//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the LiveVariable analysis pass. For each machine // instruction in the function, this pass calculates the set of registers that // are immediately dead after the instruction (i.e., the instruction calculates // the value, but it is never used) and the set of registers that are used by // the instruction, but are never used after the instruction (i.e., they are // killed). // // This class computes live variables using a sparse implementation based on // the machine code SSA form. This class computes live variable information for // each virtual and _register allocatable_ physical register in a function. It // uses the dominance properties of SSA form to efficiently compute live // variables for virtual registers, and assumes that physical registers are only // live within a single basic block (allowing it to do a single local analysis // to resolve physical register lifetimes in each basic block). If a physical // register is not register allocatable, it is not tracked. This is useful for // things like the stack pointer and condition codes. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/LiveVariables.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Config/llvm-config.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; char LiveVariables::ID = 0; char &llvm::LiveVariablesID = LiveVariables::ID; INITIALIZE_PASS_BEGIN(LiveVariables, "livevars", "Live Variable Analysis", false, false) INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElim) INITIALIZE_PASS_END(LiveVariables, "livevars", "Live Variable Analysis", false, false) void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(UnreachableMachineBlockElimID); AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } MachineInstr * LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const { for (MachineInstr *MI : Kills) if (MI->getParent() == MBB) return MI; return nullptr; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void LiveVariables::VarInfo::dump() const { dbgs() << " Alive in blocks: "; for (unsigned AB : AliveBlocks) dbgs() << AB << ", "; dbgs() << "\n Killed by:"; if (Kills.empty()) dbgs() << " No instructions.\n"; else { for (unsigned i = 0, e = Kills.size(); i != e; ++i) dbgs() << "\n #" << i << ": " << *Kills[i]; dbgs() << "\n"; } } #endif /// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg. LiveVariables::VarInfo &LiveVariables::getVarInfo(Register Reg) { assert(Reg.isVirtual() && "getVarInfo: not a virtual register!"); VirtRegInfo.grow(Reg); return VirtRegInfo[Reg]; } void LiveVariables::MarkVirtRegAliveInBlock( VarInfo &VRInfo, MachineBasicBlock *DefBlock, MachineBasicBlock *MBB, SmallVectorImpl &WorkList) { unsigned BBNum = MBB->getNumber(); // Check to see if this basic block is one of the killing blocks. If so, // remove it. for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) if (VRInfo.Kills[i]->getParent() == MBB) { VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry break; } if (MBB == DefBlock) return; // Terminate recursion if (VRInfo.AliveBlocks.test(BBNum)) return; // We already know the block is live // Mark the variable known alive in this bb VRInfo.AliveBlocks.set(BBNum); assert(MBB != &MF->front() && "Can't find reaching def for virtreg"); WorkList.insert(WorkList.end(), MBB->pred_rbegin(), MBB->pred_rend()); } void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, MachineBasicBlock *DefBlock, MachineBasicBlock *MBB) { SmallVector WorkList; MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList); while (!WorkList.empty()) { MachineBasicBlock *Pred = WorkList.pop_back_val(); MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList); } } void LiveVariables::HandleVirtRegUse(Register Reg, MachineBasicBlock *MBB, MachineInstr &MI) { assert(MRI->getVRegDef(Reg) && "Register use before def!"); unsigned BBNum = MBB->getNumber(); VarInfo &VRInfo = getVarInfo(Reg); // Check