//===------ IslExprBuilder.cpp ----- Code generate isl AST expressions ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // //===----------------------------------------------------------------------===// #include "polly/CodeGen/IslExprBuilder.h" #include "polly/CodeGen/RuntimeDebugBuilder.h" #include "polly/Options.h" #include "polly/ScopInfo.h" #include "polly/Support/GICHelper.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" using namespace llvm; using namespace polly; /// Different overflow tracking modes. enum OverflowTrackingChoice { OT_NEVER, ///< Never tack potential overflows. OT_REQUEST, ///< Track potential overflows if requested. OT_ALWAYS ///< Always track potential overflows. }; static cl::opt OTMode( "polly-overflow-tracking", cl::desc("Define where potential integer overflows in generated " "expressions should be tracked."), cl::values(clEnumValN(OT_NEVER, "never", "Never track the overflow bit."), clEnumValN(OT_REQUEST, "request", "Track the overflow bit if requested."), clEnumValN(OT_ALWAYS, "always", "Always track the overflow bit.")), cl::Hidden, cl::init(OT_REQUEST), cl::ZeroOrMore, cl::cat(PollyCategory)); IslExprBuilder::IslExprBuilder(Scop &S, PollyIRBuilder &Builder, IDToValueTy &IDToValue, ValueMapT &GlobalMap, const DataLayout &DL, ScalarEvolution &SE, DominatorTree &DT, LoopInfo &LI, BasicBlock *StartBlock) : S(S), Builder(Builder), IDToValue(IDToValue), GlobalMap(GlobalMap), DL(DL), SE(SE), DT(DT), LI(LI), StartBlock(StartBlock) { OverflowState = (OTMode == OT_ALWAYS) ? Builder.getFalse() : nullptr; } void IslExprBuilder::setTrackOverflow(bool Enable) { // If potential overflows are tracked always or never we ignore requests // to change the behavior. if (OTMode != OT_REQUEST) return; if (Enable) { // If tracking should be enabled initialize the OverflowState. OverflowState = Builder.getFalse(); } else { // If tracking should be disabled just unset the OverflowState. OverflowState = nullptr; } } Value *IslExprBuilder::getOverflowState() const { // If the overflow tracking was requested but it is disabled we avoid the // additional nullptr checks at the call sides but instead provide a // meaningful result. if (OTMode == OT_NEVER) return Builder.getFalse(); return OverflowState; } bool IslExprBuilder::hasLargeInts(isl::ast_expr Expr) { enum isl_ast_expr_type Type = isl_ast_expr_get_type(Expr.get()); if (Type == isl_ast_expr_id) return false; if (Type == isl_ast_expr_int) { isl::val Val = Expr.get_val(); APInt APValue = APIntFromVal(Val); auto BitWidth = APValue.getBitWidth(); return BitWidth >= 64; } assert(Type == isl_ast_expr_op && "Expected isl_ast_expr of type operation"); int NumArgs = isl_ast_expr_get_op_n_arg(Expr.get()); for (int i = 0; i < NumArgs; i++) { isl::ast_expr Operand = Expr.get_op_arg(i); if (hasLargeInts(Operand)) return true; } return false; } Value *IslExprBuilder::createBinOp(BinaryOperator::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name) { // Handle the plain operation (without overflow tracking) first. if (!OverflowState) { switch (Opc) { case Instruction::Add: return Builder.CreateNSWAdd(LHS, RHS, Name); case Instruction::Sub: return Builder.CreateNSWSub(LHS, RHS, Name); case Instruction::Mul: return Builder.CreateNSWMul(LHS, RHS, Name); default: llvm_unreachable("Unknown binary operator!"); } } Function *F = nullptr; Module *M = Builder.GetInsertBlock()->getModule(); switch (Opc) { case Instruction::Add: F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow, {LHS->getType()}); break; case Instruction::Sub: F = Intrinsic::getDeclaration(M, Intrinsic::ssub_with_overflow, {LHS->getType()}); break; case Instruction::Mul: F = Intrinsic::getDeclaration(M, Intrinsic::smul_with_overflow, {LHS->getType()}); break; default: llvm_unreachable("No overflow intrinsic for binary operator found!"); } auto *ResultStruct = Builder.CreateCall(F, {LHS, RHS}, Name); assert(ResultStruct->getType()->isStructTy()); auto *OverflowFlag = Builder.CreateExtractValue(ResultStruct, 1, Name + ".obit"); // If all overflows are tracked we do not combine the results as this could // cause dominance problems. Instead we will always keep the last overflow // flag as current state. if (OTMode == OT_ALWAYS) OverflowState = OverflowFlag; else OverflowState = Builder.CreateOr(OverflowState, OverflowFlag, "polly.overflow.state"); return Builder.CreateExtractValue(ResultStruct, 0, Name + ".res"); } Value *IslExprBuilder::createAdd(Value *LHS, Value *RHS, const Twine &Name) { return createBinOp(Instruction::Add, LHS, RHS, Name); } Value *IslExprBuilder::createSub(Value *LHS, Value *RHS, const Twine &Name) { return createBinOp(Instruction::Sub, LHS, RHS, Name); } Value *IslExprBuilder::createMul(Value *LHS, Value *RHS, const Twine &Name) { return createBinOp(Instruction::Mul, LHS, RHS, Name); } Type *IslExprBuilder::getWidestType(Type *T1, Type *T2) { assert(isa(T1) && isa(T2)); if (T1->getPrimitiveSizeInBits() < T2->getPrimitiveSizeInBits()) return T2; else return T1; } Value *IslExprBuilder::createOpUnary(__isl_take isl_ast_expr *Expr) { assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_minus && "Unsupported unary operation"); Value *V; Type *MaxType = getType(Expr); assert(MaxType->isIntegerTy() && "Unary expressions can only be created for integer types"); V = create(isl_ast_expr_get_op_arg(Expr, 0)); MaxType = getWidestType(MaxType, V->getType()); if (MaxType != V->getType()) V = Builder.CreateSExt(V, MaxType); isl_ast_expr_free(Expr); return createSub(ConstantInt::getNullValue(MaxType), V); } Value *IslExprBuilder::createOpNAry(__isl_take isl_ast_expr *Expr) { assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && "isl ast expression not of type isl_ast_op"); assert(isl_ast_expr_get_op_n_arg(Expr) >= 2 && "We need at least two operands in an n-ary operation"); CmpInst::Predicate Pred; switch (isl_ast_expr_get_op_type(Expr)) { default: llvm_unreachable("This is not a an n-ary isl ast expression"); case isl_ast_op_max: Pred = CmpInst::ICMP_SGT; break; case isl_ast_op_min: Pred = CmpInst::ICMP_SLT; break; } Value *V = create(isl_ast_expr_get_op_arg(Expr, 0)); for (int i = 1; i < isl_ast_expr_get_op_n_arg(Expr); ++i) { Value *OpV = create(isl_ast_expr_get_op_arg(Expr, i)); Type *Ty = getWidestType(V->getType(), OpV->getType()); if (Ty != OpV->getType()) OpV = Builder.CreateSExt(OpV, Ty); if (Ty != V->getType()) V = Builder.CreateSExt(V, Ty); Value *Cmp = Builder.CreateICmp(Pred, V, OpV); V = Builder.CreateSelect(Cmp, V, OpV); } // TODO: We can truncate the result, if it fits into a smaller type. This can // help in cases where we have larger operands (e.g. i67) but the result is // known to fit into i64. Without the truncation, the larger