/* * Copyright (c) 1996-1997 Sam Leffler * Copyright (c) 1996 Pixar * * Permission to use, copy, modify, distribute, and sell this software and * its documentation for any purpose is hereby granted without fee, provided * that (i) the above copyright notices and this permission notice appear in * all copies of the software and related documentation, and (ii) the names of * Pixar, Sam Leffler and Silicon Graphics may not be used in any advertising or * publicity relating to the software without the specific, prior written * permission of Pixar, Sam Leffler and Silicon Graphics. * * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. * * IN NO EVENT SHALL PIXAR, SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE * OF THIS SOFTWARE. */ #include "tiffiop.h" #ifdef PIXARLOG_SUPPORT /* * TIFF Library. * PixarLog Compression Support * * Contributed by Dan McCoy. * * PixarLog film support uses the TIFF library to store companded * 11 bit values into a tiff file, which are compressed using the * zip compressor. * * The codec can take as input and produce as output 32-bit IEEE float values * as well as 16-bit or 8-bit unsigned integer values. * * On writing any of the above are converted into the internal * 11-bit log format. In the case of 8 and 16 bit values, the * input is assumed to be unsigned linear color values that represent * the range 0-1. In the case of IEEE values, the 0-1 range is assumed to * be the normal linear color range, in addition over 1 values are * accepted up to a value of about 25.0 to encode "hot" highlights and such. * The encoding is lossless for 8-bit values, slightly lossy for the * other bit depths. The actual color precision should be better * than the human eye can perceive with extra room to allow for * error introduced by further image computation. As with any quantized * color format, it is possible to perform image calculations which * expose the quantization error. This format should certainly be less * susceptible to such errors than standard 8-bit encodings, but more * susceptible than straight 16-bit or 32-bit encodings. * * On reading the internal format is converted to the desired output format. * The program can request which format it desires by setting the internal * pseudo tag TIFFTAG_PIXARLOGDATAFMT to one of these possible values: * PIXARLOGDATAFMT_FLOAT = provide IEEE float values. * PIXARLOGDATAFMT_16BIT = provide unsigned 16-bit integer values * PIXARLOGDATAFMT_8BIT = provide unsigned 8-bit integer values * * alternately PIXARLOGDATAFMT_8BITABGR provides unsigned 8-bit integer * values with the difference that if there are exactly three or four channels * (rgb or rgba) it swaps the channel order (bgr or abgr). * * PIXARLOGDATAFMT_11BITLOG provides the internal encoding directly * packed in 16-bit values. However no tools are supplied for interpreting * these values. * * "hot" (over 1.0) areas written in floating point get clamped to * 1.0 in the integer data types. * * When the file is closed after writing, the bit depth and sample format * are set always to appear as if 8-bit data has been written into it. * That way a naive program unaware of the particulars of the encoding * gets the format it is most likely able to handle. * * The codec does it's own horizontal differencing step on the coded * values so the libraries predictor stuff should be turned off. * The codec also handle byte swapping the encoded values as necessary * since the library does not have the information necessary * to know the bit depth of the raw unencoded buffer. * * NOTE: This decoder does not appear to update tif_rawcp, and tif_rawcc. * This can cause problems with the implementation of CHUNKY_STRIP_READ_SUPPORT * as noted in http://trac.osgeo.org/gdal/ticket/3894. FrankW - Jan'11 */ #include "tif_predict.h" #include "zlib.h" #include #include #include /* Tables for converting to/from 11 bit coded values */ #define TSIZE 2048 /* decode table size (11-bit tokens) */ #define TSIZEP1 2049 /* Plus one for slop */ #define ONE 1250 /* token value of 1.0 exactly */ #define RATIO 1.004 /* nominal ratio for log part */ #define CODE_MASK 0x7ff /* 11 bits. */ static float Fltsize; static float LogK1, LogK2; #define REPEAT(n, op) \ { \ int i; \ i = n; \ do \ { \ i--; \ op; \ } while (i > 0); \ } static void horizontalAccumulateF(uint16_t *wp, int n, int stride, float *op, float *ToLinearF) { register unsigned int cr, cg, cb, ca, mask; register float t0, t1, t2, t3; if (n >= stride) { mask = CODE_MASK; if (stride == 3) { t0 = ToLinearF[cr = (wp[0] & mask)]; t1 = ToLinearF[cg = (wp[1] & mask)]; t2 = ToLinearF[cb = (wp[2] & mask)]; op[0] = t0; op[1] = t1; op[2] = t2; n -= 3; while (n > 0) { wp += 3; op += 3; n -= 3; t0 = ToLinearF[(cr += wp[0]) & mask]; t1 = ToLinearF[(cg += wp[1]) & mask]; t2 = ToLinearF[(cb += wp[2]) & mask]; op[0] = t0; op[1] = t1; op[2] = t2; } } else if (stride == 4) { t0 = ToLinearF[cr = (wp[0] & mask)]; t1 = ToLinearF[cg = (wp[1] & mask)]; t2 = ToLinearF[cb = (wp[2] & mask)]; t3 = ToLinearF[ca = (wp[3] & mask)]; op[0] = t0; op[1] = t1; op[2] = t2; op[3] = t3; n -= 4; while (n > 0) { wp += 4; op += 4; n -= 4; t0 = ToLinearF[(cr += wp[0]) & mask]; t1 = ToLinearF[(cg += wp[1]) & mask]; t2 = ToLinearF[(cb += wp[2]) & mask]; t3 = ToLinearF[(ca += wp[3]) & mask]; op[0] = t0; op[1] = t1; op[2] = t2; op[3] = t3; } } else { REPEAT(stride, *op = ToLinearF[*wp & mask]; wp++; op++) n -= stride; while (n > 0) { REPEAT(stride, wp[stride] += *wp; *op = ToLinearF[*wp & mask]; wp++; op++) n -= stride; } } } } static void horizontalAccumulate12(uint16_t *wp, int n, int stride, int16_t *op, float *ToLinearF) { register unsigned int cr, cg, cb, ca, mask; register float t0, t1, t2, t3; #define SCALE12 2048.0F #define CLAMP12(t) (((t) < 3071) ? (uint16_t)(t) : 3071) if (n >= stride) { mask = CODE_MASK; if (stride == 3) { t0 = ToLinearF[cr = (wp[0] & mask)] * SCALE12; t1 = ToLinearF[cg = (wp[1] & mask)] * SCALE12; t2 = ToLinearF[cb = (wp[2] & mask)] * SCALE12; op[0] = CLAMP12(t0); op[1] = CLAMP12(t1); op[2] = CLAMP12(t2); n -= 3; while (n > 0) { wp += 3; op += 3; n -= 3; t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12; t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12; t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12; op[0] = CLAMP12(t0); op[1] = CLAMP12(t1); op[2] = CLAMP12(t2); } } else if (stride == 4) { t0 = ToLinearF[cr = (wp[0] & mask)] * SCALE12; t1 = ToLinearF[cg = (wp[1] & mask)] * SCALE12; t2 = ToLinearF[cb = (wp[2] & mask)] * SCALE12; t3 = ToLinearF[ca = (wp[3] & mask)] * SCALE12; op[0] = CLAMP12(t0); op[1] = CLAMP12(t1); op[2] = CLAMP12(t2); op[3] = CLAMP12(t3); n -= 4; while (n > 0) { wp += 4; op += 4; n -= 4; t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12; t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12; t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12; t3 = ToLinearF[(ca += wp[3]) & mask] * SCALE12; op[0] = CLAMP12(t0); op[1] = CLAMP12(t1); op[2] = CLAMP12(t2); op[3] = CLAMP12(t3); } } else { REPEAT(stride, t0 = ToLinearF[*wp & mask] * SCALE12; *op = CLAMP12(t0); wp++; op++) n -= stride; while (n > 0) { REPEAT(stride, wp[stride] += *wp; t0 = ToLinearF[wp[stride] & mask] * SCALE12; *op = CLAMP12(t0); wp++; op++) n -= stride; } } } } static void horizontalAccumulate16(uint16_t *wp, int n, int stride, uint16_t *op, uint16_t *ToLinear16) { register unsigned int cr, cg, cb, ca, mask; if (n >= stride) { mask = CODE_MASK; if (stride == 3) { op[0] = ToLinear16[cr = (wp[0] & mask)]; op[1] = ToLinear16[cg = (wp[1] & mask)]; op[2] = ToLinear16[cb = (wp[2] & mask)]; n -= 3; while (n > 0) { wp += 3; op += 3; n -= 3; op[0] = ToLinear16[(cr += wp[0]) & mask]; op[1] = ToLinear16[(cg += wp[1]) & mask]; op[2] = ToLinear16[(cb += wp[2]) & mask]; } } else if (stride == 4) { op[0] = ToLinear16[cr = (wp[0] & mask)]; op[1] = ToLinear16[cg = (wp[1] & mask)]; op[2] = ToLinear16[cb = (wp[2] & mask)]; op[3] = ToLinear16[ca = (wp[3] & mask)]; n -= 4; while (n > 0) { wp += 4; op += 4; n -= 4; op[0] = ToLinear16[(cr += wp[0]) & mask]; op[1] = ToLinear16[(cg += wp[1]) & mask]; op[2] = ToLinear16[(cb += wp[2]) & mask]; op[3] = ToLinear16[(ca += wp[3]) & mask]; } } else { REPEAT(stride, *op = ToLinear16[*wp & mask]; wp++; op++) n -= stride; while (n > 0) { REPEAT(stride, wp[stride] += *wp; *op = ToLinear16[*wp & mask]; wp++; op++) n -= stride; } } } } /* * Returns the log encoded 11-bit values with the horizontal * differencing undone. */ static void horizontalAccumulate11(uint16_t *wp, int n, int stride, uint16_t *op) { register unsigned int cr, cg, cb, ca, mask; if (n >= stride) { mask = CODE_MASK; if (stride == 3) { op[0] = wp[0]; op[1] = wp[1]; op[2] = wp[2]; cr = wp[0]; cg = wp[1]; cb = wp[2]; n -= 3; while (n > 0) { wp += 3; op += 3; n -= 3; op[0] = (uint16_t)((cr += wp[0]) & mask); op[1] = (uint16_t)((cg += wp[1]) & mask); op[2] = (uint16_t)((cb += wp[2]) & mask); } } else if (stride == 4) { op[0] = wp[0]; op[1] = wp[1]; op[2] = wp[2]; op[3] = wp[3]; cr = wp[0]; cg = wp[1]; cb = wp[2]; ca = wp[3]; n -= 4; while (n > 0) { wp += 4; op += 4; n -= 4; op[0] = (uint16_t)((cr += wp[0]) & mask); op[1] = (uint16_t)((cg += wp[1]) & mask); op[2] = (uint16_t)((cb += wp[2]) & mask); op[3] = (uint16_t)((ca += wp[3]) & mask); } } else { REPEAT(stride, *op = *wp & mask; wp++; op++) n -= stride; while (n > 0) { REPEAT(stride, wp[stride] += *wp; *op = *wp & mask; wp++; op++) n -= stride; } } } } static void horizontalAccumulate8(uint16_t *wp, int n, int stride, unsigned char *op, unsigned char *ToLinear8) { register unsigned int cr, cg, cb, ca, mask; if (n >= stride) { mask = CODE_MASK; if (stride == 3) { op[0] = ToLinear8[cr = (wp[0] & mask)]; op[1] = ToLinear8[cg = (wp[1] & mask)]; op[2] = ToLinear8[cb = (wp[2] & mask)]; n -= 3; while (n > 0) { n -= 3; wp += 3; op += 3; op[0] = ToLinear8[(cr += wp[0]) & mask]; op[1] = ToLinear8[(cg += wp[1]) & mask]; op[2] = ToLinear8[(cb += wp[2]) & mask]; } } else if (stride == 4) { op[0] = ToLinear8[cr = (wp[0] & mask)]; op[1] = ToLinear8[cg = (wp[1] & mask)]; op[2] = ToLinear8[cb = (wp[2] & mask)]; op[3] = ToLinear8[ca = (wp[3] & mask)]; n -= 4; while (n > 0) { n -= 4; wp += 4; op += 4; op[0] = ToLinear8[(cr += wp[0]) & mask]; op[1] = ToLinear8[(cg += wp[1]) & mask]; op[2] = ToLinear8[(cb += wp[2]) & mask]; op[3] = ToLinear8[(ca += wp[3]) & mask]; } } else { REPEAT(stride, *op = ToLinear8[*wp & mask]; wp++; op++) n -= stride; while (n > 0) { REPEAT(stride, wp[stride] += *wp; *op = ToLinear8[*wp & mask]; wp++; op++) n -= stride; } } } } static void horizontalAccumulate8abgr(uint16_t *wp, int n, int stride, unsigned char *op, unsigned char *ToLinear8) { register unsigned int cr, cg, cb, ca, mask; register unsigned char t0, t1, t2, t3; if (n >= stride) { mask = CODE_MASK; if (stride == 3) { op[0] = 0; t1 = ToLinear8[cb = (wp[2] & mask)]; t2 = ToLinear8[cg = (wp[1] & mask)]; t3 = ToLinear8[cr = (wp[0] & mask)]; op[1] = t1; op[2] = t2; op[3] = t3; n -= 3; while (n > 0) { n -= 3; wp += 3; op += 4; op[0] = 0; t1 = ToLinear8[(cb += wp[2]) & mask]; t2 = ToLinear8[(cg += wp[1]) & mask]; t3 = ToLinear8[(cr += wp[0]) & mask]; op[1] = t1; op[2] = t2; op[3] = t3; } } else if (stride == 4) { t0 = ToLinear8[ca = (wp[3] & mask)]; t1 = ToLinear8[cb = (wp[2] & mask)]; t2 = ToLinear8[cg = (wp[1] & mask)]; t3 = ToLinear8[cr = (wp[0] & mask)]; op[0] = t0; op[1] = t1; op[2] = t2; op[3] = t3; n -= 4; while (n > 0) { n -= 4; wp += 4; op += 4; t0 = ToLinear8[(ca += wp[3]) & mask]; t1 = ToLinear8[(cb += wp[2]) & mask]; t2 = ToLinear8[(cg += wp[1]) & mask]; t3 = ToLinear8[(cr += wp[0]) & mask]; op[0] = t0; op[1] = t1; op[2] = t2; op[3] = t3; } } else { REPEAT(stride, *op = ToLinear8[*wp & mask]; wp++; op++) n -= stride; while (n > 0) { REPEAT(stride, wp[stride] += *wp; *op = ToLinear8[*wp & mask]; wp++; op++) n -= stride; } } } } /* * State block for each open TIFF * file using PixarLog compression/decompression. */ typedef struct { TIFFPredictorState predict; z_stream stream; tmsize_t tbuf_size; /* only set/used on reading for now */ uint16_t *tbuf; uint16_t stride; int state; int user_datafmt; int quality; #define PLSTATE_INIT 1 TIFFVSetMethod vgetparent; /* super-class method */ TIFFVSetMethod vsetparent; /* super-class method */ float *ToLinearF; uint16_t *ToLinear16; unsigned char *ToLinear8; uint16_t *FromLT2; uint16_t *From14; /* Really for 16-bit data, but we shift down 2 */ uint16_t *From8; } PixarLogState; static int PixarLogMakeTables(TIFF *tif, PixarLogState *sp) { /* * We make several tables here to convert between various external * representations (float, 16-bit, and 8-bit) and the internal * 11-bit companded representation. The 11-bit representation has two * distinct regions. A linear bottom end up through .018316 in steps * of about .000073, and a region of constant ratio up to about 25. * These floating point numbers are stored in the main table ToLinearF. * All other tables are derived from this one. The tables (and the * ratios) are continuous at the internal seam. */ int nlin, lt2size; int i, j; double b, c, linstep, v; float *ToLinearF; uint16_t *ToLinear16; unsigned char *ToLinear8; uint16_t *FromLT2; uint16_t *From14; /* Really for 16-bit data, but we shift down 2 */ uint16_t *From8; c = log(RATIO); nlin = (int)(1. / c); /* nlin must be an integer */ c = 1. / nlin; b = exp(-c * ONE); /* multiplicative scale factor [b*exp(c*ONE) = 1] */ linstep = b * c * exp(1.); LogK1 = (float)(1. / c); /* if (v >= 2) token = k1*log(v*k2) */ LogK2 = (float)(1. / b); lt2size = (int)(2. / linstep) + 1; FromLT2 = (uint16_t *)_TIFFmallocExt(tif, lt2size * sizeof(uint16_t)); From14 = (uint16_t *)_TIFFmallocExt(tif, 16384 * sizeof(uint16_t)); From8 = (uint16_t *)_TIFFmallocExt(tif, 256 * sizeof(uint16_t)); ToLinearF = (float *)_TIFFmallocExt(tif, TSIZEP1 * sizeof(float)); ToLinear16 = (uint16_t *)_TIFFmallocExt(tif, TSIZEP1 * sizeof(uint16_t)); ToLinear8 = (unsigned char *)_TIFFmallocExt(tif, TSIZEP1 * sizeof(unsigned char)); if (FromLT2 == NULL || From14 == NULL || From8 == NULL || ToLinearF == NULL || ToLinear16 == NULL || ToLinear8 == NULL) { if (FromLT2) _TIFFfreeExt(tif, FromLT2); if (From14) _TIFFfreeExt(tif, From14); if (From8) _TIFFfreeExt(tif, From8); if (ToLinearF) _TIFFfreeExt(tif, ToLinearF); if (ToLinear16) _TIFFfreeExt(tif, ToLinear16); if (ToLinear8) _TIFFfreeExt(tif, ToLinear8); sp->FromLT2 = NULL; sp->From14 = NULL; sp->From8 = NULL; sp->ToLinearF = NULL; sp->ToLinear16 = NULL; sp->ToLinear8 = NULL; return 0; } j = 0; for (i = 0; i < nlin; i++) { v = i * linstep; ToLinearF[j++] = (float)v; } for (i = nlin; i < TSIZE; i++) ToLinearF[j++] = (float)(b * exp(c * i)); ToLinearF[2048] = ToLinearF[2047]; for (i = 0; i < TSIZEP1; i++) { v = ToLinearF[i] * 65535.0 + 0.5; ToLinear16[i] = (v > 65535.0) ? 65535 : (uint16_t)v; v = ToLinearF[i] * 255.0 + 0.5; ToLinear8[i] = (v > 255.0) ? 