#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif //===- ObjectFile.h - File format independent object file -------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file declares a file format independent ObjectFile class. // //===----------------------------------------------------------------------===// #ifndef LLVM_OBJECT_OBJECTFILE_H #define LLVM_OBJECT_OBJECTFILE_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Triple.h" #include "llvm/ADT/iterator_range.h" #include "llvm/BinaryFormat/Magic.h" #include "llvm/BinaryFormat/Swift.h" #include "llvm/Object/Binary.h" #include "llvm/Object/Error.h" #include "llvm/Object/SymbolicFile.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Error.h" #include "llvm/Support/MemoryBufferRef.h" #include #include #include namespace llvm { class SubtargetFeatures; namespace object { class COFFObjectFile; class MachOObjectFile; class ObjectFile; class SectionRef; class SymbolRef; class symbol_iterator; class WasmObjectFile; using section_iterator = content_iterator; /// This is a value type class that represents a single relocation in the list /// of relocations in the object file. class RelocationRef { DataRefImpl RelocationPimpl; const ObjectFile *OwningObject = nullptr; public: RelocationRef() = default; RelocationRef(DataRefImpl RelocationP, const ObjectFile *Owner); bool operator==(const RelocationRef &Other) const; void moveNext(); uint64_t getOffset() const; symbol_iterator getSymbol() const; uint64_t getType() const; /// Get a string that represents the type of this relocation. /// /// This is for display purposes only. void getTypeName(SmallVectorImpl &Result) const; DataRefImpl getRawDataRefImpl() const; const ObjectFile *getObject() const; }; using relocation_iterator = content_iterator; /// This is a value type class that represents a single section in the list of /// sections in the object file. class SectionRef { friend class SymbolRef; DataRefImpl SectionPimpl; const ObjectFile *OwningObject = nullptr; public: SectionRef() = default; SectionRef(DataRefImpl SectionP, const ObjectFile *Owner); bool operator==(const SectionRef &Other) const; bool operator!=(const SectionRef &Other) const; bool operator<(const SectionRef &Other) const; void moveNext(); Expected getName() const; uint64_t getAddress() const; uint64_t getIndex() const; uint64_t getSize() const; Expected getContents() const; /// Get the alignment of this section. Align getAlignment() const; bool isCompressed() const; /// Whether this section contains instructions. bool isText() const; /// Whether this section contains data, not instructions. bool isData() const; /// Whether this section contains BSS uninitialized data. bool isBSS() const; bool isVirtual() const; bool isBitcode() const; bool isStripped() const; /// Whether this section will be placed in the text segment, according to the /// Berkeley size format. This is true if the section is allocatable, and /// contains either code or readonly data. bool isBerkeleyText() const; /// Whether this section will be placed in the data segment, according to the /// Berkeley size format. This is true if the section is allocatable and /// contains data (e.g. PROGBITS), but is not text. bool isBerkeleyData() const; /// Whether this section is a debug section. bool isDebugSection() const; bool containsSymbol(SymbolRef S) const; relocation_iterator relocation_begin() const; relocation_iterator relocation_end() const; iterator_range relocations() const { return make_range(relocation_begin(), relocation_end()); } /// Returns the related section if this section contains relocations. The /// returned section may or may not have applied its relocations. Expected getRelocatedSection() const; DataRefImpl getRawDataRefImpl() const; const ObjectFile *getObject() const; }; struct SectionedAddress { const static uint64_t UndefSection = UINT64_MAX; uint64_t Address = 0; uint64_t SectionIndex = UndefSection; }; inline bool operator<(const SectionedAddress &LHS, const SectionedAddress &RHS) { return std::tie(LHS.SectionIndex, LHS.Address) < std::tie(RHS.SectionIndex, RHS.Address); } inline bool operator==(const SectionedAddress &LHS, const SectionedAddress &RHS) { return std::tie(LHS.SectionIndex, LHS.Address) == std::tie(RHS.SectionIndex, RHS.Address); } raw_ostream &operator<<(raw_ostream &OS, const SectionedAddress &Addr); /// This is a value type class that represents a single symbol in the list of /// symbols