#include "dot_product_avx2.h" #include "dot_product_simple.h" #include "dot_product_sse.h" #if defined(_avx2_) && defined(_fma_) #include #include #include #include namespace { constexpr i64 Bits(int n) { return i64(-1) ^ ((i64(1) << (64 - n)) - 1); } constexpr __m256 BlendMask64[8] = { __m256i{Bits(64), Bits(64), Bits(64), Bits(64)}, __m256i{0, Bits(64), Bits(64), Bits(64)}, __m256i{0, 0, Bits(64), Bits(64)}, __m256i{0, 0, 0, Bits(64)}, }; constexpr __m256 BlendMask32[8] = { __m256i{Bits(64), Bits(64), Bits(64), Bits(64)}, __m256i{Bits(32), Bits(64), Bits(64), Bits(64)}, __m256i{0, Bits(64), Bits(64), Bits(64)}, __m256i{0, Bits(32), Bits(64), Bits(64)}, __m256i{0, 0, Bits(64), Bits(64)}, __m256i{0, 0, Bits(32), Bits(64)}, __m256i{0, 0, 0, Bits(64)}, __m256i{0, 0, 0, Bits(32)}, }; constexpr __m128 BlendMask8[16] = { __m128i{Bits(64), Bits(64)}, __m128i{Bits(56), Bits(64)}, __m128i{Bits(48), Bits(64)}, __m128i{Bits(40), Bits(64)}, __m128i{Bits(32), Bits(64)}, __m128i{Bits(24), Bits(64)}, __m128i{Bits(16), Bits(64)}, __m128i{Bits(8), Bits(64)}, __m128i{0, Bits(64)}, __m128i{0, Bits(56)}, __m128i{0, Bits(48)}, __m128i{0, Bits(40)}, __m128i{0, Bits(32)}, __m128i{0, Bits(24)}, __m128i{0, Bits(16)}, __m128i{0, Bits(8)}, }; // See https://stackoverflow.com/a/60109639 // Horizontal sum of eight i32 values in an avx register i32 HsumI32(__m256i v) { __m128i x = _mm_add_epi32(_mm256_castsi256_si128(v), _mm256_extracti128_si256(v, 1)); __m128i hi64 = _mm_unpackhi_epi64(x, x); __m128i sum64 = _mm_add_epi32(hi64, x); __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1)); __m128i sum32 = _mm_add_epi32(sum64, hi32); return _mm_cvtsi128_si32(sum32); } // Horizontal sum of four i64 values in an avx register i64 HsumI64(__m256i v) { __m128i x = _mm_add_epi64(_mm256_castsi256_si128(v), _mm256_extracti128_si256(v, 1)); return _mm_cvtsi128_si64(x) + _mm_extract_epi64(x, 1); } // Horizontal sum of eight float values in an avx register float HsumFloat(__m256 v) { __m256 y = _mm256_permute2f128_ps(v, v, 1); v = _mm256_add_ps(v, y); v = _mm256_hadd_ps(v, v); return _mm256_cvtss_f32(_mm256_hadd_ps(v, v)); } // Horizontal sum of four double values in an avx register double HsumDouble(__m256 v) { __m128d x = _mm_add_pd(_mm256_castpd256_pd128(v), _mm256_extractf128_pd(v, 1)); x = _mm_add_pd(x, _mm_shuffle_pd(x, x, 1)); return _mm_cvtsd_f64(x); } __m128i Load128i(const void* ptr) { return _mm_loadu_si128((const __m128i*)ptr); } __m256i Load256i(const void* ptr) { return _mm256_loadu_si256((const __m256i*)ptr); } // Unrolled dot product for relatively small sizes // The loop with known upper bound is unrolled by the compiler, no need to do anything special about it template i32 DotProductInt8Avx2_Unroll(const TInput* lhs, const TInput* rhs, TExtend extend) noexcept { static_assert(size % 16 == 0); auto sum = _mm256_setzero_ps(); for (size_t i = 0; i != size; i += 16) { sum = _mm256_add_epi32(sum, _mm256_madd_epi16(extend(Load128i(lhs + i)), extend(Load128i(rhs + i)))); } return