i67 type may // force all subsequent operations to be performed on a non-native type. isl_ast_expr_free(Expr); return V; } std::pair IslExprBuilder::createAccessAddress(isl_ast_expr *Expr) { assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && "isl ast expression not of type isl_ast_op"); assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_access && "not an access isl ast expression"); assert(isl_ast_expr_get_op_n_arg(Expr) >= 1 && "We need at least two operands to create a member access."); Value *Base, *IndexOp, *Access; isl_ast_expr *BaseExpr; isl_id *BaseId; BaseExpr = isl_ast_expr_get_op_arg(Expr, 0); BaseId = isl_ast_expr_get_id(BaseExpr); isl_ast_expr_free(BaseExpr); const ScopArrayInfo *SAI = nullptr; if (PollyDebugPrinting) RuntimeDebugBuilder::createCPUPrinter(Builder, isl_id_get_name(BaseId)); if (IDToSAI) SAI = (*IDToSAI)[BaseId]; if (!SAI) SAI = ScopArrayInfo::getFromId(isl::manage(BaseId)); else isl_id_free(BaseId); assert(SAI && "No ScopArrayInfo found for this isl_id."); Base = SAI->getBasePtr(); if (auto NewBase = GlobalMap.lookup(Base)) Base = NewBase; assert(Base->getType()->isPointerTy() && "Access base should be a pointer"); StringRef BaseName = Base->getName(); auto PointerTy = PointerType::get(SAI->getElementType(), Base->getType()->getPointerAddressSpace()); if (Base->getType() != PointerTy) { Base = Builder.CreateBitCast(Base, PointerTy, "polly.access.cast." + BaseName); } if (isl_ast_expr_get_op_n_arg(Expr) == 1) { isl_ast_expr_free(Expr); if (PollyDebugPrinting) RuntimeDebugBuilder::createCPUPrinter(Builder, "\n"); return {Base, SAI->getElementType()}; } IndexOp = nullptr; for (unsigned u = 1, e = isl_ast_expr_get_op_n_arg(Expr); u < e; u++) { Value *NextIndex = create(isl_ast_expr_get_op_arg(Expr, u)); assert(NextIndex->getType()->isIntegerTy() && "Access index should be an integer"); if (PollyDebugPrinting) RuntimeDebugBuilder::createCPUPrinter(Builder, "[", NextIndex, "]"); if (!IndexOp) { IndexOp = NextIndex; } else { Type *Ty = getWidestType(NextIndex->getType(), IndexOp->getType()); if (Ty != NextIndex->getType()) NextIndex = Builder.CreateIntCast(NextIndex, Ty, true); if (Ty != IndexOp->getType()) IndexOp = Builder.CreateIntCast(IndexOp, Ty, true); IndexOp = createAdd(IndexOp, NextIndex, "polly.access.add." + BaseName); } // For every but the last dimension multiply the size, for the last // dimension we can exit the loop. if (u + 1 >= e) break; const SCEV *DimSCEV = SAI->getDimensionSize(u); llvm::ValueToSCEVMapTy Map; for (auto &KV : GlobalMap) Map[KV.first] = SE.getSCEV(KV.second); DimSCEV = SCEVParameterRewriter::rewrite(DimSCEV, SE, Map); Value *DimSize = expandCodeFor(S, SE, DL, "polly", DimSCEV, DimSCEV->getType(), &*Builder.GetInsertPoint(), nullptr, StartBlock->getSinglePredecessor()); Type *Ty = getWidestType(DimSize->getType(), IndexOp->getType()); if (Ty != IndexOp->getType()) IndexOp = Builder.CreateSExtOrTrunc(IndexOp, Ty, "polly.access.sext." + BaseName); if (Ty != DimSize->getType()) DimSize = Builder.CreateSExtOrTrunc(DimSize, Ty, "polly.access.sext." + BaseName); IndexOp = createMul(IndexOp, DimSize, "polly.access.mul." + BaseName); } Access = Builder.CreateGEP(SAI->getElementType(), Base, IndexOp, "polly.access." + BaseName); if (PollyDebugPrinting) RuntimeDebugBuilder::createCPUPrinter(Builder, "\n"); isl_ast_expr_free(Expr); return {Access, SAI->getElementType()}; } Value *IslExprBuilder::createOpAccess(isl_ast_expr *Expr) { auto Info = createAccessAddress(Expr); assert(Info.first && "Could not create op access address"); return Builder.CreateLoad(Info.second, Info.first, Info.first->getName() + ".load"); } Value *IslExprBuilder::createOpBin(__isl_take isl_ast_expr *Expr) { Value *LHS, *RHS, *Res; Type *MaxType; isl_ast_op_type OpType; assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && "isl ast expression not of type isl_ast_op"); assert(isl_ast_expr_get_op_n_arg(Expr) == 2 && "not a binary isl ast expression"); OpType = isl_ast_expr_get_op_type(Expr); LHS = create(isl_ast_expr_get_op_arg(Expr, 0)); RHS = create(isl_ast_expr_get_op_arg(Expr, 1)); Type *LHSType = LHS->getType(); Type *RHSType = RHS->getType(); MaxType = getWidestType(LHSType, RHSType); // Take the result into account when calculating the widest type. // // For operations such as '+' the result may require a type larger than // the type of the individual operands. For other operations such as '/', the // result type cannot be larger than the type of the individual operand. isl // does not calculate correct types for these operations and we consequently // exclude those operations here. switch (OpType) { case isl_ast_op_pdiv_q: case isl_ast_op_pdiv_r: case isl_ast_op_div: case isl_ast_op_fdiv_q: case isl_ast_op_zdiv_r: // Do nothing break; case isl_ast_op_add: case isl_ast_op_sub: case isl_ast_op_mul: MaxType = getWidestType(MaxType, getType(Expr)); break; default: llvm_unreachable("This is no binary isl ast expression"); } if (MaxType != RHS->getType()) RHS = Builder.CreateSExt(RHS, MaxType); if (MaxType != LHS->getType()) LHS = Builder.CreateSExt(LHS, MaxType); switch (OpType) { default: llvm_unreachable("This is no binary isl ast expression"); case isl_ast_op_add: Res = createAdd(LHS, RHS); break; case isl_ast_op_sub: Res = createSub(LHS, RHS); break; case isl_ast_op_mul: Res = createMul(LHS, RHS); break; case isl_ast_op_div: Res = Builder.CreateSDiv(LHS, RHS, "pexp.div", true); break; case isl_ast_op_pdiv_q: // Dividend is non-negative Res = Builder.CreateUDiv(LHS, RHS, "pexp.p_div_q"); break; case isl_ast_op_fdiv_q: { // Round towards -infty if (auto *Const = dyn_cast(RHS)) { auto &Val = Const->getValue(); if (Val.isPowerOf2() && Val.isNonNegative()) { Res = Builder.CreateAShr(LHS, Val.ceilLogBase2(), "polly.fdiv_q.shr"); break; } } // TODO: Review code and check that this calculation does not yield // incorrect overflow in some edge cases. // // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d Value *One = ConstantInt::get(MaxType, 1); Value *Zero = ConstantInt::get(MaxType, 0); Value *Sum1 = createSub(LHS, RHS, "pexp.fdiv_q.0"); Value *Sum2 = createAdd(Sum1, One, "pexp.fdiv_q.1"); Value *isNegative = Builder.CreateICmpSLT(LHS, Zero, "pexp.fdiv_q.2"); Value *Dividend = Builder.CreateSelect(isNegative, Sum2, LHS, "pexp.fdiv_q.3"); Res = Builder.CreateSDiv(Dividend, RHS, "pexp.fdiv_q.4"); break; } case isl_ast_op_pdiv_r: // Dividend is non-negative Res = Builder.CreateURem(LHS, RHS, "pexp.pdiv_r"); break; case isl_ast_op_zdiv_r: // Result only compared against zero Res = Builder.CreateSRem(LHS, RHS, "pexp.zdiv_r"); break; } // TODO: We can truncate the result, if it fits into a smaller type. This can // help in cases where we have larger