//===------ ZoneAlgo.cpp ----------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Derive information about array elements between statements ("Zones"). // // The algorithms here work on the scatter space - the image space of the // schedule returned by Scop::getSchedule(). We call an element in that space a // "timepoint". Timepoints are lexicographically ordered such that we can // defined ranges in the scatter space. We use two flavors of such ranges: // Timepoint sets and zones. A timepoint set is simply a subset of the scatter // space and is directly stored as isl_set. // // Zones are used to describe the space between timepoints as open sets, i.e. // they do not contain the extrema. Using isl rational sets to express these // would be overkill. We also cannot store them as the integer timepoints they // contain; the (nonempty) zone between 1 and 2 would be empty and // indistinguishable from e.g. the zone between 3 and 4. Also, we cannot store // the integer set including the extrema; the set ]1,2[ + ]3,4[ could be // coalesced to ]1,3[, although we defined the range [2,3] to be not in the set. // Instead, we store the "half-open" integer extrema, including the lower bound, // but excluding the upper bound. Examples: // // * The set { [i] : 1 <= i <= 3 } represents the zone ]0,3[ (which contains the // integer points 1 and 2, but not 0 or 3) // // * { [1] } represents the zone ]0,1[ // // * { [i] : i = 1 or i = 3 } represents the zone ]0,1[ + ]2,3[ // // Therefore, an integer i in the set represents the zone ]i-1,i[, i.e. strictly // speaking the integer points never belong to the zone. However, depending an // the interpretation, one might want to include them. Part of the // interpretation may not be known when the zone is constructed. // // Reads are assumed to always take place before writes, hence we can think of // reads taking place at the beginning of a timepoint and writes at the end. // // Let's assume that the zone represents the lifetime of a variable. That is, // the zone begins with a write that defines the value during its lifetime and // ends with the last read of that value. In the following we consider whether a // read/write at the beginning/ending of the lifetime zone should be within the // zone or outside of it. // // * A read at the timepoint that starts the live-range loads the previous // value. Hence, exclude the timepoint starting the zone. // // * A write at the timepoint that starts the live-range is not defined whether // it occurs before or after the write that starts the lifetime. We do not // allow this situation to occur. Hence, we include the timepoint starting the // zone to determine whether they are conflicting. // // * A read at the timepoint that ends the live-range reads the same variable. // We include the timepoint at the end of the zone to include that read into // the live-range. Doing otherwise would mean that the two reads access // different values, which would mean that the value they read are both alive // at the same time but occupy the same variable. // // * A write at the timepoint that ends the live-range starts a new live-range. // It must not be included in the live-range of the previous definition. // // All combinations of reads and writes at the endpoints are possible, but most // of the time only the write->read (for instance, a live-range from definition // to last use) and read->write (for instance, an unused range from last use to // overwrite) and combinations are interesting (half-open ranges). write->write // zones might be useful as well in some context to represent // output-dependencies. // // @see convertZoneToTimepoints // // // The code makes use of maps and sets in many different spaces. To not loose // track in which space a set or map is expected to be in, variables holding an // isl reference are usually annotated in the comments. They roughly follow isl // syntax for spaces, but only the tuples, not the dimensions. The tuples have a // meaning as follows: // // * Space[] - An unspecified tuple. Used for function parameters such that the // function caller can use it for anything they like. // // * Domain[] - A statement instance as returned by ScopStmt::getDomain() // isl_id_get_name: Stmt_ // isl_id_get_user: Pointer to ScopStmt // // * Element[] - An array element as in the range part of // MemoryAccess::getAccessRelation() // isl_id_get_name: MemRef_ // isl_id_get_user: Pointer to ScopArrayInfo // // * Scatter[] - Scatter space or space of timepoints // Has no tuple id // // * Zone[] - Range between timepoints as described above // Has no tuple id // // * ValInst[] - An llvm::Value as defined at a specific timepoint. // // A ValInst[] itself can be structured as one of: // // * [] - An unknown value. // Always zero dimensions // Has no tuple id // // * Value[] - An llvm::Value that is read-only in the SCoP, i.e. its // runtime content does not depend on the timepoint. // Always zero dimensions // isl_id_get_name: Val_ // isl_id_get_user: A pointer to an llvm::Value // // * SCEV[...] - A synthesizable llvm::SCEV Expression. // In contrast to a Value[] is has at least one dimension per // SCEVAddRecExpr in the SCEV. // // * [Domain[] -> Value[]] - An llvm::Value that may change during the // Scop's execution. // The tuple itself has no id, but it wraps a map space holding a // statement instance which defines the llvm::Value as the map's domain // and llvm::Value itself as range. // // @see makeValInst() // // An annotation "{ Domain[] -> Scatter[] }" therefore means: A map from a // statement instance to a timepoint, aka a schedule. There is only one scatter // space, but most of the time multiple statements are processed in one set. // This is why most of the time isl_union_map has to be used. // // The basic algorithm works as follows: // At first we verify that the SCoP is compatible with this technique. For // instance, two writes cannot write to the same location at the same statement // instance because we cannot determine within the polyhedral model which one // comes first. Once this was verified, we compute zones at which an array // element is unused. This computation can fail if it takes too long. Then the // main algorithm is executed. Because every store potentially trails an unused // zone, we start at stores. We search for a scalar (MemoryKind::Value or // MemoryKind::PHI) that we can map to the array element overwritten by the // store, preferably one that is used by the store or at least the ScopStmt. // When it does not conflict with the lifetime of the values in the array // element, the map is applied and the unused zone updated as it is now used. We // continue to try to map scalars to the array element until there are no more // candidates to map. The algorithm is greedy in the sense that the first scalar // not conflicting will be mapped. Other scalars processed later that could have // fit the same unused zone will be rejected. As such the result depends on the // processing order. // //===----------------------------------------------------------------------===// #include "polly/ZoneAlgo.h" #include "polly/ScopInfo.h" #include "polly/Support/GICHelper.h" #include "polly/Support/ISLTools.h" #include "polly/Support/VirtualInstruction.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "polly-zone" STATISTIC(NumIncompatibleArrays, "Number of not zone-analyzable arrays"); STATISTIC(NumCompatibleArrays, "Number of zone-analyzable arrays"); STATISTIC(NumRecursivePHIs, "Number of recursive PHIs"); STATISTIC(NumNormalizablePHIs, "Number of normalizable PHIs"); STATISTIC(NumPHINormialization, "Number of PHI executed normalizations"); using namespace polly; using namespace llvm; static isl::union_map computeReachingDefinition(isl::union_map Schedule, isl::union_map Writes, bool InclDef, bool InclRedef) { return computeReachingWrite(Schedule, Writes, false, InclDef, InclRedef); } /// Compute the reaching definition of a scalar. /// /// Compared to computeReachingDefinition, there is just one element which is /// accessed and therefore only a set if instances that accesses that element is /// required. /// /// @param Schedule { DomainWrite[] -> Scatter[] } /// @param Writes { DomainWrite[] } /// @param InclDef Include the timepoint of the definition to the result. /// @param InclRedef Include the timepoint of the overwrite into the result. /// /// @return { Scatter[] -> DomainWrite[] } static isl::union_map computeScalarReachingDefinition(isl::union_map Schedule, isl::union_set Writes, bool InclDef, bool InclRedef) { // { DomainWrite[] -> Element[] } isl::union_map Defs = isl::union_map::from_domain(Writes); // { [Element[] -> Scatter[]] -> DomainWrite[] } auto ReachDefs = computeReachingDefinition(Schedule, Defs, InclDef, InclRedef); // { Scatter[] -> DomainWrite[] } return ReachDefs.curry().range().unwrap(); } /// Compute the reaching definition of a scalar. /// /// This overload accepts only a single writing statement as an isl_map, /// consequently the result also is only a single isl_map. /// /// @param Schedule { DomainWrite[] -> Scatter[] } /// @param Writes { DomainWrite[] } /// @param InclDef Include the timepoint of the definition to the result. /// @param InclRedef Include the timepoint of the overwrite into the result. /// /// @return { Scatter[] -> DomainWrite[] } static isl::map computeScalarReachingDefinition(isl::union_map Schedule, isl::set Writes, bool InclDef, bool InclRedef) { isl::space DomainSpace = Writes.get_space(); isl::space ScatterSpace = getScatterSpace(Schedule); // { Scatter[] -> DomainWrite[] } isl::union_map