in the object file. class SymbolRef : public BasicSymbolRef { friend class SectionRef; public: enum Type { ST_Unknown, // Type not specified ST_Other, ST_Data, ST_Debug, ST_File, ST_Function, }; SymbolRef() = default; SymbolRef(DataRefImpl SymbolP, const ObjectFile *Owner); SymbolRef(const BasicSymbolRef &B) : BasicSymbolRef(B) { assert(isa(BasicSymbolRef::getObject())); } Expected getName() const; /// Returns the symbol virtual address (i.e. address at which it will be /// mapped). Expected getAddress() const; /// Return the value of the symbol depending on the object this can be an /// offset or a virtual address. Expected getValue() const; /// Get the alignment of this symbol as the actual value (not log 2). uint32_t getAlignment() const; uint64_t getCommonSize() const; Expected getType() const; /// Get section this symbol is defined in reference to. Result is /// end_sections() if it is undefined or is an absolute symbol. Expected getSection() const; const ObjectFile *getObject() const; }; class symbol_iterator : public basic_symbol_iterator { public: symbol_iterator(SymbolRef Sym) : basic_symbol_iterator(Sym) {} symbol_iterator(const basic_symbol_iterator &B) : basic_symbol_iterator(SymbolRef(B->getRawDataRefImpl(), cast(B->getObject()))) {} const SymbolRef *operator->() const { const BasicSymbolRef &P = basic_symbol_iterator::operator *(); return static_cast(&P); } const SymbolRef &operator*() const { const BasicSymbolRef &P = basic_symbol_iterator::operator *(); return static_cast(P); } }; /// This class is the base class for all object file types. Concrete instances /// of this object are created by createObjectFile, which figures out which type /// to create. class ObjectFile : public SymbolicFile { virtual void anchor(); protected: ObjectFile(unsigned int Type, MemoryBufferRef Source); const uint8_t *base() const { return reinterpret_cast(Data.getBufferStart()); } // These functions are for SymbolRef to call internally. The main goal of // this is to allow SymbolRef::SymbolPimpl to point directly to the symbol // entry in the memory mapped object file. SymbolPimpl cannot contain any // virtual functions because then it could not point into the memory mapped // file. // // Implementations assume that the DataRefImpl is valid and has not been // modified externally. It's UB otherwise. friend class SymbolRef; virtual Expected getSymbolName(DataRefImpl Symb) const = 0; Error printSymbolName(raw_ostream &OS, DataRefImpl Symb) const override; virtual Expected getSymbolAddress(DataRefImpl Symb) const = 0; virtual uint64_t getSymbolValueImpl(DataRefImpl Symb) const = 0; virtual uint32_t getSymbolAlignment(DataRefImpl Symb) const; virtual uint64_t getCommonSymbolSizeImpl(DataRefImpl Symb) const = 0; virtual Expected getSymbolType(DataRefImpl Symb) const = 0; virtual Expected getSymbolSection(DataRefImpl Symb) const = 0; // Same as above for SectionRef. friend class SectionRef; virtual void moveSectionNext(DataRefImpl &Sec) const = 0; virtual Expected getSectionName(DataRefImpl Sec) const = 0; virtual uint64_t getSectionAddress(DataRefImpl Sec) const = 0; virtual uint64_t getSectionIndex(DataRefImpl Sec) const = 0; virtual uint64_t getSectionSize(DataRefImpl Sec) const = 0; virtual Expected> getSectionContents(DataRefImpl Sec) const = 0; virtual uint64_t getSectionAlignment(DataRefImpl Sec) const = 0; virtual bool isSectionCompressed(DataRefImpl Sec) const = 0; virtual bool isSectionText(DataRefImpl Sec) const = 0; virtual bool isSectionData(DataRefImpl Sec) const = 0; virtual bool isSectionBSS(DataRefImpl Sec) const = 0; // A section is 'virtual' if its contents aren't present in the object image. virtual bool isSectionVirtual(DataRefImpl Sec) const = 0; virtual bool isSectionBitcode(DataRefImpl Sec) const; virtual bool isSectionStripped(DataRefImpl Sec) const; virtual bool isBerkeleyText(DataRefImpl Sec) const; virtual bool isBerkeleyData(DataRefImpl Sec) const; virtual bool isDebugSection(DataRefImpl Sec) const; virtual relocation_iterator section_rel_begin(DataRefImpl Sec) const = 0; virtual relocation_iterator section_rel_end(DataRefImpl Sec) const = 0; virtual Expected getRelocatedSection(DataRefImpl Sec) const; // Same as above for RelocationRef. friend class RelocationRef; virtual void moveRelocationNext(DataRefImpl &Rel) const = 0; virtual uint64_t getRelocationOffset(DataRefImpl Rel) const = 0; virtual symbol_iterator getRelocationSymbol(DataRefImpl