operands (e.g. i67) but the result is // known to fit into i64. Without the truncation, the larger i67 type may // force all subsequent operations to be performed on a non-native type. isl_ast_expr_free(Expr); return Res; } Value *IslExprBuilder::createOpSelect(__isl_take isl_ast_expr *Expr) { assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_select && "Unsupported unary isl ast expression"); Value *LHS, *RHS, *Cond; Type *MaxType = getType(Expr); Cond = create(isl_ast_expr_get_op_arg(Expr, 0)); if (!Cond->getType()->isIntegerTy(1)) Cond = Builder.CreateIsNotNull(Cond); LHS = create(isl_ast_expr_get_op_arg(Expr, 1)); RHS = create(isl_ast_expr_get_op_arg(Expr, 2)); MaxType = getWidestType(MaxType, LHS->getType()); MaxType = getWidestType(MaxType, RHS->getType()); if (MaxType != RHS->getType()) RHS = Builder.CreateSExt(RHS, MaxType); if (MaxType != LHS->getType()) LHS = Builder.CreateSExt(LHS, MaxType); // TODO: Do we want to truncate the result? isl_ast_expr_free(Expr); return Builder.CreateSelect(Cond, LHS, RHS); } Value *IslExprBuilder::createOpICmp(__isl_take isl_ast_expr *Expr) { assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && "Expected an isl_ast_expr_op expression"); Value *LHS, *RHS, *Res; auto *Op0 = isl_ast_expr_get_op_arg(Expr, 0); auto *Op1 = isl_ast_expr_get_op_arg(Expr, 1); bool HasNonAddressOfOperand = isl_ast_expr_get_type(Op0) != isl_ast_expr_op || isl_ast_expr_get_type(Op1) != isl_ast_expr_op || isl_ast_expr_get_op_type(Op0) != isl_ast_op_address_of || isl_ast_expr_get_op_type(Op1) != isl_ast_op_address_of; LHS = create(Op0); RHS = create(Op1); auto *LHSTy = LHS->getType(); auto *RHSTy = RHS->getType(); bool IsPtrType = LHSTy->isPointerTy() || RHSTy->isPointerTy(); bool UseUnsignedCmp = IsPtrType && !HasNonAddressOfOperand; auto *PtrAsIntTy = Builder.getIntNTy(DL.getPointerSizeInBits()); if (LHSTy->isPointerTy()) LHS = Builder.CreatePtrToInt(LHS, PtrAsIntTy); if (RHSTy->isPointerTy()) RHS = Builder.CreatePtrToInt(RHS, PtrAsIntTy); if (LHS->getType() != RHS->getType()) { Type *MaxType = LHS->getType(); MaxType = getWidestType(MaxType, RHS->getType()); if (MaxType != RHS->getType()) RHS = Builder.CreateSExt(RHS, MaxType); if (MaxType != LHS->getType()) LHS = Builder.CreateSExt(LHS, MaxType); } isl_ast_op_type OpType = isl_ast_expr_get_op_type(Expr); assert(OpType >= isl_ast_op_eq && OpType <= isl_ast_op_gt && "Unsupported ICmp isl ast expression"); static_assert(isl_ast_op_eq + 4 == isl_ast_op_gt, "Isl ast op type interface changed"); CmpInst::Predicate Predicates[5][2] = { {CmpInst::ICMP_EQ, CmpInst::ICMP_EQ}, {CmpInst::ICMP_SLE, CmpInst::ICMP_ULE}, {CmpInst::ICMP_SLT, CmpInst::ICMP_ULT}, {CmpInst::ICMP_SGE, CmpInst::ICMP_UGE}, {CmpInst::ICMP_SGT, CmpInst::ICMP_UGT}, }; Res = Builder.CreateICmp(Predicates[OpType - isl_ast_op_eq][UseUnsignedCmp], LHS, RHS); isl_ast_expr_free(Expr); return Res; } Value *IslExprBuilder::createOpBoolean(__isl_take isl_ast_expr *Expr) { assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && "Expected an isl_ast_expr_op expression"); Value *LHS, *RHS, *Res; isl_ast_op_type OpType; OpType = isl_ast_expr_get_op_type(Expr); assert((OpType == isl_ast_op_and || OpType == isl_ast_op_or) && "Unsupported isl_ast_op_type"); LHS = create(isl_ast_expr_get_op_arg(Expr, 0)); RHS = create(isl_ast_expr_get_op_arg(Expr, 1)); // Even though the