to see if this basic block is already a kill block. if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { // Yes, this register is killed in this basic block already. Increase the // live range by updating the kill instruction. VRInfo.Kills.back() = &MI; return; } #ifndef NDEBUG for (MachineInstr *Kill : VRInfo.Kills) assert(Kill->getParent() != MBB && "entry should be at end!"); #endif // This situation can occur: // // ,------. // | | // | v // | t2 = phi ... t1 ... // | | // | v // | t1 = ... // | ... = ... t1 ... // | | // `------' // // where there is a use in a PHI node that's a predecessor to the defining // block. We don't want to mark all predecessors as having the value "alive" // in this case. if (MBB == MRI->getVRegDef(Reg)->getParent()) return; // Add a new kill entry for this basic block. If this virtual register is // already marked as alive in this basic block, that means it is alive in at // least one of the successor blocks, it's not a kill. if (!VRInfo.AliveBlocks.test(BBNum)) VRInfo.Kills.push_back(&MI); // Update all dominating blocks to mark them as "known live". for (MachineBasicBlock *Pred : MBB->predecessors()) MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(Reg)->getParent(), Pred); } void LiveVariables::HandleVirtRegDef(Register Reg, MachineInstr &MI) { VarInfo &VRInfo = getVarInfo(Reg); if (VRInfo.AliveBlocks.empty()) // If vr is not alive in any block, then defaults to dead. VRInfo.Kills.push_back(&MI); } /// FindLastPartialDef - Return the last partial def of the specified register. /// Also returns the sub-registers that're defined by the instruction. MachineInstr * LiveVariables::FindLastPartialDef(Register Reg, SmallSet &PartDefRegs) { unsigned LastDefReg = 0; unsigned LastDefDist = 0; MachineInstr *LastDef = nullptr; for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { unsigned SubReg = *SubRegs; MachineInstr *Def = PhysRegDef[SubReg]; if (!Def) continue; unsigned Dist = DistanceMap[Def]; if (Dist > LastDefDist) { LastDefReg = SubReg; LastDef = Def; LastDefDist = Dist; } } if (!LastDef) return nullptr; PartDefRegs.insert(LastDefReg); for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) { MachineOperand &MO = LastDef->getOperand(i); if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) continue; Register DefReg = MO.getReg(); if (TRI->isSubRegister(Reg, DefReg)) { for (MCSubRegIterator SubRegs(DefReg, TRI, /*IncludeSelf=*/true); SubRegs.isValid(); ++SubRegs) PartDefRegs.insert(*SubRegs); } } return LastDef; } /// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add /// implicit defs to a machine instruction if there was an earlier def of its /// super-register. void LiveVariables::HandlePhysRegUse(Register Reg, MachineInstr &MI) { MachineInstr *LastDef = PhysRegDef[Reg]; // If there was a previous use or a "full" def all is well. if (!LastDef && !PhysRegUse[Reg]) { // Otherwise, the last sub-register def implicitly defines this register. // e.g. // AH = // AL = ... implicit-def EAX, implicit killed AH // = AH // ... // = EAX // All of the sub-registers must have been defined before the use of Reg! SmallSet PartDefRegs; MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs); // If LastPartialDef is NULL, it must be using a livein register. if (LastPartialDef) { LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/, true/*IsImp*/)); PhysRegDef[Reg] = LastPartialDef; SmallSet Processed; for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { unsigned SubReg = *SubRegs; if (Processed.count(SubReg)) continue; if (PartDefRegs.count(SubReg)) continue; // This part of Reg was defined before the last partial def. It's killed // here. LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg, false/*IsDef*/, true/*IsImp*/)); PhysRegDef[SubReg] = LastPartialDef; for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS) Processed.insert(*SS); } } } else if (LastDef && !PhysRegUse[Reg] && !LastDef->findRegisterDefOperand(Reg)) // Last def defines the super register, add an implicit def of reg. LastDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/, true/*IsImp*/)); // Remember this use. for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); SubRegs.isValid(); ++SubRegs) PhysRegUse[*SubRegs] = &MI; } /// FindLastRefOrPartRef - Return the last reference or partial reference of /// the specified register. MachineInstr *LiveVariables::FindLastRefOrPartRef(Register Reg) { MachineInstr *LastDef = PhysRegDef[Reg]; MachineInstr *LastUse = PhysRegUse[Reg]; if (!LastDef && !LastUse) return nullptr; MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; unsigned LastPartDefDist = 0; for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { unsigned SubReg = *SubRegs; MachineInstr *Def = PhysRegDef[SubReg]; if (Def && Def != LastDef) { // There was a def of this sub-register in between. This is a partial // def, keep track of the last one. unsigned Dist = DistanceMap[Def]; if (Dist > LastPartDefDist) LastPartDefDist = Dist; } else if (MachineInstr *Use = PhysRegUse[SubReg]) { unsigned Dist = DistanceMap[Use]; if (Dist > LastRefOrPartRefDist) { LastRefOrPartRefDist = Dist; LastRefOrPartRef = Use; } } } return LastRefOrPartRef; } bool LiveVariables::HandlePhysRegKill(Register Reg, MachineInstr *MI) { MachineInstr *LastDef = PhysRegDef[Reg]; MachineInstr *LastUse = PhysRegUse[Reg]; if (!LastDef && !LastUse) return false; MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; // The whole register is used. // AL = // AH = // // = AX // = AL, implicit killed AX // AX = // // Or whole register is defined, but not used at all. // dead AX = // ... // AX = // // Or whole register is defined, but only partly used. // dead AX = implicit-def AL // = killed AL // AX = MachineInstr *LastPartDef = nullptr; unsigned LastPartDefDist = 0; SmallSet PartUses; for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { unsigned SubReg = *SubRegs; MachineInstr *Def = PhysRegDef[SubReg]; if (Def && Def != LastDef) { // There was a def of this sub-register in between. This is a partial // def, keep track of the last one. unsigned Dist = DistanceMap[Def]; if (Dist > LastPartDefDist) { LastPartDefDist = Dist; LastPartDef = Def; } continue; } if (MachineInstr *Use = PhysRegUse[SubReg]) { for (MCSubRegIterator SS(SubReg, TRI, /*IncludeSelf=*/true); SS.isValid(); ++SS) PartUses.insert(*SS); unsigned Dist = DistanceMap[Use]; if (Dist > LastRefOrPartRefDist) { LastRefOrPartRefDist = Dist; LastRefOrPartRef = Use; } } } if (!PhysRegUse[Reg]) { // Partial uses. Mark register def dead and add implicit def of // sub-registers which are used. // dead EAX = op implicit-def AL // That is, EAX def is dead but AL def extends pass it. PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true); for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { unsigned SubReg = *SubRegs; if (!PartUses.count(SubReg)) continue; bool NeedDef = true; if (PhysRegDef[Reg] == PhysRegDef[SubReg]) { MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg); if (MO) { NeedDef = false; assert(!MO->isDead()); } } if (NeedDef) PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg, true/*IsDef*/, true/*IsImp*/)); MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg); if (LastSubRef) LastSubRef->addRegisterKilled(SubReg, TRI, true); else { LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true); for (MCSubRegIterator SS(SubReg, TRI, /*IncludeSelf=*/true); SS.isValid(); ++SS) PhysRegUse[*SS] = LastRefOrPartRef; } for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS) PartUses.erase(*SS); } } else if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) { if (LastPartDef) // The last partial def kills the register. LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/, true/*IsImp*/, true/*IsKill*/)); else { MachineOperand *MO = LastRefOrPartRef->findRegisterDefOperand(Reg, false, false, TRI); bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg; // If the last reference is the last def, then it's not used at all. // That is, unless we are currently processing the last reference itself. LastRefOrPartRef->addRegisterDead(Reg, TRI, true); if (NeedEC) { // If we are adding a subreg def and the superreg def is marked early // clobber, add an early clobber marker to the subreg def. MO = LastRefOrPartRef->findRegisterDefOperand(Reg); if (MO) MO->setIsEarlyClobber(); } } } else LastRefOrPartRef->addRegisterKilled(Reg, TRI, true); return true; } void LiveVariables::HandleRegMask(const MachineOperand &MO) { // Call HandlePhysRegKill() for all live registers clobbered by Mask. // Clobbered registers are always dead, sp there is no need to use // HandlePhysRegDef(). for (unsigned Reg = 1, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg) { // Skip dead regs. if (!PhysRegDef[Reg] && !PhysRegUse[Reg]) continue; // Skip mask-preserved regs. if (!MO.clobbersPhysReg(Reg)) continue; // Kill the largest clobbered super-register. // This avoids needless implicit operands. unsigned Super = Reg; for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) if ((PhysRegDef[*SR] || PhysRegUse[*SR]) && MO.clobbersPhysReg(*SR)) Super = *SR; HandlePhysRegKill(Super, nullptr); } } void LiveVariables::HandlePhysRegDef(Register Reg, MachineInstr *MI, SmallVectorImpl &Defs) { // What parts of the register are previously defined? SmallSet Live; if (PhysRegDef[Reg] || PhysRegUse[Reg]) { for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); SubRegs.isValid(); ++SubRegs) Live.insert(*SubRegs); } else { for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { unsigned SubReg = *SubRegs; // If a register isn't itself defined, but all parts that make up of it // are defined, then consider it also defined. // e.g. // AL = // AH = // = AX if (Live.count(SubReg)) continue; if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) { for (MCSubRegIterator SS(SubReg, TRI, /*IncludeSelf=*/true); SS.isValid(); ++SS) Live.insert(*SS); } } } // Start from the largest piece, find the last time any part of the register // is referenced. HandlePhysRegKill(Reg, MI); // Only some of the sub-registers are used. for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { unsigned SubReg = *SubRegs; if (!Live.count(SubReg)) // Skip if this sub-register isn't defined. continue; HandlePhysRegKill(SubReg, MI); } if (MI) Defs.push_back(Reg); // Remember this def. } void LiveVariables::UpdatePhysRegDefs(MachineInstr &MI, SmallVectorImpl &Defs) { while (!Defs.empty()) { Register Reg = Defs.pop_back_val(); for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); SubRegs.isValid(); ++SubRegs) { unsigned SubReg = *SubRegs; PhysRegDef[SubReg] = &MI; PhysRegUse[SubReg] = nullptr; } } } void LiveVariables::runOnInstr(MachineInstr &MI, SmallVectorImpl &Defs) { assert(!MI.isDebugOrPseudoInstr()); // Process all of the operands of the instruction... unsigned NumOperandsToProcess = MI.getNumOperands(); // Unless it is a PHI node. In this case, ONLY process the DEF, not any // of the uses. They will be handled in other basic blocks. if (MI.isPHI()) NumOperandsToProcess = 1; // Clear kill and dead markers. LV will recompute them. SmallVector UseRegs; SmallVector DefRegs; SmallVector RegMasks; for (unsigned i = 0; i != NumOperandsToProcess; ++i) { MachineOperand &MO = MI.getOperand(i); if (MO.isRegMask()) { RegMasks.push_back(i); continue; } if (!MO.isReg() || MO.getReg() == 0) continue; Register MOReg = MO.getReg(); if (MO.isUse()) { if (!