255 : (unsigned char)v; } j = 0; for (i = 0; i < lt2size; i++) { if ((i * linstep) * (i * linstep) > ToLinearF[j] * ToLinearF[j + 1]) j++; FromLT2[i] = (uint16_t)j; } /* * Since we lose info anyway on 16-bit data, we set up a 14-bit * table and shift 16-bit values down two bits on input. * saves a little table space. */ j = 0; for (i = 0; i < 16384; i++) { while ((i / 16383.) * (i / 16383.) > ToLinearF[j] * ToLinearF[j + 1]) j++; From14[i] = (uint16_t)j; } j = 0; for (i = 0; i < 256; i++) { while ((i / 255.) * (i / 255.) > ToLinearF[j] * ToLinearF[j + 1]) j++; From8[i] = (uint16_t)j; } Fltsize = (float)(lt2size / 2); sp->ToLinearF = ToLinearF; sp->ToLinear16 = ToLinear16; sp->ToLinear8 = ToLinear8; sp->FromLT2 = FromLT2; sp->From14 = From14; sp->From8 = From8; return 1; } #define DecoderState(tif) ((PixarLogState *)(tif)->tif_data) #define EncoderState(tif) ((PixarLogState *)(tif)->tif_data) static int PixarLogEncode(TIFF *tif, uint8_t *bp, tmsize_t cc, uint16_t s); static int PixarLogDecode(TIFF *tif, uint8_t *op, tmsize_t occ, uint16_t s); #define PIXARLOGDATAFMT_UNKNOWN -1 static int PixarLogGuessDataFmt(TIFFDirectory *td) { int guess = PIXARLOGDATAFMT_UNKNOWN; int format = td->td_sampleformat; /* If the user didn't tell us his datafmt, * take our best guess from the bitspersample. */ switch (td->td_bitspersample) { case 32: if (format == SAMPLEFORMAT_IEEEFP) guess = PIXARLOGDATAFMT_FLOAT; break; case 16: if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT) guess = PIXARLOGDATAFMT_16BIT; break; case 12: if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_INT) guess = PIXARLOGDATAFMT_12BITPICIO; break; case 11: if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT) guess = PIXARLOGDATAFMT_11BITLOG; break; case 8: if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT) guess = PIXARLOGDATAFMT_8BIT; break; } return guess; } static tmsize_t multiply_ms(tmsize_t m1, tmsize_t m2) { return _TIFFMultiplySSize(NULL, m1, m2, NULL); } static tmsize_t add_ms(tmsize_t m1, tmsize_t m2) { assert(m1 >= 0 && m2 >= 0); /* if either input is zero, assume overflow already occurred */ if (m1 == 0 || m2 == 0) return 0; else if (m1 > TIFF_TMSIZE_T_MAX - m2) return 0; return m1 + m2; } static int PixarLogFixupTags(TIFF *tif) { (void)tif; return (1); } static int PixarLogSetupDecode(TIFF *tif) { static const char module[] = "PixarLogSetupDecode"; TIFFDirectory *td = &tif->tif_dir; PixarLogState *sp = DecoderState(tif); tmsize_t tbuf_size; uint32_t strip_height; assert(sp != NULL); /* This function can possibly be called several times by */ /* PredictorSetupDecode() if this function succeeds but */ /* PredictorSetup() fails */ if ((sp->state & PLSTATE_INIT) != 0) return 1; strip_height = td->td_rowsperstrip; if (strip_height > td->td_imagelength) strip_height = td->td_imagelength; /* Make sure no byte swapping happens on the data * after decompression. */ tif->tif_postdecode = _TIFFNoPostDecode; /* for some reason, we can't do this in TIFFInitPixarLog */ sp->stride = (td->td_planarconfig == PLANARCONFIG_CONTIG ? td->td_samplesperpixel : 1); tbuf_size = multiply_ms( multiply_ms(multiply_ms(sp->stride, td->td_imagewidth), strip_height), sizeof(uint16_t)); /* add one more stride in case input ends mid-stride */ tbuf_size = add_ms(tbuf_size, sizeof(uint16_t) * sp->stride); if (tbuf_size == 0) return (0); /* TODO: this is an error return without error report through TIFFErrorExt */ sp->tbuf = (uint16_t *)_TIFFmallocExt(tif, tbuf_size); if (sp->tbuf == NULL) return (0); sp->tbuf_size = tbuf_size; if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) sp->user_datafmt = PixarLogGuessDataFmt(td); if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) { _TIFFfreeExt(tif, sp->tbuf); sp->tbuf = NULL; sp->tbuf_size = 0; TIFFErrorExtR(tif, module, "PixarLog compression can't handle bits depth/data " "format combination (depth: %" PRIu16 ")", td->td_bitspersample); return (0); } if (inflateInit(&sp->stream) != Z_OK) { _TIFFfreeExt(tif, sp->tbuf); sp->tbuf = NULL; sp->tbuf_size = 0; TIFFErrorExtR(tif, module, "%s", sp->stream.msg ? sp->stream.msg : "(null)"); return (0); } else { sp->state |= PLSTATE_INIT; return (1); } } /* * Setup state for decoding a strip. */ static int PixarLogPreDecode(TIFF *tif, uint16_t s) { static const char module[] = "PixarLogPreDecode"; PixarLogState *sp = DecoderState(tif); (void)s; assert(sp != NULL); sp->stream.next_in = tif->tif_rawdata; assert(sizeof(sp->stream.avail_in) == 4); /* if this assert gets raised, we need to simplify this code to reflect a ZLib that is likely updated to deal with 8byte memory sizes, though this code will respond appropriately even before we simplify it */ sp->stream.avail_in = (uInt)tif->tif_rawcc; if ((tmsize_t)sp->stream.avail_in != tif->tif_rawcc) { TIFFErrorExtR(tif, module, "ZLib cannot deal with buffers this size"); return (0); } return (inflateReset(&sp->stream) == Z_OK); } static