isl pretty printer prints the expressions as 'exp && exp' // or 'exp || exp', we actually code generate the bitwise expressions // 'exp & exp' or 'exp | exp'. This forces the evaluation of both branches, // but it is, due to the use of i1 types, otherwise equivalent. The reason // to go for bitwise operations is, that we assume the reduced control flow // will outweigh the overhead introduced by evaluating unneeded expressions. // The isl code generation currently does not take advantage of the fact that // the expression after an '||' or '&&' is in some cases not evaluated. // Evaluating it anyways does not cause any undefined behaviour. // // TODO: Document in isl itself, that the unconditionally evaluating the // second part of '||' or '&&' expressions is safe. if (!LHS->getType()->isIntegerTy(1)) LHS = Builder.CreateIsNotNull(LHS); if (!RHS->getType()->isIntegerTy(1)) RHS = Builder.CreateIsNotNull(RHS); switch (OpType) { default: llvm_unreachable("Unsupported boolean expression"); case isl_ast_op_and: Res = Builder.CreateAnd(LHS, RHS); break; case isl_ast_op_or: Res = Builder.CreateOr(LHS, RHS); break; } isl_ast_expr_free(Expr); return Res; } Value * IslExprBuilder::createOpBooleanConditional(__isl_take isl_ast_expr *Expr) { assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && "Expected an isl_ast_expr_op expression"); Value *LHS, *RHS; isl_ast_op_type OpType; Function *F = Builder.GetInsertBlock()->getParent(); LLVMContext &Context = F->getContext(); OpType = isl_ast_expr_get_op_type(Expr); assert((OpType == isl_ast_op_and_then || OpType == isl_ast_op_or_else) && "Unsupported isl_ast_op_type"); auto InsertBB = Builder.GetInsertBlock(); auto InsertPoint = Builder.GetInsertPoint(); auto NextBB = SplitBlock(InsertBB, &*InsertPoint, &DT, &LI); BasicBlock *CondBB = BasicBlock::Create(Context, "polly.cond", F); LI.changeLoopFor(CondBB, LI.getLoopFor(InsertBB)); DT.addNewBlock(CondBB, InsertBB); InsertBB->getTerminator()->eraseFromParent(); Builder.SetInsertPoint(InsertBB); auto BR = Builder.CreateCondBr(Builder.getTrue(), NextBB, CondBB); Builder.SetInsertPoint(CondBB); Builder.CreateBr(NextBB); Builder.SetInsertPoint(InsertBB->getTerminator()); LHS = create(isl_ast_expr_get_op_arg(Expr, 0)); if (!LHS->getType()->isIntegerTy(1)) LHS = Builder.CreateIsNotNull(LHS); auto LeftBB = Builder.GetInsertBlock(); if (OpType == isl_ast_op_and || OpType == isl_ast_op_and_then) BR->setCondition(Builder.CreateNeg(LHS)); else BR->setCondition(LHS); Builder.SetInsertPoint(CondBB->getTerminator()); RHS = create(isl_ast_expr_get_op_arg(Expr, 1)); if (!RHS->getType()->isIntegerTy(1)) RHS = Builder.CreateIsNotNull(RHS); auto RightBB = Builder.GetInsertBlock(); Builder.SetInsertPoint(NextBB->getTerminator()); auto PHI = Builder.CreatePHI(Builder.getInt1Ty(), 2); PHI->addIncoming(OpType == isl_ast_op_and_then ? Builder.getFalse() : Builder.getTrue(), LeftBB); PHI->addIncoming(RHS, RightBB); isl_ast_expr_free(Expr); return PHI; } Value *IslExprBuilder::createOp(__isl_take isl_ast_expr *Expr) { assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && "Expression not of type isl_ast_expr_op"); switch (isl_ast_expr_get_op_type(Expr)) { case isl_ast_op_error: case isl_ast_op_cond: case isl_ast_op_call: case isl_ast_op_member: llvm_unreachable("Unsupported isl ast expression"); case isl_ast_op_access: return