockItr++); LiveInSets[BlockNum].set(Index); } // The register is live into an MBB in which it is killed but not // defined. See comment for VarInfo in LiveVariables.h. MachineBasicBlock *DefMBB = DefMI->getParent(); if (VI.Kills.size() > 1 || (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB)) for (auto *MI : VI.Kills) LiveInSets[MI->getParent()->getNumber()].set(Index); } } MachineLoopInfo *MLI = getAnalysisIfAvailable(); for (auto &MBB : MF) Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr)); } // This pass takes the function out of SSA form. MRI->leaveSSA(); // Populate VRegPHIUseCount analyzePHINodes(MF); // Eliminate PHI instructions by inserting copies into predecessor blocks. for (auto &MBB : MF) Changed |= EliminatePHINodes(MF, MBB); // Remove dead IMPLICIT_DEF instructions. for (MachineInstr *DefMI : ImpDefs) { Register DefReg = DefMI->getOperand(0).getReg(); if (MRI->use_nodbg_empty(DefReg)) { if (LIS) LIS->RemoveMachineInstrFromMaps(*DefMI); DefMI->eraseFromParent(); } } // Clean up the lowered PHI instructions. for (auto &I : LoweredPHIs) { if (LIS) LIS->RemoveMachineInstrFromMaps(*I.first); MF.deleteMachineInstr(I.first); } // TODO: we should use the incremental DomTree updater here. if (Changed) if (auto *MDT = getAnalysisIfAvailable()) MDT->getBase().recalculate(MF); LoweredPHIs.clear(); ImpDefs.clear(); VRegPHIUseCount.clear(); MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs); return Changed; } /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in /// predecessor basic blocks. bool PHIElimination::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) { if (MBB.empty() || !MBB.front().isPHI()) return false; // Quick exit for basic blocks without PHIs. // Get an iterator to the last PHI node. MachineBasicBlock::iterator LastPHIIt = std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); while (MBB.front().isPHI()) LowerPHINode(MBB, LastPHIIt); return true; } /// Return true if all defs of VirtReg are implicit-defs. /// This includes registers with no defs. static bool isImplicitlyDefined(unsigned VirtReg, const MachineRegisterInfo &MRI) { for (MachineInstr &DI : MRI.def_instructions(VirtReg)) if (!DI.isImplicitDef()) return false; return true; } /// Return true if all sources of the phi node are implicit_def's, or undef's. static bool allPhiOperandsUndefined(const MachineInstr &MPhi, const MachineRegisterInfo &MRI) { for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) { const MachineOperand &MO = MPhi.getOperand(I); if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef()) return false; } return true; } /// LowerPHINode - Lower the PHI node at the top of the specified block. void PHIElimination::LowerPHINode(MachineBasicBlock &MBB, MachineBasicBlock::iterator LastPHIIt) { ++NumLowered; MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); // Unlink the PHI node from the basic block, but don't delete the PHI yet. MachineInstr *MPhi = MBB.remove(&*MBB.begin()); unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; Register DestReg = MPhi->getOperand(0).getReg(); assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); bool isDead = MPhi->getOperand(0).isDead(); // Create a new register for the incoming PHI arguments. MachineFunction &MF = *MBB.getParent(); unsigned IncomingReg = 0; bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? // Insert a register to register copy at the top of the current block (but // after any remaining phi nodes) which copies the new incoming register // into the phi node destination. MachineInstr *PHICopy = nullptr; const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); if (allPhiOperandsUndefined(*MPhi, *MRI)) // If all sources of a PHI node are implicit_def or undef uses, just emit an // implicit_def instead of a copy. PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); else { // Can we reuse an earlier PHI node? This only happens for critical edges, // typically those created by tail duplication. unsigned &entry = LoweredPHIs[MPhi]; if (entry) { // An identical PHI node was already lowered. Reuse the incoming register. IncomingReg = entry; reusedIncoming = true; ++NumReused; LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for " << *MPhi); } else { const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); } // Give the target possiblity to handle special cases fallthrough otherwise PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(), IncomingReg, DestReg); } if (MPhi->peekDebugInstrNum()) { // If referred to by debug-info, store where this PHI was. MachineFunction *MF = MBB.getParent(); unsigned ID = MPhi->peekDebugInstrNum(); auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0); auto Res = MF->DebugPHIPositions.insert({ID, P}); assert(Res.second); (void)Res; } // Update live variable information