(MOReg.isPhysical() && MRI->isReserved(MOReg))) MO.setIsKill(false); if (MO.readsReg()) UseRegs.push_back(MOReg); } else { assert(MO.isDef()); // FIXME: We should not remove any dead flags. However the MIPS RDDSP // instruction needs it at the moment: http://llvm.org/PR27116. if (MOReg.isPhysical() && !MRI->isReserved(MOReg)) MO.setIsDead(false); DefRegs.push_back(MOReg); } } MachineBasicBlock *MBB = MI.getParent(); // Process all uses. for (unsigned MOReg : UseRegs) { if (Register::isVirtualRegister(MOReg)) HandleVirtRegUse(MOReg, MBB, MI); else if (!MRI->isReserved(MOReg)) HandlePhysRegUse(MOReg, MI); } // Process all masked registers. (Call clobbers). for (unsigned Mask : RegMasks) HandleRegMask(MI.getOperand(Mask)); // Process all defs. for (unsigned MOReg : DefRegs) { if (Register::isVirtualRegister(MOReg)) HandleVirtRegDef(MOReg, MI); else if (!MRI->isReserved(MOReg)) HandlePhysRegDef(MOReg, &MI, Defs); } UpdatePhysRegDefs(MI, Defs); } void LiveVariables::runOnBlock(MachineBasicBlock *MBB, const unsigned NumRegs) { // Mark live-in registers as live-in. SmallVector Defs; for (const auto &LI : MBB->liveins()) { assert(Register::isPhysicalRegister(LI.PhysReg) && "Cannot have a live-in virtual register!"); HandlePhysRegDef(LI.PhysReg, nullptr, Defs); } // Loop over all of the instructions, processing them. DistanceMap.clear(); unsigned Dist = 0; for (MachineInstr &MI : *MBB) { if (MI.isDebugOrPseudoInstr()) continue; DistanceMap.insert(std::make_pair(&MI, Dist++)); runOnInstr(MI, Defs); } // Handle any virtual assignments from PHI nodes which might be at the // bottom of this basic block. We check all of our successor blocks to see // if they have PHI nodes, and if so, we simulate an assignment at the end // of the current block. if (!PHIVarInfo[MBB->getNumber()].empty()) { SmallVectorImpl &VarInfoVec = PHIVarInfo[MBB->getNumber()]; for (unsigned I : VarInfoVec) // Mark it alive only in the block we are representing. MarkVirtRegAliveInBlock(getVarInfo(I), MRI->getVRegDef(I)->getParent(), MBB); } // MachineCSE may CSE instructions which write to non-allocatable physical // registers across MBBs. Remember if any reserved register is liveout. SmallSet LiveOuts; for (const MachineBasicBlock *SuccMBB : MBB->successors()) { if (SuccMBB->isEHPad()) continue; for (const auto &LI : SuccMBB->liveins()) { if (!TRI->isInAllocatableClass(LI.PhysReg)) // Ignore other live-ins, e.g. those that are live into landing pads. LiveOuts.insert(LI.PhysReg); } } // Loop over PhysRegDef / PhysRegUse, killing any registers that are // available at the end of the basic block. for (unsigned i = 0; i != NumRegs; ++i) if ((PhysRegDef[i] || PhysRegUse[i]) && !LiveOuts.count(i)) HandlePhysRegDef(i, nullptr, Defs); } bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { MF = &mf; MRI = &mf.getRegInfo(); TRI = MF->getSubtarget().getRegisterInfo(); const unsigned NumRegs = TRI->getNumRegs(); PhysRegDef.assign(NumRegs, nullptr); PhysRegUse.assign(NumRegs, nullptr); PHIVarInfo.resize(MF->getNumBlockIDs()); PHIJoins.clear(); // FIXME: LiveIntervals will be updated to remove its dependence on // LiveVariables to improve compilation time and eliminate bizarre pass // dependencies. Until then, we can't change much in -O0. if (!MRI->isSSA()) report_fatal_error("regalloc=... not currently supported with -O0"); analyzePHINodes(mf); // Calculate live variable information in depth first order on the CFG of the // function. This guarantees that we will see the definition of a virtual // register before its uses due to dominance properties of SSA (except for PHI // nodes, which are treated as a special case). MachineBasicBlock *Entry = &MF->front(); df_iterator_default_set Visited; for (MachineBasicBlock *MBB : depth_first_ext(Entry, Visited)) { runOnBlock(MBB, NumRegs); PhysRegDef.assign(NumRegs, nullptr); PhysRegUse.assign(NumRegs, nullptr); } // Convert and transfer the dead / killed information we have gathered into // VirtRegInfo onto MI's. for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) { const Register Reg = Register::index2VirtReg(i); for (unsigned j = 0, e2 = VirtRegInfo[Reg].Kills.size(); j != e2; ++j) if (VirtRegInfo[Reg].Kills[j] == MRI->getVRegDef(Reg)) VirtRegInfo[Reg].Kills[j]->addRegisterDead(Reg, TRI); else