Rel) const = 0; virtual uint64_t getRelocationType(DataRefImpl Rel) const = 0; virtual void getRelocationTypeName(DataRefImpl Rel, SmallVectorImpl &Result) const = 0; virtual llvm::binaryformat::Swift5ReflectionSectionKind mapReflectionSectionNameToEnumValue(StringRef SectionName) const { return llvm::binaryformat::Swift5ReflectionSectionKind::unknown; }; Expected getSymbolValue(DataRefImpl Symb) const; public: ObjectFile() = delete; ObjectFile(const ObjectFile &other) = delete; uint64_t getCommonSymbolSize(DataRefImpl Symb) const { Expected SymbolFlagsOrErr = getSymbolFlags(Symb); if (!SymbolFlagsOrErr) // TODO: Actually report errors helpfully. report_fatal_error(SymbolFlagsOrErr.takeError()); assert(*SymbolFlagsOrErr & SymbolRef::SF_Common); return getCommonSymbolSizeImpl(Symb); } virtual std::vector dynamic_relocation_sections() const { return std::vector(); } using symbol_iterator_range = iterator_range; symbol_iterator_range symbols() const { return symbol_iterator_range(symbol_begin(), symbol_end()); } virtual section_iterator section_begin() const = 0; virtual section_iterator section_end() const = 0; using section_iterator_range = iterator_range; section_iterator_range sections() const { return section_iterator_range(section_begin(), section_end()); } virtual bool hasDebugInfo() const; /// The number of bytes used to represent an address in this object /// file format. virtual uint8_t getBytesInAddress() const = 0; virtual StringRef getFileFormatName() const = 0; virtual Triple::ArchType getArch() const = 0; virtual Expected getFeatures() const = 0; virtual std::optional tryGetCPUName() const { return std::nullopt; }; virtual void setARMSubArch(Triple &TheTriple) const { } virtual Expected getStartAddress() const { return errorCodeToError(object_error::parse_failed); }; /// Create a triple from the data in this object file. Triple makeTriple() const; /// Maps a debug section name to a standard DWARF section name. virtual StringRef mapDebugSectionName(StringRef Name) const { return Name; } /// True if this is a relocatable object (.o/.obj). virtual bool isRelocatableObject() const = 0; /// True if the reflection section can be stripped by the linker. bool isReflectionSectionStrippable( llvm::binaryformat::Swift5ReflectionSectionKind ReflectionSectionKind) const; /// @returns Pointer to ObjectFile subclass to handle this type of object. /// @param ObjectPath The path to the object file. ObjectPath.isObject must /// return true. /// Create ObjectFile from path. static Expected> createObjectFile(StringRef ObjectPath); static Expected> createObjectFile(MemoryBufferRef Object, llvm::file_magic Type, bool InitContent = true); static Expected> createObjectFile(MemoryBufferRef Object) { return createObjectFile(Object, llvm::file_magic::unknown); } static bool classof(const Binary *v) { return v->isObject(); } static Expected> createCOFFObjectFile(MemoryBufferRef Object); static Expected> createXCOFFObjectFile(MemoryBufferRef Object, unsigned FileType); static Expected> createELFObjectFile(MemoryBufferRef Object, bool InitContent = true); static Expected> createMachOObjectFile(MemoryBufferRef Object, uint32_t UniversalCputype = 0, uint32_t UniversalIndex = 0); static Expected> createWasmObjectFile(MemoryBufferRef Object); }; // Inline function definitions. inline SymbolRef::SymbolRef(DataRefImpl SymbolP, const ObjectFile *Owner) : BasicSymbolRef(SymbolP, Owner) {} inline Expected SymbolRef::getName() const { return getObject()->getSymbolName(getRawDataRefImpl()); } inline Expected SymbolRef::getAddress() const { return getObject()->getSymbolAddress(getRawDataRefImpl()); } inline Expected SymbolRef::getValue() const { return getObject()->getSymbolValue(getRawDataRefImpl()); } inline uint32_t SymbolRef::getAlignment() const { return getObject()->getSymbolAlignment(getRawDataRefImpl()); } inline uint64_t SymbolRef::getCommonSize() const { return getObject()->getCommonSymbolSize(getRawDataRefImpl()); } inline Expected SymbolRef::getSection() const { return getObject()->getSymbolSection(getRawDataRefImpl()); } inline Expected SymbolRef::getType() const { return getObject()->getSymbolType(getRawDataRefImpl()); } inline const ObjectFile *SymbolRef::getObject() const { const SymbolicFile *O = BasicSymbolRef::getObject(); return cast(O); } /// SectionRef inline SectionRef::SectionRef(DataRefImpl SectionP, const ObjectFile *Owner) : SectionPimpl(SectionP) , OwningObject(Owner) {} inline bool SectionRef::operator==(const SectionRef &Other) const { return OwningObject == Other.OwningObject && SectionPimpl == Other.SectionPimpl; } inline bool SectionRef::operator!