if there is any. if (LV) { if (IncomingReg) { LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); // Increment use count of the newly created virtual register. LV->setPHIJoin(IncomingReg); MachineInstr *OldKill = nullptr; bool IsPHICopyAfterOldKill = false; if (reusedIncoming && (OldKill = VI.findKill(&MBB))) { // Calculate whether the PHICopy is after the OldKill. // In general, the PHICopy is inserted as the first non-phi instruction // by default, so it's before the OldKill. But some Target hooks for // createPHIDestinationCopy() may modify the default insert position of // PHICopy. for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end(); I != E; ++I) { if (I == PHICopy) break; if (I == OldKill) { IsPHICopyAfterOldKill = true; break; } } } // When we are reusing the incoming register and it has been marked killed // by OldKill, if the PHICopy is after the OldKill, we should remove the // killed flag from OldKill. if (IsPHICopyAfterOldKill) { LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill); LV->removeVirtualRegisterKilled(IncomingReg, *OldKill); LLVM_DEBUG(MBB.dump()); } // Add information to LiveVariables to know that the first used incoming // value or the resued incoming value whose PHICopy is after the OldKIll // is killed. Note that because the value is defined in several places // (once each for each incoming block), the "def" block and instruction // fields for the VarInfo is not filled in. if (!OldKill || IsPHICopyAfterOldKill) LV->addVirtualRegisterKilled(IncomingReg, *PHICopy); } // Since we are going to be deleting the PHI node, if it is the last use of // any registers, or if the value itself is dead, we need to move this // information over to the new copy we just inserted. LV->removeVirtualRegistersKilled(*MPhi); // If the result is dead, update LV. if (isDead) { LV->addVirtualRegisterDead(DestReg, *PHICopy); LV->removeVirtualRegisterDead(DestReg, *MPhi); } } // Update LiveIntervals for the new copy or implicit def. if (LIS) { SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy); SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); if (IncomingReg) { // Add the region from the beginning of MBB to the copy instruction to // IncomingReg's live interval. LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg); VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); if (!IncomingVNI) IncomingVNI = IncomingLI.getNextValue(MBBStartIndex, LIS->getVNInfoAllocator()); IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex, DestCopyIndex.getRegSlot(), IncomingVNI)); } LiveInterval &DestLI = LIS->getInterval(DestReg); assert(!DestLI.empty() && "PHIs should have nonempty LiveIntervals."); if (DestLI.endIndex().isDead()) { // A dead PHI's live range begins and ends at the start of the MBB, but // the lowered copy, which will still be dead, needs to begin and end at // the copy instruction. VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex); assert(OrigDestVNI && "PHI destination should be live at block entry."); DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot()); DestLI.createDeadDef(DestCopyIndex.getRegSlot(), LIS->getVNInfoAllocator()); DestLI.removeValNo(OrigDestVNI); } else { // Otherwise, remove the region from the beginning of MBB to the copy // instruction from DestReg's live interval. DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot()); VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot()); assert(DestVNI && "PHI destination should be live at its definition."); DestVNI->def = DestCopyIndex.getRegSlot(); } } // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { if (!MPhi->getOperand(i).isUndef()) { --VRegPHIUseCount[BBVRegPair( MPhi->getOperand(i + 1).getMBB()->getNumber(), MPhi->getOperand(i).getReg())]; } } // Now loop over all of the incoming arguments, changing them to copy into the // IncomingReg register in the corresponding predecessor basic block. SmallPtrSet MBBsInsertedInto; for (int i = NumSrcs - 1; i >= 0; --i) { Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg(); unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() || isImplicitlyDefined(SrcReg, *MRI); assert(SrcReg.isVirtual() && "Machine PHI Operands must all be virtual registers!"); // Get the MachineBasicBlock equivalent of the BasicBlock that is the source // path the PHI. MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); // Check to make sure we haven't already emitted the copy for this block. // This can happen because PHI nodes may have multiple entries for the same // basic block. if (!MBBsInsertedInto.insert(&opBlock).second) continue; // If the copy has already been emitted, we're done. MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg); if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) { assert(SrcRegDef->getOperand(0).isReg() && SrcRegDef->getOperand(0).isDef() && "Expected