VirtRegInfo[Reg].Kills[j]->addRegisterKilled(Reg, TRI); } // Check to make sure there are no unreachable blocks in the MC CFG for the // function. If so, it is due to a bug in the instruction selector or some // other part of the code generator if this happens. #ifndef NDEBUG for (const MachineBasicBlock &MBB : *MF) assert(Visited.contains(&MBB) && "unreachable basic block found"); #endif PhysRegDef.clear(); PhysRegUse.clear(); PHIVarInfo.clear(); return false; } void LiveVariables::recomputeForSingleDefVirtReg(Register Reg) { assert(Reg.isVirtual()); VarInfo &VI = getVarInfo(Reg); VI.AliveBlocks.clear(); VI.Kills.clear(); MachineInstr &DefMI = *MRI->getUniqueVRegDef(Reg); MachineBasicBlock &DefBB = *DefMI.getParent(); // Handle the case where all uses have been removed. if (MRI->use_nodbg_empty(Reg)) { VI.Kills.push_back(&DefMI); DefMI.addRegisterDead(Reg, nullptr); return; } DefMI.clearRegisterDeads(Reg); // Initialize a worklist of BBs that Reg is live-to-end of. (Here // "live-to-end" means Reg is live at the end of a block even if it is only // live because of phi uses in a successor. This is different from isLiveOut() // which does not consider phi uses.) SmallVector LiveToEndBlocks; SparseBitVector<> UseBlocks; for (auto &UseMO : MRI->use_nodbg_operands(Reg)) { UseMO.setIsKill(false); MachineInstr &UseMI = *UseMO.getParent(); MachineBasicBlock &UseBB = *UseMI.getParent(); UseBlocks.set(UseBB.getNumber()); if (UseMI.isPHI()) { // If Reg is used in a phi then it is live-to-end of the corresponding // predecessor. unsigned Idx = UseMI.getOperandNo(&UseMO); LiveToEndBlocks.push_back(UseMI.getOperand(Idx + 1).getMBB()); } else if (&UseBB == &DefBB) { // A non-phi use in the same BB as the single def must come after the def. } else { // Otherwise Reg must be live-to-end of all predecessors. LiveToEndBlocks.append(UseBB.pred_begin(), UseBB.pred_end()); } } // Iterate over the worklist adding blocks to AliveBlocks. bool LiveToEndOfDefBB = false; while (!LiveToEndBlocks.empty()) { MachineBasicBlock &BB = *LiveToEndBlocks.pop_back_val(); if (&BB == &DefBB) { LiveToEndOfDefBB = true; continue; } if (VI.AliveBlocks.test(BB.getNumber())) continue; VI.AliveBlocks.set(BB.getNumber()); LiveToEndBlocks.append(BB.pred_begin(), BB.pred_end()); } // Recompute kill flags. For each block in which Reg is used but is not // live-through, find the last instruction that uses Reg. Ignore phi nodes // because they should not be included in Kills. for (unsigned UseBBNum : UseBlocks) { if (VI.AliveBlocks.test(UseBBNum)) continue; MachineBasicBlock &UseBB = *MF->getBlockNumbered(UseBBNum); if (&UseBB == &DefBB && LiveToEndOfDefBB) continue; for (auto &MI : reverse(UseBB)) { if (MI.isDebugOrPseudoInstr()) continue; if (MI.isPHI()) break; if (MI.readsRegister(Reg)) { assert(!MI.killsRegister(Reg)); MI.addRegisterKilled(Reg, nullptr); VI.Kills.push_back(&MI); break; } } } } /// replaceKillInstruction - Update register kill info by replacing a kill /// instruction with a new one. void LiveVariables::replaceKillInstruction(Register Reg, MachineInstr &OldMI, MachineInstr &NewMI) { VarInfo &VI = getVarInfo(Reg); std::replace(VI.Kills.begin(), VI.Kills.end(), &OldMI, &NewMI); } /// removeVirtualRegistersKilled - Remove all killed info for the specified /// instruction. void LiveVariables::removeVirtualRegistersKilled(MachineInstr &MI) { for (MachineOperand &MO : MI.operands()) { if (MO.isReg() && MO.isKill()) { MO.setIsKill(false); Register Reg = MO.getReg(); if (Reg.isVirtual()) { bool removed = getVarInfo(Reg).removeKill(MI); assert(removed && "kill not in register's VarInfo?"); (void)removed; } } } } /// analyzePHINodes - Gather information about the PHI nodes in here. In /// particular, we want to map the variable information of a virtual register /// which is used in a PHI node. We map that to the BB the vreg is coming