HsumI32(sum); } template i32 DotProductInt8Avx2(const TInput* lhs, const TInput* rhs, size_t length, TExtend extend) noexcept { // Fully unrolled versions for small multiples for 16 switch (length) { case 16: return DotProductInt8Avx2_Unroll<16>(lhs, rhs, extend); case 32: return DotProductInt8Avx2_Unroll<32>(lhs, rhs, extend); case 48: return DotProductInt8Avx2_Unroll<48>(lhs, rhs, extend); case 64: return DotProductInt8Avx2_Unroll<64>(lhs, rhs, extend); } __m256i sum = _mm256_setzero_ps(); if (const auto leftover = length % 16; leftover != 0) { auto a = _mm_blendv_epi8( Load128i(lhs), _mm_setzero_ps(), BlendMask8[leftover]); auto b = _mm_blendv_epi8( Load128i(rhs), _mm_setzero_ps(), BlendMask8[leftover]); sum = _mm256_madd_epi16(extend(a), extend(b)); lhs += leftover; rhs += leftover; length -= leftover; } while (length >= 32) { const auto l0 = extend(Load128i(lhs)); const auto r0 = extend(Load128i(rhs)); const auto l1 = extend(Load128i(lhs + 16)); const auto r1 = extend(Load128i(rhs + 16)); const auto s0 = _mm256_madd_epi16(l0, r0); const auto s1 = _mm256_madd_epi16(l1, r1); sum = _mm256_add_epi32(sum, _mm256_add_epi32(s0, s1)); lhs += 32; rhs += 32; length -= 32; } if (length > 0) { auto l = extend(Load128i(lhs)); auto r = extend(Load128i(rhs)); sum = _mm256_add_epi32(sum, _mm256_madd_epi16(l, r)); } return HsumI32(sum); } } i32 DotProductAvx2(const i8* lhs, const i8* rhs, size_t length) noexcept { if (length < 16) { return DotProductSse(lhs, rhs, length); } return DotProductInt8Avx2(lhs, rhs, length, [](const __m128i x) { return _mm256_cvtepi8_epi16(x); }); } ui32 DotProductAvx2(const ui8* lhs, const ui8* rhs, size_t length) noexcept { if (length < 16) { return DotProductSse(lhs, rhs, length); } return DotProductInt8Avx2(lhs, rhs, length, [](const __m128i x) { return _mm256_cvtepu8_epi16(x); }); } i64 DotProductAvx2(const i32* lhs, const i32* rhs, size_t length) noexcept { if (length < 16) { return DotProductSse(lhs, rhs, length); } __m256i res = _mm256_setzero_ps(); if (const auto leftover = length % 8; leftover != 0) { // Use floating-point blendv. Who cares as long as the size is right. __m256i a = _mm256_blendv_ps( Load256i(lhs), _mm256_setzero_ps(), BlendMask32[leftover]); __m256i b = _mm256_blendv_ps( Load256i(rhs), _mm256_setzero_ps(), BlendMask32[leftover]); res = _mm256_mul_epi32(a, b); a = _mm256_alignr_epi8(a, a, 4); b = _mm256_alignr_epi8(b, b, 4); res = _mm256_add_epi64(_mm256_mul_epi32(a, b), res); lhs += leftover; rhs += leftover; length -= leftover; } while (length >= 8) { __m256i a = Load256i(lhs); __m256i b = Load256i(rhs); res = _mm256_add_epi64(_mm256_mul_epi32(a, b), res); // This is lower parts multiplication a = _mm256_alignr_epi8(a, a, 4); b = _mm256_alignr_epi8(b, b, 4); res = _mm256_add_epi64(_mm256_mul_epi32(a, b), res); rhs += 8; lhs += 8; length -= 8; } return HsumI64(res); } float DotProductAvx2(const float* lhs, const float* rhs, size_t length) noexcept { if (length < 16) { return DotProductSse(lhs, rhs, length); } __m256 