int PixarLogDecode(TIFF *tif, uint8_t *op, tmsize_t occ, uint16_t s) { static const char module[] = "PixarLogDecode"; TIFFDirectory *td = &tif->tif_dir; PixarLogState *sp = DecoderState(tif); tmsize_t i; tmsize_t nsamples; int llen; uint16_t *up; switch (sp->user_datafmt) { case PIXARLOGDATAFMT_FLOAT: nsamples = occ / sizeof(float); /* XXX float == 32 bits */ break; case PIXARLOGDATAFMT_16BIT: case PIXARLOGDATAFMT_12BITPICIO: case PIXARLOGDATAFMT_11BITLOG: nsamples = occ / sizeof(uint16_t); /* XXX uint16_t == 16 bits */ break; case PIXARLOGDATAFMT_8BIT: case PIXARLOGDATAFMT_8BITABGR: nsamples = occ; break; default: TIFFErrorExtR(tif, module, "%" PRIu16 " bit input not supported in PixarLog", td->td_bitspersample); return 0; } llen = sp->stride * td->td_imagewidth; (void)s; assert(sp != NULL); sp->stream.next_in = tif->tif_rawcp; sp->stream.avail_in = (uInt)tif->tif_rawcc; sp->stream.next_out = (unsigned char *)sp->tbuf; assert(sizeof(sp->stream.avail_out) == 4); /* if this assert gets raised, we need to simplify this code to reflect a ZLib that is likely updated to deal with 8byte memory sizes, though this code will respond appropriately even before we simplify it */ sp->stream.avail_out = (uInt)(nsamples * sizeof(uint16_t)); if (sp->stream.avail_out != nsamples * sizeof(uint16_t)) { TIFFErrorExtR(tif, module, "ZLib cannot deal with buffers this size"); return (0); } /* Check that we will not fill more than what was allocated */ if ((tmsize_t)sp->stream.avail_out > sp->tbuf_size) { TIFFErrorExtR(tif, module, "sp->stream.avail_out > sp->tbuf_size"); return (0); } do { int state = inflate(&sp->stream, Z_PARTIAL_FLUSH); if (state == Z_STREAM_END) { break; /* XXX */ } if (state == Z_DATA_ERROR) { TIFFErrorExtR( tif, module, "Decoding error at scanline %" PRIu32 ", %s", tif->tif_row, sp->stream.msg ? sp->stream.msg : "(null)"); return (0); } if (state != Z_OK) { TIFFErrorExtR(tif, module, "ZLib error: %s", sp->stream.msg ? sp->stream.msg : "(null)"); return (0); } } while (sp->stream.avail_out > 0); /* hopefully, we got all the bytes we needed */ if (sp->stream.avail_out != 0) { TIFFErrorExtR(tif, module, "Not enough data at scanline %" PRIu32 " (short %u bytes)", tif->tif_row, sp->stream.avail_out); return (0); } tif->tif_rawcp = sp->stream.next_in; tif->tif_rawcc = sp->stream.avail_in; up = sp->tbuf; /* Swap bytes in the data if from a different endian machine. */ if (tif->tif_flags & TIFF_SWAB) TIFFSwabArrayOfShort(up, nsamples); /* * if llen is not an exact multiple of nsamples, the decode operation * may overflow the output buffer, so truncate it enough to prevent * that but still salvage as much data as possible. */ if (nsamples % llen) { TIFFWarningExtR(tif, module, "stride %d is not a multiple of sample count, " "%" TIFF_SSIZE_FORMAT ", data truncated.", llen, nsamples); nsamples -= nsamples % llen; } for (i = 0; i < nsamples; i += llen, up += llen) { switch (sp->user_datafmt) { case PIXARLOGDATAFMT_FLOAT: horizontalAccumulateF(up, llen, sp->stride, (float *)op, sp->ToLinearF); op += llen * sizeof(float); break; case PIXARLOGDATAFMT_16BIT: horizontalAccumulate16(up, llen, sp->stride, (uint16_t *)op, sp->ToLinear16); op += llen * sizeof(uint16_t); break; case PIXARLOGDATAFMT_12BITPICIO: horizontalAccumulate12(up, llen, sp->stride, (int16_t *)op, sp->ToLinearF); op += llen * sizeof(int16_t); break; case PIXARLOGDATAFMT_11BITLOG: horizontalAccumulate11(up, llen, sp->stride, (uint16_t *)op); op += llen * sizeof(uint16_t); break; case PIXARLOGDATAFMT_8BIT: horizontalAccumulate8(up, llen, sp->stride, (unsigned char *)op, sp->ToLinear8); op += llen * sizeof(unsigned char); break; case PIXARLOGDATAFMT_8BITABGR: horizontalAccumulate8abgr(up, llen, sp->stride, (unsigned char *)op, sp->ToLinear8); op += llen * sizeof(unsigned char); break; default: TIFFErrorExtR(tif, module, "Unsupported bits/sample: %" PRIu16, td->td_bitspersample); return (0); } } return (1); } static int PixarLogSetupEncode(TIFF *tif) { static const char module[] = "PixarLogSetupEncode"; TIFFDirectory *td = &tif->tif_dir; PixarLogState *sp = EncoderState(tif); tmsize_t tbuf_size; assert(sp != NULL); /* for some reason, we can't do this in TIFFInitPixarLog */ sp->stride = (td->td_planarconfig == PLANARCONFIG_CONTIG ? td->td_samplesperpixel : 1); tbuf_size = multiply_ms(multiply_ms(multiply_ms(sp->stride, td->td_imagewidth), td->td_rowsperstrip), sizeof(uint16_t)); if (tbuf_size == 0) return (0); /* TODO: this is an error return without error report through TIFFErrorExt */ sp->tbuf = (uint16_t *)_TIFFmallocExt(tif, tbuf_size); if (sp->tbuf == NULL) return (0); if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) sp->user_datafmt = PixarLogGuessDataFmt(td); if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) { TIFFErrorExtR(tif, module, "PixarLog compression can't handle %" PRIu16 " bit linear encodings", td->td_bitspersample); return (0); } if (deflateInit(&sp->stream, sp->quality) != Z_OK) { TIFFErrorExtR(tif, module, "%s", sp->stream.msg ? sp->stream.msg : "(null)"); return (0); } else { sp->state |= PLSTATE_INIT; return (1); } } /* * Reset encoding state at the start of a strip. */ static int PixarLogPreEncode(TIFF *tif, uint16_t s) { static const char module[] = "PixarLogPreEncode"; PixarLogState *sp = EncoderState(tif); (void)s; assert(sp != NULL); sp->stream.next_out = tif->tif_rawdata; assert(sizeof(sp->stream.avail_out) == 4); /* if this assert gets raised, we need to simplify this code to reflect a ZLib that is likely updated to deal with 8byte memory sizes, though this code will respond appropriately even before we simplify it */ sp->stream.avail_out = (uInt)tif->tif_rawdatasize; if ((tmsize_t)sp->stream.avail_out != tif->tif_rawdatasize) { TIFFErrorExtR(tif, module, "ZLib cannot deal with buffers this size"); return (0); } return (deflateReset(&sp->stream) == Z_OK); } static void horizontalDifferenceF(float *ip, int n, int stride, uint16_t *wp, uint16_t *FromLT2) { int32_t r1, g1, b1, a1, r2, g2, b2, a2, mask; float fltsize = Fltsize; #define CLAMP(v) \ ((v < (float)0.) ? 0 \ : (v < (float)2.) ? FromLT2[(int)(v * fltsize)] \ : (v > (float)24.2) ? 2047 \ : LogK1 * log(v * LogK2) + 0.5) mask = CODE_MASK; if (n >= stride) { if (stride == 3) { r2 = wp[0] = (uint16_t)CLAMP(ip[0]); g2 = wp[1] = (uint16_t)CLAMP(ip[1]); b2 = wp[2] = (uint16_t)CLAMP(ip[2]); n -= 3; while (n > 0) { n -= 3; wp += 3; ip += 3; r1 = (int32_t)CLAMP(ip[0]); wp[0] = (uint16_t)((r1 - r2) & mask); r2 = r1; g1 = (int32_t)CLAMP(ip[1]); wp[1] = (uint16_t)((g1 - g2) & mask); g2 = g1; b1 = (int32_t)CLAMP(ip[2]); wp[2] = (uint16_t)((b1 - b2) & mask); b2 = b1; } } else if (stride == 4) { r2 = wp[0] = (uint16_t)CLAMP(ip[0]); g2 = wp[1] = (uint16_t)CLAMP(ip[1]); b2 = wp[2] = (uint16_t)CLAMP(ip[2]); a2 = wp[3] = (uint16_t)CLAMP(ip[3]); n -= 4; while (n > 0) { n -= 4; wp += 4; ip += 4; r1 = (int32_t)CLAMP(ip[0]); wp[0] = (uint16_t)((r1 - r2) & mask); r2 = r1; g1 = (int32_t)CLAMP(ip[1]); wp[1] = (uint16_t)((g1 - g2) & mask); g2 = g1; b1 = (int32_t)CLAMP(ip[2]); wp[2] = (uint16_t)((b1 - b2) & mask); b2 = b1; a1 = (int32_t)CLAMP(ip[3]); wp[3] = (uint16_t)((a1 - a2) & mask); a2 = a1; } } else { REPEAT(stride, wp[0] = (uint16_t)CLAMP(ip[0]); wp++; ip++) n -= stride; while (n > 0) { REPEAT(stride, wp[0] = (uint16_t)(((int32_t)CLAMP(ip[0]) - (int32_t)CLAMP(ip[-stride])) & mask); wp++; ip++) n -= stride; } } } } static void horizontalDifference16(unsigned short *ip, int n, int stride, unsigned short *wp, uint16_t *From14) { register int r1, g1, b1, a1, r2, g2, b2, a2, mask; /* assumption is unsigned pixel values */ #undef CLAMP #define CLAMP(v) From14[(v) >> 2] mask = CODE_MASK; if (n >= stride) { if (stride == 3) { r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]); b2 = wp[2] = CLAMP(ip[2]); n -= 3; while (n > 0) { n -= 3; wp += 3; ip += 3; r1 = CLAMP(ip[0]); wp[0] = (uint16_t)((r1 - r2) & mask); r2 = r1; g1 = CLAMP(ip[1]); wp[1] = (uint16_t)((g1 - g2) & mask); g2 = g1; b1 = CLAMP(ip[2]); wp[2] = (uint16_t)((b1 - b2) & mask); b2 = b1; } } else if (stride == 4) { r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]); b2 = wp[2] = CLAMP(ip[2]); a2 = wp[3] = CLAMP(ip[3]); n -= 4; while (n > 0) { n -= 4; wp += 4; ip += 4; r1 = CLAMP(ip[0]); wp[0] = (uint16_t)((r1 - r2) & mask); r2 = r1; g1 = CLAMP(ip[1]); wp[1] = (uint16_t)((g1 - g2) & mask); g2 = g1; b1 = CLAMP(ip[2]); wp[2] = (uint16_t)((b1 - b2) & mask); b2 = b1; a1 = CLAMP(ip[3]); wp[3] = (uint16_t)((a1 - a2) & mask); a2 = a1; } } else { REPEAT(stride, wp[0] = CLAMP(ip[0]); wp++; ip++) n -= stride; while (n > 0) { REPEAT(stride, wp[0] = (uint16_t)((CLAMP(ip[0]) - CLAMP(ip[-stride])) & mask); wp++; ip++) n -= stride; } } } } static void horizontalDifference8(unsigned char *ip, int n, int stride, unsigned short *wp, uint16_t *From8) { register int r1, g1, b1, a1, r2, g2, b2, a2, mask; #undef CLAMP #define CLAMP(v) (From8[(v)]) mask = CODE_MASK; if (n >= stride) { if (stride == 3) { r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]); b2 = wp[2] = CLAMP(ip[2]); n -= 3; while (n > 0) { n -= 3; r1 = CLAMP(ip[3]); wp[3] = (uint16_t)((r1 - r2) & mask); r2 = r1; g1 = CLAMP(ip[4]); wp[4] = (uint16_t)((g1 - g2) & mask); g2 = g1; b1 = CLAMP(ip[5]); wp[5] = (uint16_t)((b1 - b2) & mask); b2 = b1; wp += 3; ip += 3; } } else if (stride == 4) { r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]); b2 = wp[2] = CLAMP(ip[2]); a2 = wp[3] = CLAMP(ip[3]); n -= 4; while (n > 0) { n -= 4; r1 = CLAMP(ip[4]); wp[4] = (uint16_t)((r1 - r2) & mask); r2 = r1; g1 = CLAMP(ip[5]); wp[5] = (uint16_t)((g1 - g2) & mask); g2 = g1; b1 = CLAMP(ip[6]); wp[6] = (uint16_t)((b1 - b2) & mask); b2 = b1; a1 = CLAMP(ip[7]); wp[7] = (uint16_t)((a1 - a2) & mask); a2 = a1; wp += 4; ip += 4; } } else { REPEAT(stride, wp[0] = CLAMP(ip[0]); wp++; ip++) n -= stride; while (n > 