UMap = computeScalarReachingDefinition( Schedule, isl::union_set(Writes), InclDef, InclRedef); isl::space ResultSpace = ScatterSpace.map_from_domain_and_range(DomainSpace); return singleton(UMap, ResultSpace); } isl::union_map polly::makeUnknownForDomain(isl::union_set Domain) { return isl::union_map::from_domain(Domain); } /// Create a domain-to-unknown value mapping. /// /// @see makeUnknownForDomain(isl::union_set) /// /// @param Domain { Domain[] } /// /// @return { Domain[] -> ValInst[] } static isl::map makeUnknownForDomain(isl::set Domain) { return isl::map::from_domain(Domain); } /// Return whether @p Map maps to an unknown value. /// /// @param { [] -> ValInst[] } static bool isMapToUnknown(const isl::map &Map) { isl::space Space = Map.get_space().range(); return Space.has_tuple_id(isl::dim::set).is_false() && Space.is_wrapping().is_false() && Space.dim(isl::dim::set).release() == 0; } isl::union_map polly::filterKnownValInst(const isl::union_map &UMap) { isl::union_map Result = isl::union_map::empty(UMap.ctx()); for (isl::map Map : UMap.get_map_list()) { if (!isMapToUnknown(Map)) Result = Result.unite(Map); } return Result; } ZoneAlgorithm::ZoneAlgorithm(const char *PassName, Scop *S, LoopInfo *LI) : PassName(PassName), IslCtx(S->getSharedIslCtx()), S(S), LI(LI), Schedule(S->getSchedule()) { auto Domains = S->getDomains(); Schedule = Schedule.intersect_domain(Domains); ParamSpace = Schedule.get_space(); ScatterSpace = getScatterSpace(Schedule); } /// Check if all stores in @p Stmt store the very same value. /// /// This covers a special situation occurring in Polybench's /// covariance/correlation (which is typical for algorithms that cover symmetric /// matrices): /// /// for (int i = 0; i < n; i += 1) /// for (int j = 0; j <= i; j += 1) { /// double x = ...; /// C[i][j] = x; /// C[j][i] = x; /// } /// /// For i == j, the same value is written twice to the same element.Double /// writes to the same element are not allowed in DeLICM because its algorithm /// does not see which of the writes is effective.But if its the same value /// anyway, it doesn't matter. /// /// LLVM passes, however, cannot simplify this because the write is necessary /// for i != j (unless it would add a condition for one of the writes to occur /// only if i != j). /// /// TODO: In the future we may want to extent this to make the checks /// specific to different memory locations. static bool onlySameValueWrites(ScopStmt *Stmt) { Value *V = nullptr; for (auto *MA : *Stmt) { if (!MA->isLatestArrayKind() || !MA->isMustWrite() || !MA->isOriginalArrayKind()) continue; if (!V) { V = MA->getAccessValue(); continue; } if (V != MA->getAccessValue()) return false; } return true; } /// Is @p InnerLoop nested inside @p OuterLoop? static bool isInsideLoop(Loop *OuterLoop, Loop *InnerLoop) { // If OuterLoop is nullptr, we cannot call its contains() method. In this case // OuterLoop represents the 'top level' and therefore contains all loop. return !OuterLoop || OuterLoop->contains(InnerLoop); } void ZoneAlgorithm::collectIncompatibleElts(ScopStmt *Stmt, isl::union_set &IncompatibleElts, isl::union_set &AllElts) { auto Stores = makeEmptyUnionMap(); auto Loads = makeEmptyUnionMap(); // This assumes that the MemoryKind::Array MemoryAccesses are iterated in // order. for (auto *MA : *Stmt) { if (!MA->isOriginalArrayKind()) continue; isl::map AccRelMap = getAccessRelationFor(MA); isl::union_map AccRel = AccRelMap; // To avoid solving any ILP problems, always add entire arrays instead of // just the elements that are accessed. auto ArrayElts = isl::set::universe(AccRelMap.get_space().range()); AllElts = AllElts.unite(ArrayElts); if (MA->isRead()) { // Reject load after store to same location. if (!Stores.is_disjoint(AccRel)) { LLVM_DEBUG( dbgs() << "Load after store of same element in same statement\n"); OptimizationRemarkMissed R(PassName, "LoadAfterStore", MA->getAccessInstruction()); R << "load after store of same element in same statement"; R << " (previous stores: " << Stores; R << ", loading: " << AccRel << ")"; S->getFunction().getContext().diagnose(R); IncompatibleElts = IncompatibleElts.unite(ArrayElts); } Loads = Loads.unite(AccRel); continue; } // In region statements the order is less clear, eg. the load and store // might be in a boxed loop. if (Stmt->isRegionStmt() && !Loads.is_disjoint(AccRel)) { LLVM_DEBUG(dbgs() << "WRITE in non-affine subregion not supported\n"); OptimizationRemarkMissed R(PassName, "StoreInSubregion", MA->getAccessInstruction()); R << "store is in a non-affine subregion"; S->getFunction().getContext().diagnose(R); IncompatibleElts = IncompatibleElts.unite(ArrayElts); } // Do not allow more than one store to the same location. if (!Stores.is_disjoint(AccRel) && !onlySameValueWrites(Stmt)) { LLVM_DEBUG(dbgs() << "WRITE