operand 0 to be a reg def!"); // Now that the PHI's use has been removed (as the instruction was // removed) there should be no other uses of the SrcReg. assert(MRI->use_empty(SrcReg) && "Expected a single use from UnspillableTerminator"); SrcRegDef->getOperand(0).setReg(IncomingReg); // Update LiveVariables. if (LV) { LiveVariables::VarInfo &SrcVI = LV->getVarInfo(SrcReg); LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(IncomingReg); IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks); SrcVI.AliveBlocks.clear(); } continue; } // Find a safe location to insert the copy, this may be the first terminator // in the block (or end()). MachineBasicBlock::iterator InsertPos = findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); // Insert the copy. MachineInstr *NewSrcInstr = nullptr; if (!reusedIncoming && IncomingReg) { if (SrcUndef) { // The source register is undefined, so there is no need for a real // COPY, but we still need to ensure joint dominance by defs. // Insert an IMPLICIT_DEF instruction. NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), TII->get(TargetOpcode::IMPLICIT_DEF), IncomingReg); // Clean up the old implicit-def, if there even was one. if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) if (DefMI->isImplicitDef()) ImpDefs.insert(DefMI); } else { // Delete the debug location, since the copy is inserted into a // different basic block. NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr, SrcReg, SrcSubReg, IncomingReg); } } // We only need to update the LiveVariables kill of SrcReg if this was the // last PHI use of SrcReg to be lowered on this CFG edge and it is not live // out of the predecessor. We can also ignore undef sources. if (LV && !SrcUndef && !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && !LV->isLiveOut(SrcReg, opBlock)) { // We want to be able to insert a kill of the register if this PHI (aka, // the copy we just inserted) is the last use of the source value. Live // variable analysis conservatively handles this by saying that the value // is live until the end of the block the PHI entry lives in. If the value // really is dead at the PHI copy, there will be no successor blocks which // have the value live-in. // Okay, if we now know that the value is not live out of the block, we // can add a kill marker in this block saying that it kills the incoming // value! // In our final twist, we have to decide which instruction kills the // register. In most cases this is the copy, however, terminator // instructions at the end of the block may also use the value. In this // case, we should mark the last such terminator as being the killing // block, not the copy. MachineBasicBlock::iterator KillInst = opBlock.end(); for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end(); ++Term) { if (Term->readsRegister(SrcReg)) KillInst = Term; } if (KillInst == opBlock.end()) { // No terminator uses the register. if (reusedIncoming || !IncomingReg) { // We may have to rewind a bit if we didn't insert a copy this time. KillInst = InsertPos; while (KillInst != opBlock.begin()) { --KillInst; if (KillInst->isDebugInstr()) continue; if (KillInst->readsRegister(SrcReg)) break; } } else { // We just inserted this copy. KillInst = NewSrcInstr; } } assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); // Finally, mark it killed. LV->addVirtualRegisterKilled(SrcReg, *KillInst); // This vreg no longer lives all of the way through opBlock. unsigned opBlockNum = opBlock.getNumber(); LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); } if (LIS) { if (NewSrcInstr) { LIS->InsertMachineInstrInMaps(*NewSrcInstr); LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr); } if (!SrcUndef && !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { LiveInterval &SrcLI = LIS->getInterval(SrcReg); bool isLiveOut = false; for (MachineBasicBlock *Succ : opBlock.successors()) { SlotIndex startIdx = LIS->getMBBStartIdx(Succ); VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); // Definitions by other PHIs are not truly live-in for our purposes. if (VNI && VNI->def != startIdx) { isLiveOut = true; break; } } if (!isLiveOut) { MachineBasicBlock::iterator KillInst = opBlock.end(); for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end(); ++Term) { if (Term->readsRegister(SrcReg)) KillInst = Term; } if (KillInst == opBlock.end()) { // No terminator uses the register. if (reusedIncoming || !IncomingReg) { // We may have to rewind a bit if we didn't just insert a copy. KillInst = InsertPos; while (KillInst != opBlock.begin()) { --KillInst; if (KillInst->isDebugInstr()) continue; if (KillInst->readsRegister(SrcReg)) break; } } else { // We just inserted this copy. KillInst = std::prev(InsertPos); } } assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst); SrcLI.removeSegment(LastUseIndex.getRegSlot(), LIS->getMBBEndIdx(&opBlock)); } } } } // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. if (reusedIncoming || !IncomingReg) { if (LIS) LIS->RemoveMachineInstrFromMaps(*MPhi); MF.deleteMachineInstr(MPhi); } } /// analyzePHINodes - Gather information about the PHI nodes in here. In /// particular, we want to map the number of uses of a virtual register which is /// used in a PHI node. We map that to the BB the vreg is coming from. This is /// used later to determine when the vreg is killed in the BB. void PHIElimination::analyzePHINodes(const MachineFunction& MF) { for (const auto &MBB : MF) { for (const auto &BBI : MBB) { if (!BBI.isPHI()) break; for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { if (!BBI.getOperand(i).isUndef()) { ++VRegPHIUseCount[BBVRegPair( BBI.getOperand(i + 1).getMBB()->getNumber(), BBI.getOperand(i).getReg())]; } } } } } bool PHIElimination::SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, MachineLoopInfo *MLI, std::vector> *LiveInSets) { if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad()) return false; // Quick exit for basic blocks without PHIs. const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr; bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); bool Changed = false; for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); BBI != BBE && BBI->isPHI(); ++BBI) { for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { Register Reg = BBI->getOperand(i).getReg(); MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); // Is there a critical edge from PreMBB to MBB? if (PreMBB->succ_size() == 1) continue; // Avoid splitting backedges of loops. It would introduce small // out-of-line blocks into the loop which is very bad for code placement. if (PreMBB == &MBB && !SplitAllCriticalEdges) continue; const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr; if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) continue; // LV doesn't consider a phi use live-out, so isLiveOut only returns true // when the source register is live-out for some other reason than a phi // use. That means the copy we will insert in PreMBB won't be a kill, and // there is a risk it may not be coalesced away. // // If the copy would be a kill, there is no need to split the edge. bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB); if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit) continue; if (ShouldSplit) { LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge " << printMBBReference(*PreMBB) << " -> " << printMBBReference(MBB) << ": " << *BBI); } // If Reg is not live-in to MBB, it means it must be live-in to some // other PreMBB successor, and we can avoid the interference by splitting // the edge. // // If Reg *is* live-in to MBB, the interference is inevitable and a copy // is likely to be left after coalescing. If we are looking at a loop // exiting edge, split it so we won't insert code in the loop, otherwise // don't bother. ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB); // Check for a loop exiting edge. if (!ShouldSplit && CurLoop != PreLoop) { LLVM_DEBUG({ dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; if (PreLoop) dbgs() << "PreLoop: " << *PreLoop; if (CurLoop) dbgs() << "CurLoop: " << *CurLoop; }); // This edge could be entering a loop, exiting a loop, or it could be // both: Jumping directly form one loop to the header of a sibling // loop. // Split unless this edge is entering CurLoop from an outer loop. ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); } if (!ShouldSplit && !SplitAllCriticalEdges) continue; if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) { LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n"); continue; } Changed = true; ++NumCriticalEdgesSplit; } } return Changed; } bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) { assert((LV || LIS) && "isLiveIn() requires either LiveVariables or LiveIntervals"); if (LIS) return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); else return LV->isLiveIn(Reg, *MBB); } bool PHIElimination::isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB) { assert((LV || LIS) && "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); // LiveVariables considers uses in PHIs to be in the predecessor basic block, // so that a register used only in a PHI is not live out of the block. In // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than // in the predecessor basic block, so that a register used only in a PHI is live // out of the block. if (LIS) { const LiveInterval &LI = LIS->getInterval(Reg); for (const MachineBasicBlock *SI : MBB->successors()) if (LI.liveAt(LIS->getMBBStartIdx(SI))) return true; return false; } else { return LV->isLiveOut(Reg, *MBB); } }