=(const SectionRef &Other) const { return !(*this == Other); } inline bool SectionRef::operator<(const SectionRef &Other) const { assert(OwningObject == Other.OwningObject); return SectionPimpl < Other.SectionPimpl; } inline void SectionRef::moveNext() { return OwningObject->moveSectionNext(SectionPimpl); } inline Expected SectionRef::getName() const { return OwningObject->getSectionName(SectionPimpl); } inline uint64_t SectionRef::getAddress() const { return OwningObject->getSectionAddress(SectionPimpl); } inline uint64_t SectionRef::getIndex() const { return OwningObject->getSectionIndex(SectionPimpl); } inline uint64_t SectionRef::getSize() const { return OwningObject->getSectionSize(SectionPimpl); } inline Expected SectionRef::getContents() const { Expected> Res = OwningObject->getSectionContents(SectionPimpl); if (!Res) return Res.takeError(); return StringRef(reinterpret_cast(Res->data()), Res->size()); } inline Align SectionRef::getAlignment() const { return MaybeAlign(OwningObject->getSectionAlignment(SectionPimpl)) .valueOrOne(); } inline bool SectionRef::isCompressed() const { return OwningObject->isSectionCompressed(SectionPimpl); } inline bool SectionRef::isText() const { return OwningObject->isSectionText(SectionPimpl); } inline bool SectionRef::isData() const { return OwningObject->isSectionData(SectionPimpl); } inline bool SectionRef::isBSS() const { return OwningObject->isSectionBSS(SectionPimpl); } inline bool SectionRef::isVirtual() const { return OwningObject->isSectionVirtual(SectionPimpl); } inline bool SectionRef::isBitcode() const { return OwningObject->isSectionBitcode(SectionPimpl); } inline bool SectionRef::isStripped() const { return OwningObject->isSectionStripped(SectionPimpl); } inline bool SectionRef::isBerkeleyText() const { return OwningObject->isBerkeleyText(SectionPimpl); } inline bool SectionRef::isBerkeleyData() const { return OwningObject->isBerkeleyData(SectionPimpl); } inline bool SectionRef::isDebugSection() const { return OwningObject->isDebugSection(SectionPimpl); } inline relocation_iterator SectionRef::relocation_begin() const { return OwningObject->section_rel_begin(SectionPimpl); } inline relocation_iterator SectionRef::relocation_end() const { return OwningObject->section_rel_end(SectionPimpl); } inline Expected SectionRef::getRelocatedSection() const { return OwningObject->getRelocatedSection(SectionPimpl); } inline DataRefImpl SectionRef::getRawDataRefImpl() const { return SectionPimpl; } inline const ObjectFile *SectionRef::getObject() const { return OwningObject; } /// RelocationRef inline RelocationRef::RelocationRef(DataRefImpl RelocationP, const ObjectFile *Owner) : RelocationPimpl(RelocationP) , OwningObject(Owner) {} inline bool RelocationRef::operator==(const RelocationRef &Other) const { return RelocationPimpl == Other.RelocationPimpl; } inline void RelocationRef::moveNext() { return OwningObject->moveRelocationNext(RelocationPimpl); } inline uint64_t RelocationRef::getOffset() const { return OwningObject->getRelocationOffset(RelocationPimpl); } inline symbol_iterator RelocationRef::getSymbol() const { return OwningObject->getRelocationSymbol(RelocationPimpl); } inline uint64_t RelocationRef::getType() const { return OwningObject->getRelocationType(RelocationPimpl); } inline void RelocationRef::getTypeName(SmallVectorImpl &Result) const { return OwningObject->getRelocationTypeName(RelocationPimpl, Result); } inline DataRefImpl RelocationRef::getRawDataRefImpl() const { return RelocationPimpl; } inline const ObjectFile *RelocationRef::getObject() const { return OwningObject; } } // end namespace object template <> struct DenseMapInfo { static bool isEqual(const object::SectionRef &A, const object::SectionRef &B) { return A == B; } static object::SectionRef getEmptyKey() { return object::SectionRef({}, nullptr); } static object::SectionRef getTombstoneKey() { object::DataRefImpl TS; TS.p = (uintptr_t)-1; return object::SectionRef(TS, nullptr); } static unsigned getHashValue(const object::SectionRef &Sec) { object::DataRefImpl Raw = Sec.getRawDataRefImpl(); return hash_combine(Raw.p, Raw.d.a, Raw.d.b); } }; } // end namespace llvm #endif // LLVM_OBJECT_OBJECTFILE_H #ifdef __GNUC__ #pragma GCC diagnostic pop #endif