after WRITE to same element\n"); OptimizationRemarkMissed R(PassName, "StoreAfterStore", MA->getAccessInstruction()); R << "store after store of same element in same statement"; R << " (previous stores: " << Stores; R << ", storing: " << AccRel << ")"; S->getFunction().getContext().diagnose(R); IncompatibleElts = IncompatibleElts.unite(ArrayElts); } Stores = Stores.unite(AccRel); } } void ZoneAlgorithm::addArrayReadAccess(MemoryAccess *MA) { assert(MA->isLatestArrayKind()); assert(MA->isRead()); ScopStmt *Stmt = MA->getStatement(); // { DomainRead[] -> Element[] } auto AccRel = intersectRange(getAccessRelationFor(MA), CompatibleElts); AllReads = AllReads.unite(AccRel); if (LoadInst *Load = dyn_cast_or_null(MA->getAccessInstruction())) { // { DomainRead[] -> ValInst[] } isl::map LoadValInst = makeValInst( Load, Stmt, LI->getLoopFor(Load->getParent()), Stmt->isBlockStmt()); // { DomainRead[] -> [Element[] -> DomainRead[]] } isl::map IncludeElement = AccRel.domain_map().curry(); // { [Element[] -> DomainRead[]] -> ValInst[] } isl::map EltLoadValInst = LoadValInst.apply_domain(IncludeElement); AllReadValInst = AllReadValInst.unite(EltLoadValInst); } } isl::union_map ZoneAlgorithm::getWrittenValue(MemoryAccess *MA, isl::map AccRel) { if (!MA->isMustWrite()) return {}; Value *AccVal = MA->getAccessValue(); ScopStmt *Stmt = MA->getStatement(); Instruction *AccInst = MA->getAccessInstruction(); // Write a value to a single element. auto L = MA->isOriginalArrayKind() ? LI->getLoopFor(AccInst->getParent()) : Stmt->getSurroundingLoop(); if (AccVal && AccVal->getType() == MA->getLatestScopArrayInfo()->getElementType() && AccRel.is_single_valued().is_true()) return makeNormalizedValInst(AccVal, Stmt, L); // memset(_, '0', ) is equivalent to writing the null value to all touched // elements. isMustWrite() ensures that all of an element's bytes are // overwritten. if (auto *Memset = dyn_cast(AccInst)) { auto *WrittenConstant = dyn_cast(Memset->getValue()); Type *Ty = MA->getLatestScopArrayInfo()->getElementType(); if (WrittenConstant && WrittenConstant->isZeroValue()) { Constant *Zero = Constant::getNullValue(Ty); return makeNormalizedValInst(Zero, Stmt, L); } } return {}; } void ZoneAlgorithm::addArrayWriteAccess(MemoryAccess *MA) { assert(MA->isLatestArrayKind()); assert(MA->isWrite()); auto *Stmt = MA->getStatement(); // { Domain[] -> Element[] } isl::map AccRel = intersectRange(getAccessRelationFor(MA), CompatibleElts); if (MA->isMustWrite()) AllMustWrites = AllMustWrites.unite(AccRel); if (MA->isMayWrite()) AllMayWrites = AllMayWrites.unite(AccRel); // { Domain[] -> ValInst[] } isl::union_map WriteValInstance = getWrittenValue(MA, AccRel); if (WriteValInstance.is_null()) WriteValInstance = makeUnknownForDomain(Stmt); // { Domain[] -> [Element[] -> Domain[]] } isl::map IncludeElement = AccRel.domain_map().curry(); // { [Element[] -> DomainWrite[]] -> ValInst[] } isl::union_map EltWriteValInst = WriteValInstance.apply_domain(IncludeElement); AllWriteValInst = AllWriteValInst.unite(EltWriteValInst); } /// For an llvm::Value defined in @p DefStmt, compute the RAW dependency for a /// use in every instance of @p UseStmt. /// /// @param UseStmt Statement a scalar is used in. /// @param DefStmt Statement a scalar is defined in. /// /// @return { DomainUse[] -> DomainDef[] } isl::map ZoneAlgorithm::computeUseToDefFlowDependency(ScopStmt *UseStmt, ScopStmt *DefStmt) { // { DomainUse[] -> Scatter[] } isl::map UseScatter = getScatterFor(UseStmt); // { Zone[] -> DomainDef[] } isl::map ReachDefZone = getScalarReachingDefinition(DefStmt); // { Scatter[] -> DomainDef[] } isl::map ReachDefTimepoints = convertZoneToTimepoints(ReachDefZone, isl::dim::in, false, true); // { DomainUse[] -> DomainDef[] } return UseScatter.apply_range(ReachDefTimepoints); } /// Return whether @p PHI refers (also transitively through other PHIs) to /// itself. /// /// loop: /// %phi1 = phi [0, %preheader], [%phi1, %loop] /// br i1 %c, label %loop, label %exit /// /// exit: /// %phi2 = phi [%phi1, %bb] /// /// In this example, %phi1 is recursive, but %phi2 is not. static bool isRecursivePHI(const PHINode *PHI) { SmallVector Worklist; SmallPtrSet Visited; Worklist.push_back(PHI); while (!Worklist.empty()) { const PHINode *Cur = Worklist.pop_back_val(); if (Visited.count(Cur)) continue; Visited.insert(Cur); for (const Use &Incoming : Cur->incoming_values()) { Value *IncomingVal = Incoming.get(); auto *IncomingPHI = dyn_cast(IncomingVal); if (!IncomingPHI) continue; if (IncomingPHI == PHI) return true; Worklist.push_back(IncomingPHI); } } return false; } isl::union_map ZoneAlgorithm::computePerPHI(const ScopArrayInfo *SAI) { // TODO: If the PHI has an incoming block from before the SCoP, it is not // represented in any ScopStmt. auto *PHI = cast(SAI->getBasePtr()); auto It = PerPHIMaps.find(PHI); if (It != PerPHIMaps.end()) return It->second; // Cannot reliably compute immediate predecessor for undefined executions, so // bail out if we do not know. This in particular applies to undefined control // flow. isl::set DefinedContext = S->getDefinedBehaviorContext(); if (DefinedContext.is_null()) return {}; assert(SAI->isPHIKind()); // { DomainPHIWrite[] -> Scatter[] } isl::union_map PHIWriteScatter = makeEmptyUnionMap(); // Collect all incoming block timepoints. for (MemoryAccess *MA : S->getPHIIncomings(SAI)) { isl::map Scatter = getScatterFor(MA); PHIWriteScatter = PHIWriteScatter.unite(Scatter); } // { DomainPHIRead[] -> Scatter[] } isl::map PHIReadScatter = getScatterFor(S->getPHIRead(SAI)); // { DomainPHIRead[] -> Scatter[] } isl::map BeforeRead = beforeScatter(PHIReadScatter, true); // { Scatter[] } isl::set WriteTimes = singleton(PHIWriteScatter.range(), ScatterSpace); // { DomainPHIRead[] -> Scatter[] } isl::map PHIWriteTimes = BeforeRead.intersect_range(WriteTimes); // Remove instances outside the context. PHIWriteTimes = PHIWriteTimes.intersect_params(DefinedContext); isl::map LastPerPHIWrites = PHIWriteTimes.lexmax(); // { DomainPHIRead[] -> DomainPHIWrite[] } isl::union_map Result = isl::union_map(LastPerPHIWrites).apply_range(PHIWriteScatter.reverse()); assert(!Result.is_single_valued().is_false()); assert(!Result.is_injective().is_false()); PerPHIMaps.insert({PHI, Result}); return Result; } isl::union_set ZoneAlgorithm::makeEmptyUnionSet() const { return isl::union_set::empty(ParamSpace.ctx()); } isl::union_map ZoneAlgorithm::makeEmptyUnionMap() const { return isl::union_map::empty(ParamSpace.ctx()); } void ZoneAlgorithm::collectCompatibleElts() { // First find all the incompatible elements, then take the complement. // We compile the list of compatible (rather than incompatible) elements so // users can intersect with the list, not requiring a subtract operation. It // also allows us to define a 'universe' of all elements and makes it more // explicit in which array elements can be used. isl::union_set AllElts = makeEmptyUnionSet(); isl::union_set IncompatibleElts = makeEmptyUnionSet(); for (auto &Stmt : *S) collectIncompatibleElts(&Stmt, IncompatibleElts, AllElts); NumIncompatibleArrays += isl_union_set_n_set(IncompatibleElts.get()); CompatibleElts = AllElts.subtract(IncompatibleElts); NumCompatibleArrays += isl_union_set_n_set(CompatibleElts.get()); } isl::map ZoneAlgorithm::getScatterFor(ScopStmt *Stmt) const { isl::space ResultSpace = Stmt->getDomainSpace().map_from_domain_and_range(ScatterSpace); return Schedule.extract_map(ResultSpace); } isl::map ZoneAlgorithm::getScatterFor(MemoryAccess *MA) const { return getScatterFor(MA->getStatement()); } isl::union_map ZoneAlgorithm::getScatterFor(isl::union_set Domain) const { return Schedule.intersect_domain(Domain); } isl::map ZoneAlgorithm::getScatterFor(isl::set Domain) const { auto ResultSpace = Domain.get_space().map_from_domain_and_range(ScatterSpace); auto UDomain = isl::union_set(Domain); auto UResult = getScatterFor(std::move(UDomain)); auto Result = singleton(std::move(UResult), std::move(ResultSpace)); assert(Result.is_null() || Result.domain().is_equal(Domain) == isl_bool_true); return Result; } isl::set ZoneAlgorithm::getDomainFor(ScopStmt *Stmt) const { return Stmt->getDomain().remove_redundancies(); } isl::set ZoneAlgorithm::getDomainFor(MemoryAccess *MA) const { return getDomainFor(MA->getStatement()); } isl::map ZoneAlgorithm::getAccessRelationFor(MemoryAccess *MA) const { auto Domain = getDomainFor(MA); auto AccRel = MA->getLatestAccessRelation(); return AccRel.intersect_domain(Domain); } isl::map ZoneAlgorithm::getDefToTarget(ScopStmt *DefStmt, ScopStmt *TargetStmt) { // No translation required if the definition is already at the target. if (TargetStmt == DefStmt) return isl::map::identity( getDomainFor(TargetStmt).get_space().map_from_set()); isl::map &Result = DefToTargetCache[std::make_pair(TargetStmt, DefStmt)]; // This is a shortcut in case the schedule is still the original and // TargetStmt is in the same or nested inside DefStmt's loop. With the // additional assumption that operand trees do not cross DefStmt's loop // header, then TargetStmt's instance shared coordinates are the same as // DefStmt's coordinates. All TargetStmt instances with this prefix share // the same DefStmt instance. // Model: // // for (int i < 0; i < N; i+=1) { // DefStmt: // D = ...; // for (int j < 0; j < N; j+=1) { // TargetStmt: // use(D); // } // } // // Here, the value used in TargetStmt is defined in the corresponding // DefStmt, i.e. // // { DefStmt[i] -> TargetStmt[i,j] } // // In practice, this should cover the majority of cases. if (Result.is_null() && S->isOriginalSchedule() && isInsideLoop(DefStmt->getSurroundingLoop(), TargetStmt->getSurroundingLoop())) { isl::set DefDomain = getDomainFor(DefStmt); isl::set TargetDomain = getDomainFor(TargetStmt); assert(unsignedFromIslSize(DefDomain.tuple_dim()) <= unsignedFromIslSize(TargetDomain.tuple_dim())); Result = isl::map::from_domain_and_range(DefDomain, TargetDomain); for (unsigned i : rangeIslSize(0, DefDomain.tuple_dim())) Result = Result.equate(isl::dim::in, i, isl::dim::out, i); } if (Result.is_null()) { // { DomainDef[] -> DomainTarget[] } Result = computeUseToDefFlowDependency(TargetStmt, DefStmt).reverse(); simplify(Result); } return Result; } isl::map ZoneAlgorithm::getScalarReachingDefinition(ScopStmt *Stmt) { auto &Result = ScalarReachDefZone[Stmt]; if (!Result.is_null()) return Result; auto Domain = getDomainFor(Stmt); Result = computeScalarReachingDefinition(Schedule, Domain, false, true); simplify(Result); return Result; } isl::map ZoneAlgorithm::getScalarReachingDefinition(isl::set DomainDef) { auto DomId = DomainDef.get_tuple_id(); auto *Stmt = static_cast(isl_id_get_user(DomId.get())); auto StmtResult = getScalarReachingDefinition(Stmt); return StmtResult.intersect_range(DomainDef); } isl::map ZoneAlgorithm::makeUnknownForDomain(ScopStmt *Stmt) const { return ::makeUnknownForDomain(getDomainFor(Stmt)); } isl::id ZoneAlgorithm::makeValueId(Value *V) { if (!V) return {}; auto &Id = ValueIds[V]; if (Id.is_null()) { auto Name = getIslCompatibleName("Val_", V, ValueIds.size() - 1, std::string(), UseInstructionNames); Id = isl::id::alloc(IslCtx.get(), Name.c_str(), V); } return Id; } isl::space ZoneAlgorithm::makeValueSpace(Value *V) { auto Result = ParamSpace.set_from_params(); return Result.set_tuple_id(isl::dim::set, makeValueId(V)); } isl::set ZoneAlgorithm::makeValueSet(Value *V) { auto Space = makeValueSpace(V); return isl::set::universe(Space); } isl::map ZoneAlgorithm::makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope, bool IsCertain) { // If the definition/write is conditional, the value at the location could // be either the written value or the old value. Since we cannot know which // one, consider the value to be unknown. if (!IsCertain) return makeUnknownForDomain(UserStmt); auto DomainUse = getDomainFor(UserStmt); auto VUse = VirtualUse::create(S, UserStmt, Scope, Val, true); switch (VUse.getKind()) { case VirtualUse::Constant: case VirtualUse::Block: case VirtualUse::Hoisted: case VirtualUse::ReadOnly: { // The definition does not depend on the statement which uses it. auto ValSet = makeValueSet(Val); return isl::map::from_domain_and_range(DomainUse, ValSet); } case VirtualUse::Synthesizable: { auto *ScevExpr = VUse.getScevExpr(); auto UseDomainSpace = DomainUse.get_space(); // Construct the SCEV space. // TODO: Add only the induction variables referenced in SCEVAddRecExpr // expressions, not just all of them. auto ScevId = isl::manage(isl_id_alloc(UseDomainSpace.ctx().get(), nullptr, const_cast(ScevExpr))); auto ScevSpace = UseDomainSpace.drop_dims(isl::dim::set, 0, 0); ScevSpace = ScevSpace.set_tuple_id(isl::dim::set, ScevId); // { DomainUse[] -> ScevExpr[] } auto ValInst = isl::map::identity(UseDomainSpace.map_from_domain_and_range(ScevSpace)); return ValInst; } case VirtualUse::Intra: { // Definition and use is in the same statement. We do not need to compute // a reaching definition. // { llvm::Value } auto ValSet = makeValueSet(Val); // { UserDomain[] -> llvm::Value } auto ValInstSet = isl::map::from_domain_and_range(DomainUse, ValSet); // { UserDomain[] -> [UserDomain[] - >llvm::Value] } auto Result = ValInstSet.domain_map().reverse(); simplify(Result); return Result; } case VirtualUse::Inter: { // The value is defined in a different statement. auto *Inst = cast(Val); auto *ValStmt = S->getStmtFor(Inst); // If the llvm::Value is defined in a removed Stmt, we cannot derive its // domain. We could use an arbitrary statement, but this could result in // different ValInst[] for the same llvm::Value. if (!ValStmt) return ::makeUnknownForDomain(DomainUse); // { DomainUse[] -> DomainDef[] } auto UsedInstance = getDefToTarget(ValStmt, UserStmt).reverse(); // { llvm::Value } auto ValSet = makeValueSet(Val); // { DomainUse[] -> llvm::Value[] } auto ValInstSet = isl::map::from_domain_and_range(DomainUse, ValSet); // { DomainUse[] -> [DomainDef[] -> llvm::Value] } auto Result = UsedInstance.range_product(ValInstSet); simplify(Result); return Result; } } llvm_unreachable("Unhandled use type"); } /// Remove all computed PHIs out of @p Input and replace by their incoming /// value. /// /// @param Input { [] -> ValInst[] } /// @param ComputedPHIs Set of PHIs that are replaced. Its ValInst must appear /// on the LHS of @p NormalizeMap. /// @param NormalizeMap { ValInst[] -> ValInst[] } static isl::union_map normalizeValInst(isl::union_map