createOpAccess(Expr); case isl_ast_op_max: case isl_ast_op_min: return createOpNAry(Expr); case isl_ast_op_add: case isl_ast_op_sub: case isl_ast_op_mul: case isl_ast_op_div: case isl_ast_op_fdiv_q: // Round towards -infty case isl_ast_op_pdiv_q: // Dividend is non-negative case isl_ast_op_pdiv_r: // Dividend is non-negative case isl_ast_op_zdiv_r: // Result only compared against zero return createOpBin(Expr); case isl_ast_op_minus: return createOpUnary(Expr); case isl_ast_op_select: return createOpSelect(Expr); case isl_ast_op_and: case isl_ast_op_or: return createOpBoolean(Expr); case isl_ast_op_and_then: case isl_ast_op_or_else: return createOpBooleanConditional(Expr); case isl_ast_op_eq: case isl_ast_op_le: case isl_ast_op_lt: case isl_ast_op_ge: case isl_ast_op_gt: return createOpICmp(Expr); case isl_ast_op_address_of: return createOpAddressOf(Expr); } llvm_unreachable("Unsupported isl_ast_expr_op kind."); } Value *IslExprBuilder::createOpAddressOf(__isl_take isl_ast_expr *Expr) { assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && "Expected an isl_ast_expr_op expression."); assert(isl_ast_expr_get_op_n_arg(Expr) == 1 && "Address of should be unary."); isl_ast_expr *Op = isl_ast_expr_get_op_arg(Expr, 0); assert(isl_ast_expr_get_type(Op) == isl_ast_expr_op && "Expected address of operator to be an isl_ast_expr_op expression."); assert(isl_ast_expr_get_op_type(Op) == isl_ast_op_access && "Expected address of operator to be an access expression."); Value *V = createAccessAddress(Op).first; isl_ast_expr_free(Expr); return V; } Value *IslExprBuilder::createId(__isl_take isl_ast_expr *Expr) { assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_id && "Expression not of type isl_ast_expr_ident"); isl_id *Id; Value *V; Id = isl_ast_expr_get_id(Expr); assert(IDToValue.count(Id) && "Identifier not found"); V = IDToValue[Id]; if (!V) V = UndefValue::get(getType(Expr)); if (V->getType()->isPointerTy()) V = Builder.CreatePtrToInt(V, Builder.getIntNTy(DL.getPointerSizeInBits())); assert(V && "Unknown parameter id found"); isl_id_free(Id); isl_ast_expr_free(Expr); return V; } IntegerType *IslExprBuilder::getType(__isl_keep isl_ast_expr *Expr) { // XXX: We assume i64 is large enough. This is often true, but in general // incorrect. Also, on 32bit architectures, it would be beneficial to // use a smaller type. We can and should directly derive this information // during code generation. return IntegerType::get(Builder.getContext(), 64); } Value *IslExprBuilder::createInt(__isl_take isl_ast_expr *Expr) { assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_int && "Expression not of type isl_ast_expr_int"); isl_val *Val; Value *V; APInt APValue; IntegerType *T; Val = isl_ast_expr_get_val(Expr); APValue = APIntFromVal(Val); auto BitWidth = APValue.getBitWidth(); if (BitWidth <= 64) T = getType(Expr); else T = Builder.getIntNTy(BitWidth); APValue = APValue.sextOrSelf(T->getBitWidth()); V = ConstantInt::get(T, APValue); isl_ast_expr_free(Expr); return V; } Value *IslExprBuilder::create(__isl_take isl_ast_expr *Expr) { switch (isl_ast_expr_get_type(Expr)) { case isl_ast_expr_error: llvm_unreachable("Code generation error"); case isl_ast_expr_op: return createOp(Expr); case isl_ast_expr_id: return createId(Expr); case isl_ast_expr_int: return createInt(Expr); } llvm_unreachable("Unexpected enum value"); }