from. /// void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { for (const auto &MBB : Fn) for (const auto &BBI : MBB) { if (!BBI.isPHI()) break; for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) if (BBI.getOperand(i).readsReg()) PHIVarInfo[BBI.getOperand(i + 1).getMBB()->getNumber()] .push_back(BBI.getOperand(i).getReg()); } } bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB, Register Reg, MachineRegisterInfo &MRI) { unsigned Num = MBB.getNumber(); // Reg is live-through. if (AliveBlocks.test(Num)) return true; // Registers defined in MBB cannot be live in. const MachineInstr *Def = MRI.getVRegDef(Reg); if (Def && Def->getParent() == &MBB) return false; // Reg was not defined in MBB, was it killed here? return findKill(&MBB); } bool LiveVariables::isLiveOut(Register Reg, const MachineBasicBlock &MBB) { LiveVariables::VarInfo &VI = getVarInfo(Reg); SmallPtrSet Kills; for (MachineInstr *MI : VI.Kills) Kills.insert(MI->getParent()); // Loop over all of the successors of the basic block, checking to see if // the value is either live in the block, or if it is killed in the block. for (const MachineBasicBlock *SuccMBB : MBB.successors()) { // Is it alive in this successor? unsigned SuccIdx = SuccMBB->getNumber(); if (VI.AliveBlocks.test(SuccIdx)) return true; // Or is it live because there is a use in a successor that kills it? if (Kills.count(SuccMBB)) return true; } return false; } /// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All /// variables that are live out of DomBB will be marked as passing live through /// BB. void LiveVariables::addNewBlock(MachineBasicBlock *BB, MachineBasicBlock *DomBB, MachineBasicBlock *SuccBB) { const unsigned NumNew = BB->getNumber(); DenseSet Defs, Kills; MachineBasicBlock::iterator BBI = SuccBB->begin(), BBE = SuccBB->end(); for (; BBI != BBE && BBI->isPHI(); ++BBI) { // Record the def of the PHI node. Defs.insert(BBI->getOperand(0).getReg()); // All registers used by PHI nodes in SuccBB must be live through BB. for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) if (BBI->getOperand(i+1).getMBB() == BB) getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew); } // Record all vreg defs and kills of all instructions in SuccBB. for (; BBI != BBE; ++BBI) { for (const MachineOperand &Op : BBI->operands()) { if (Op.isReg() && Op.getReg().isVirtual()) { if (Op.isDef()) Defs.insert(Op.getReg()); else if (Op.isKill()) Kills.insert(Op.getReg()); } } } // Update info for all live variables for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { Register Reg = Register::index2VirtReg(i); // If the Defs is defined in the successor it can't be live in BB. if (Defs.count(Reg)) continue; // If the register is either killed in or live through SuccBB it's also live // through BB. VarInfo &VI = getVarInfo(Reg); if (Kills.count(Reg) || VI.AliveBlocks.test(SuccBB->getNumber())) VI.AliveBlocks.set(NumNew); } } /// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All /// variables that are live out of DomBB will be marked as passing live through /// BB. LiveInSets[BB] is *not* updated (because it is not needed during /// PHIElimination). void LiveVariables::addNewBlock(MachineBasicBlock *BB, MachineBasicBlock *DomBB, MachineBasicBlock *SuccBB, std::vector> &LiveInSets) { const unsigned NumNew = BB->getNumber(); SparseBitVector<> &BV = LiveInSets[SuccBB->getNumber()]; for (unsigned R : BV) { Register VirtReg = Register::index2VirtReg(R); LiveVariables::VarInfo &VI = getVarInfo(VirtReg); VI.AliveBlocks.set(NumNew); } // All registers used by PHI nodes in SuccBB must be live through BB. for (MachineBasicBlock::iterator BBI = SuccBB->begin(), BBE = SuccBB->end(); BBI != BBE && BBI->isPHI(); ++BBI) { for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) if (BBI->getOperand(i + 1).getMBB() == BB && BBI->getOperand(i).readsReg()) getVarInfo(BBI->getOperand(i).getReg()) .AliveBlocks.set(NumNew); } }