0) { REPEAT(stride, wp[0] = (uint16_t)((CLAMP(ip[0]) - CLAMP(ip[-stride])) & mask); wp++; ip++) n -= stride; } } } } /* * Encode a chunk of pixels. */ static int PixarLogEncode(TIFF *tif, uint8_t *bp, tmsize_t cc, uint16_t s) { static const char module[] = "PixarLogEncode"; TIFFDirectory *td = &tif->tif_dir; PixarLogState *sp = EncoderState(tif); tmsize_t i; tmsize_t n; int llen; unsigned short *up; (void)s; switch (sp->user_datafmt) { case PIXARLOGDATAFMT_FLOAT: n = cc / sizeof(float); /* XXX float == 32 bits */ break; case PIXARLOGDATAFMT_16BIT: case PIXARLOGDATAFMT_12BITPICIO: case PIXARLOGDATAFMT_11BITLOG: n = cc / sizeof(uint16_t); /* XXX uint16_t == 16 bits */ break; case PIXARLOGDATAFMT_8BIT: case PIXARLOGDATAFMT_8BITABGR: n = cc; break; default: TIFFErrorExtR(tif, module, "%" PRIu16 " bit input not supported in PixarLog", td->td_bitspersample); return 0; } llen = sp->stride * td->td_imagewidth; /* Check against the number of elements (of size uint16_t) of sp->tbuf */ if (n > ((tmsize_t)td->td_rowsperstrip * llen)) { TIFFErrorExtR(tif, module, "Too many input bytes provided"); return 0; } for (i = 0, up = sp->tbuf; i < n; i += llen, up += llen) { switch (sp->user_datafmt) { case PIXARLOGDATAFMT_FLOAT: horizontalDifferenceF((float *)bp, llen, sp->stride, up, sp->FromLT2); bp += llen * sizeof(float); break; case PIXARLOGDATAFMT_16BIT: horizontalDifference16((uint16_t *)bp, llen, sp->stride, up, sp->From14); bp += llen * sizeof(uint16_t); break; case PIXARLOGDATAFMT_8BIT: horizontalDifference8((unsigned char *)bp, llen, sp->stride, up, sp->From8); bp += llen * sizeof(unsigned char); break; default: TIFFErrorExtR(tif, module, "%" PRIu16 " bit input not supported in PixarLog", td->td_bitspersample); return 0; } } sp->stream.next_in = (unsigned char *)sp->tbuf; assert(sizeof(sp->stream.avail_in) == 4); /* if this assert gets raised, we need to simplify this code to reflect a ZLib that is likely updated to deal with 8byte memory sizes, though this code will respond appropriately even before we simplify it */ sp->stream.avail_in = (uInt)(n * sizeof(uint16_t)); if ((sp->stream.avail_in / sizeof(uint16_t)) != (uInt)n) { TIFFErrorExtR(tif, module, "ZLib cannot deal with buffers this size"); return (0); } do { if (deflate(&sp->stream, Z_NO_FLUSH) != Z_OK) { TIFFErrorExtR(tif, module, "Encoder error: %s", sp->stream.msg ? sp->stream.msg : "(null)"); return (0); } if (sp->stream.avail_out == 0) { tif->tif_rawcc = tif->tif_rawdatasize; if (!TIFFFlushData1(tif)) return 0; sp->stream.next_out = tif->tif_rawdata; sp->stream.avail_out = (uInt)tif ->tif_rawdatasize; /* this is a safe typecast, as check is made already in PixarLogPreEncode */ } } while (sp->stream.avail_in > 0); return (1); } /* * Finish off an encoded strip by flushing the last * string and tacking on an End Of Information code. */ static int PixarLogPostEncode(TIFF *tif) { static const char module[] = "PixarLogPostEncode"; PixarLogState *sp = EncoderState(tif); int state; sp->stream.avail_in = 0; do { state = deflate(&sp->stream, Z_FINISH); switch (state) { case Z_STREAM_END: case Z_OK: if ((tmsize_t)sp->stream.avail_out != tif->tif_rawdatasize) { tif->tif_rawcc = tif->tif_rawdatasize - sp->stream.avail_out; if (!TIFFFlushData1(tif)) return 0; sp->stream.next_out = tif->tif_rawdata; sp->stream.avail_out = (uInt)tif->tif_rawdatasize; /* this is a safe typecast, as check is made already in PixarLogPreEncode */ } break; default: TIFFErrorExtR(tif, module, "ZLib error: %s", sp->stream.msg ? sp->stream.msg : "(null)"); return (0); } } while (state != Z_STREAM_END); return (1); } static void PixarLogClose(TIFF *tif) { PixarLogState *sp = (PixarLogState *)tif->tif_data; TIFFDirectory *td = &tif->tif_dir; assert(sp != 0); /* In a really sneaky (and really incorrect, and untruthful, and * troublesome, and error-prone) maneuver that completely goes against * the spirit of TIFF, and breaks TIFF, on close, we covertly * modify both bitspersample and sampleformat in the directory to * indicate 8-bit linear. This way, the decode "just works" even for * readers that don't know about PixarLog, or how to set * the PIXARLOGDATFMT pseudo-tag. */ if (sp->state & PLSTATE_INIT) { /* We test the state to avoid an issue such as in * http://bugzilla.maptools.org/show_bug.cgi?id=2604 * What appends in that case is that the bitspersample is 1 and * a TransferFunction is set. The size of the TransferFunction * depends on 1<td_bitspersample = 8; td->td_sampleformat = SAMPLEFORMAT_UINT; } } static void PixarLogCleanup(TIFF *tif) { PixarLogState *sp = (PixarLogState *)tif->tif_data; assert(sp != 0); (void)TIFFPredictorCleanup(tif); tif->tif_tagmethods.vgetfield = sp->vgetparent; tif->tif_tagmethods.vsetfield = sp->vsetparent; if (sp->FromLT2) _TIFFfreeExt(tif, sp->FromLT2); if (sp->From14) _TIFFfreeExt(tif, sp->From14); if (sp->From8) _TIFFfreeExt(tif, sp->From8); if (sp->ToLinearF) _TIFFfreeExt(tif, sp->ToLinearF); if (sp->ToLinear16) _TIFFfreeExt(tif, sp->ToLinear16); if (sp->ToLinear8) _TIFFfreeExt(tif, sp->ToLinear8); if (sp->state & PLSTATE_INIT) { if (tif->tif_mode == O_RDONLY) inflateEnd(&sp->stream); else deflateEnd(&sp->stream); } if (sp->tbuf) _TIFFfreeExt(tif, sp->tbuf); _TIFFfreeExt(tif, sp); tif->tif_data = NULL; _TIFFSetDefaultCompressionState(tif); } static int PixarLogVSetField(TIFF *tif, uint32_t tag, va_list ap) { static const char module[] = "PixarLogVSetField"; PixarLogState *sp = (PixarLogState *)tif->tif_data; int result; switch (tag) { case TIFFTAG_PIXARLOGQUALITY: sp->quality = (int)va_arg(ap, int); if (tif->tif_mode != O_RDONLY && (sp->state & PLSTATE_INIT)) { if (deflateParams(&sp->stream, sp->quality, Z_DEFAULT_STRATEGY) != Z_OK) { TIFFErrorExtR(tif, module, "ZLib error: %s", sp->stream.msg ? sp->stream.msg : "(null)"); return (0); } } return (1); case TIFFTAG_PIXARLOGDATAFMT: sp->user_datafmt = (int)va_arg(ap, int); /* Tweak the TIFF header so that the rest of libtiff knows what * size of data will be passed between app and library, and * assume that the app knows what it is doing and is not * confused by these header manipulations... */ switch (sp->user_datafmt) { case PIXARLOGDATAFMT_8BIT: case PIXARLOGDATAFMT_8BITABGR: TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 8); TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT); break; case PIXARLOGDATAFMT_11BITLOG: TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16); TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT); break; case PIXARLOGDATAFMT_12BITPICIO: TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16); TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_INT); break; case PIXARLOGDATAFMT_16BIT: TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16); TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT); break; case PIXARLOGDATAFMT_FLOAT: TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 32); TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_IEEEFP); break; } /* * Must recalculate sizes should bits/sample change. */ tif->tif_tilesize = isTiled(tif) ? TIFFTileSize(tif) : (tmsize_t)(-1); tif->tif_scanlinesize = TIFFScanlineSize(tif); result = 1; /* NB: pseudo tag */ break; default: result = (*sp->vsetparent)(tif, tag, ap); } return (result); } static int PixarLogVGetField(TIFF *tif, uint32_t tag, va_list ap) { PixarLogState *sp = (PixarLogState *)tif->tif_data; switch (tag) { case TIFFTAG_PIXARLOGQUALITY: *va_arg(ap, int *) = sp->quality; break; case TIFFTAG_PIXARLOGDATAFMT: *va_arg(ap, int *) = sp->user_datafmt; break; default: return (*sp->vgetparent)(tif, tag, ap); } return (1); } static const TIFFField pixarlogFields[] = { {TIFFTAG_PIXARLOGDATAFMT, 0, 0, TIFF_ANY, 0, TIFF_SETGET_INT, TIFF_SETGET_UNDEFINED, FIELD_PSEUDO, FALSE, FALSE, "", NULL}, {TIFFTAG_PIXARLOGQUALITY, 0, 0, TIFF_ANY, 0, TIFF_SETGET_INT, TIFF_SETGET_UNDEFINED, FIELD_PSEUDO, FALSE, FALSE, "", NULL}}; int TIFFInitPixarLog(TIFF *tif, int scheme) { static const char module[] = "TIFFInitPixarLog"; PixarLogState *sp; (void)scheme; assert(scheme == COMPRESSION_PIXARLOG); /* * Merge codec-specific tag information. */ if (!_TIFFMergeFields(tif, pixarlogFields, TIFFArrayCount(pixarlogFields))) { TIFFErrorExtR(tif, module, "Merging PixarLog codec-specific tags failed"); return 0; } /* * Allocate state block so tag methods have storage to record values. */ tif->tif_data = (uint8_t *)_TIFFmallocExt(tif, sizeof(PixarLogState)); if (tif->tif_data == NULL) goto bad; sp = (PixarLogState *)tif->tif_data; _TIFFmemset(sp, 0, sizeof(*sp)); sp->stream.data_type = Z_BINARY; sp->user_datafmt = PIXARLOGDATAFMT_UNKNOWN; /* * Install codec methods. */ tif->tif_fixuptags = PixarLogFixupTags; tif->tif_setupdecode = PixarLogSetupDecode; tif->tif_predecode = PixarLogPreDecode; tif->tif_decoderow = PixarLogDecode; tif->tif_decodestrip = PixarLogDecode; tif->tif_decodetile = PixarLogDecode; tif->tif_setupencode = PixarLogSetupEncode; tif->tif_preencode = PixarLogPreEncode; tif->tif_postencode = PixarLogPostEncode; tif->tif_encoderow = PixarLogEncode; tif->tif_encodestrip = PixarLogEncode; tif->tif_encodetile = PixarLogEncode; tif->tif_close = PixarLogClose; tif->tif_cleanup = PixarLogCleanup; /* Override SetField so we can handle our private pseudo-tag */ sp->vgetparent = tif->tif_tagmethods.vgetfield; tif->tif_tagmethods.vgetfield = PixarLogVGetField; /* hook for codec tags */ sp->vsetparent = tif->tif_tagmethods.vsetfield; tif->tif_tagmethods.vsetfield = PixarLogVSetField; /* hook for codec tags */ /* Default values for codec-specific fields */ sp->quality = Z_DEFAULT_COMPRESSION; /* default comp. level */ sp->state = 0; /* we don't wish to use the predictor, * the default is none, which predictor value 1 */ (void)TIFFPredictorInit(tif); /* * build the companding tables */ PixarLogMakeTables(tif, sp); return (1); bad: TIFFErrorExtR(tif, module, "No space for PixarLog state block"); return (0); } #endif /* PIXARLOG_SUPPORT */