Input, const DenseSet &ComputedPHIs, isl::union_map NormalizeMap) { isl::union_map Result = isl::union_map::empty(Input.ctx()); for (isl::map Map : Input.get_map_list()) { isl::space Space = Map.get_space(); isl::space RangeSpace = Space.range(); // Instructions within the SCoP are always wrapped. Non-wrapped tuples // are therefore invariant in the SCoP and don't need normalization. if (!RangeSpace.is_wrapping()) { Result = Result.unite(Map); continue; } auto *PHI = dyn_cast(static_cast( RangeSpace.unwrap().get_tuple_id(isl::dim::out).get_user())); // If no normalization is necessary, then the ValInst stands for itself. if (!ComputedPHIs.count(PHI)) { Result = Result.unite(Map); continue; } // Otherwise, apply the normalization. isl::union_map Mapped = isl::union_map(Map).apply_range(NormalizeMap); Result = Result.unite(Mapped); NumPHINormialization++; } return Result; } isl::union_map ZoneAlgorithm::makeNormalizedValInst(llvm::Value *Val, ScopStmt *UserStmt, llvm::Loop *Scope, bool IsCertain) { isl::map ValInst = makeValInst(Val, UserStmt, Scope, IsCertain); isl::union_map Normalized = normalizeValInst(ValInst, ComputedPHIs, NormalizeMap); return Normalized; } bool ZoneAlgorithm::isCompatibleAccess(MemoryAccess *MA) { if (!MA) return false; if (!MA->isLatestArrayKind()) return false; Instruction *AccInst = MA->getAccessInstruction(); return isa(AccInst) || isa(AccInst); } bool ZoneAlgorithm::isNormalizable(MemoryAccess *MA) { assert(MA->isRead()); // Exclude ExitPHIs, we are assuming that a normalizable PHI has a READ // MemoryAccess. if (!MA->isOriginalPHIKind()) return false; // Exclude recursive PHIs, normalizing them would require a transitive // closure. auto *PHI = cast(MA->getAccessInstruction()); if (RecursivePHIs.count(PHI)) return false; // Ensure that each incoming value can be represented by a ValInst[]. // We do represent values from statements associated to multiple incoming // value by the PHI itself, but we do not handle this case yet (especially // isNormalized()) when normalizing. const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo(); auto Incomings = S->getPHIIncomings(SAI); for (MemoryAccess *Incoming : Incomings) { if (Incoming->getIncoming().size() != 1) return false; } return true; } isl::boolean ZoneAlgorithm::isNormalized(isl::map Map) { isl::space Space = Map.get_space(); isl::space RangeSpace = Space.range(); isl::boolean IsWrapping = RangeSpace.is_wrapping(); if (!IsWrapping.is_true()) return !IsWrapping; isl::space Unwrapped = RangeSpace.unwrap(); isl::id OutTupleId = Unwrapped.get_tuple_id(isl::dim::out); if (OutTupleId.is_null()) return isl::boolean(); auto *PHI = dyn_cast(static_cast(OutTupleId.get_user())); if (!PHI) return true; isl::id InTupleId = Unwrapped.get_tuple_id(isl::dim::in); if (OutTupleId.is_null()) return isl::boolean(); auto *IncomingStmt = static_cast(InTupleId.get_user()); MemoryAccess *PHIRead = IncomingStmt->lookupPHIReadOf(PHI); if (!isNormalizable(PHIRead)) return true; return false; } isl::boolean ZoneAlgorithm::isNormalized(isl::union_map UMap) { isl::boolean Result = true; for (isl::map Map : UMap.get_map_list()) { Result = isNormalized(Map); if (Result.is_true()) continue; break; } return Result; } void ZoneAlgorithm::computeCommon() { AllReads = makeEmptyUnionMap(); AllMayWrites = makeEmptyUnionMap(); AllMustWrites = makeEmptyUnionMap(); AllWriteValInst = makeEmptyUnionMap(); AllReadValInst = makeEmptyUnionMap(); // Default to empty, i.e. no normalization/replacement is taking place. Call // computeNormalizedPHIs() to initialize. NormalizeMap = makeEmptyUnionMap(); ComputedPHIs.clear(); for (auto &Stmt : *S) { for (auto *MA : Stmt) { if (!MA->isLatestArrayKind()) continue; if (MA->isRead()) addArrayReadAccess(MA); if (MA->isWrite()) addArrayWriteAccess(MA); } } // { DomainWrite[] -> Element[] } AllWrites = AllMustWrites.unite(AllMayWrites); // { [Element[] -> Zone[]] -> DomainWrite[] } WriteReachDefZone = computeReachingDefinition(Schedule, AllWrites, false, true); simplify(WriteReachDefZone); } void ZoneAlgorithm::computeNormalizedPHIs() { // Determine which PHIs can reference themselves. They are excluded from // normalization to avoid problems with transitive closures. for (ScopStmt &Stmt : *S) { for (MemoryAccess *MA : Stmt) { if (!MA->isPHIKind()) continue; if (!MA->isRead()) continue; // TODO: Can be more efficient since isRecursivePHI can theoretically // determine recursiveness for multiple values and/or cache results. auto *PHI = cast(MA->getAccessInstruction()); if (isRecursivePHI(PHI)) { NumRecursivePHIs++; RecursivePHIs.insert(PHI); } } } // { PHIValInst[] -> IncomingValInst[] } isl::union_map AllPHIMaps = makeEmptyUnionMap(); // Discover new PHIs and try to normalize them. DenseSet AllPHIs; for (ScopStmt &Stmt : *S) { for (MemoryAccess *MA : Stmt) { if (!MA->isOriginalPHIKind()) continue; if (!MA->isRead()) continue; if (!isNormalizable(MA)) continue; auto *PHI = cast(MA->getAccessInstruction()); const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo(); // Determine which instance of the PHI statement corresponds to which // incoming value. Skip if we cannot determine PHI predecessors. // { PHIDomain[] -> IncomingDomain[] } isl::union_map PerPHI = computePerPHI(SAI); if (PerPHI.is_null()) continue; // { PHIDomain[] -> PHIValInst[] } isl::map PHIValInst = makeValInst(PHI, &Stmt, Stmt.getSurroundingLoop()); // { IncomingDomain[] -> IncomingValInst[] } isl::union_map IncomingValInsts = makeEmptyUnionMap(); // Get all incoming values. for (MemoryAccess *MA : S->getPHIIncomings(SAI)) { ScopStmt *IncomingStmt = MA->getStatement(); auto Incoming = MA->getIncoming(); assert(Incoming.size() == 1 && "The incoming value must be " "representable by something else than " "the PHI itself"); Value *IncomingVal = Incoming[0].second; // { IncomingDomain[] -> IncomingValInst[] } isl::map IncomingValInst = makeValInst( IncomingVal, IncomingStmt, IncomingStmt->getSurroundingLoop()); IncomingValInsts = IncomingValInsts.unite(IncomingValInst); } // { PHIValInst[] -> IncomingValInst[] } isl::union_map PHIMap = PerPHI.apply_domain(PHIValInst).apply_range(IncomingValInsts); assert(!PHIMap.is_single_valued().is_false()); // Resolve transitiveness: The incoming value of the newly discovered PHI // may reference a previously normalized PHI. At the same time, already // normalized PHIs might be normalized to the new PHI. At the end, none of // the PHIs may appear on the right-hand-side of the normalization map. PHIMap = normalizeValInst(PHIMap, AllPHIs, AllPHIMaps); AllPHIs.insert(PHI); AllPHIMaps = normalizeValInst(AllPHIMaps, AllPHIs, PHIMap); AllPHIMaps = AllPHIMaps.unite(PHIMap); NumNormalizablePHIs++; } } simplify(AllPHIMaps); // Apply the normalization. ComputedPHIs = AllPHIs; NormalizeMap = AllPHIMaps; assert(NormalizeMap.is_null() || isNormalized(NormalizeMap)); } void ZoneAlgorithm::printAccesses(llvm::raw_ostream &OS, int Indent) const { OS.indent(Indent) << "After accesses {\n"; for (auto &Stmt : *S) { OS.indent(Indent + 4) << Stmt.getBaseName() << "\n"; for (auto *MA : Stmt) MA->print(OS); } OS.indent(Indent) << "}\n"; } isl::union_map ZoneAlgorithm::computeKnownFromMustWrites() const { // { [Element[] -> Zone[]] -> [Element[] -> DomainWrite[]] } isl::union_map EltReachdDef = distributeDomain(WriteReachDefZone.curry()); // { [Element[] -> DomainWrite[]] -> ValInst[] } isl::union_map AllKnownWriteValInst = filterKnownValInst(AllWriteValInst); // { [Element[] -> Zone[]] -> ValInst[] } return EltReachdDef.apply_range(AllKnownWriteValInst); } isl::union_map ZoneAlgorithm::computeKnownFromLoad() const { // { Element[] } isl::union_set AllAccessedElts = AllReads.range().unite(AllWrites.range()); // { Element[] -> Scatter[] } isl::union_map EltZoneUniverse = isl::union_map::from_domain_and_range( AllAccessedElts, isl::set::universe(ScatterSpace)); // This assumes there are no "holes" in // isl_union_map_domain(WriteReachDefZone); alternatively, compute the zone // before the first write or that are not written at all. // { Element[] -> Scatter[] } isl::union_set NonReachDef = EltZoneUniverse.wrap().subtract(WriteReachDefZone.domain()); // { [Element[] -> Zone[]] -> ReachDefId[] } isl::union_map DefZone = WriteReachDefZone.unite(isl::union_map::from_domain(NonReachDef)); // { [Element[] -> Scatter[]] -> Element[] } isl::union_map EltZoneElt = EltZoneUniverse.domain_map(); // { [Element[] -> Zone[]] -> [Element[] -> ReachDefId[]] } isl::union_map DefZoneEltDefId = EltZoneElt.range_product(DefZone); // { Element[] -> [Zone[] -> ReachDefId[]] } isl::union_map EltDefZone = DefZone.curry(); // { [Element[] -> Zone[] -> [Element[] -> ReachDefId[]] } isl::union_map EltZoneEltDefid = distributeDomain(EltDefZone); // { [Element[] -> Scatter[]] -> DomainRead[] } isl::union_map Reads = AllReads.range_product(Schedule).reverse(); // { [Element[] -> Scatter[]] -> [Element[] -> DomainRead[]] } isl::union_map ReadsElt = EltZoneElt.range_product(Reads); // { [Element[] -> Scatter[]] -> ValInst[] } isl::union_map ScatterKnown = ReadsElt.apply_range(AllReadValInst); // { [Element[] -> ReachDefId[]] -> ValInst[] } isl::union_map DefidKnown = DefZoneEltDefId.apply_domain(ScatterKnown).reverse(); // { [Element[] -> Zone[]] -> ValInst[] } return DefZoneEltDefId.apply_range(DefidKnown); } isl::union_map ZoneAlgorithm::computeKnown(bool FromWrite, bool FromRead) const { isl::union_map Result = makeEmptyUnionMap(); if (FromWrite) Result = Result.unite(computeKnownFromMustWrites()); if (FromRead) Result = Result.unite(computeKnownFromLoad()); simplify(Result); return Result; }