sum1 = _mm256_setzero_ps(); __m256 sum2 = _mm256_setzero_ps(); __m256 a1, b1, a2, b2; if (const auto leftover = length % 8; leftover != 0) { a1 = _mm256_blendv_ps( _mm256_loadu_ps(lhs), _mm256_setzero_ps(), BlendMask32[leftover]); b1 = _mm256_blendv_ps( _mm256_loadu_ps(rhs), _mm256_setzero_ps(), BlendMask32[leftover]); sum1 = _mm256_mul_ps(a1, b1); lhs += leftover; rhs += leftover; length -= leftover; } while (length >= 16) { a1 = _mm256_loadu_ps(lhs); b1 = _mm256_loadu_ps(rhs); a2 = _mm256_loadu_ps(lhs + 8); b2 = _mm256_loadu_ps(rhs + 8); sum1 = _mm256_fmadd_ps(a1, b1, sum1); sum2 = _mm256_fmadd_ps(a2, b2, sum2); length -= 16; lhs += 16; rhs += 16; } if (length > 0) { a1 = _mm256_loadu_ps(lhs); b1 = _mm256_loadu_ps(rhs); sum1 = _mm256_fmadd_ps(a1, b1, sum1); } return HsumFloat(_mm256_add_ps(sum1, sum2)); } double DotProductAvx2(const double* lhs, const double* rhs, size_t length) noexcept { if (length < 16) { return DotProductSse(lhs, rhs, length); } __m256d sum1 = _mm256_setzero_pd(); __m256d sum2 = _mm256_setzero_pd(); __m256d a1, b1, a2, b2; if (const auto leftover = length % 4; leftover != 0) { a1 = _mm256_blendv_pd( _mm256_loadu_pd(lhs), _mm256_setzero_ps(), BlendMask64[leftover]); b1 = _mm256_blendv_pd( _mm256_loadu_pd(rhs), _mm256_setzero_ps(), BlendMask64[leftover]); sum1 = _mm256_mul_pd(a1, b1); lhs += leftover; rhs += leftover; length -= leftover; } while (length >= 8) { a1 = _mm256_loadu_pd(lhs); b1 = _mm256_loadu_pd(rhs); a2 = _mm256_loadu_pd(lhs + 4); b2 = _mm256_loadu_pd(rhs + 4); sum1 = _mm256_fmadd_pd(a1, b1, sum1); sum2 = _mm256_fmadd_pd(a2, b2, sum2); length -= 8; lhs += 8; rhs += 8; } if (length > 0) { a1 = _mm256_loadu_pd(lhs); b1 = _mm256_loadu_pd(rhs); sum1 = _mm256_fmadd_pd(a1, b1, sum1); } return HsumDouble(_mm256_add_pd(sum1, sum2)); } #elif defined(ARCADIA_SSE) i32 DotProductAvx2(const i8* lhs, const i8* rhs, size_t length) noexcept { return DotProductSse(lhs, rhs, length); } ui32 DotProductAvx2(const ui8* lhs, const ui8* rhs, size_t length) noexcept { return DotProductSse(lhs, rhs, length); } i64 DotProductAvx2(const i32* lhs, const i32* rhs, size_t length) noexcept { return DotProductSse(lhs, rhs, length); } float DotProductAvx2(const float* lhs, const float* rhs, size_t length) noexcept { return DotProductSse(lhs, rhs, length); } double DotProductAvx2(const double* lhs, const double* rhs, size_t length) noexcept { return DotProductSse(lhs, rhs, length); } #else i32 DotProductAvx2(const i8* lhs, const i8* rhs, size_t length) noexcept { return DotProductSimple(lhs, rhs, length); } ui32 DotProductAvx2(const ui8* lhs, const ui8* rhs, size_t length) noexcept { return DotProductSimple(lhs, rhs, length); } i64 DotProductAvx2(const i32* lhs, const i32* rhs, size_t length) noexcept { return DotProductSimple(lhs, rhs, length); } float DotProductAvx2(const float* lhs, const float* rhs, size_t length) noexcept { return DotProductSimple(lhs, rhs, length); } double DotProductAvx2(const double* lhs, const double* rhs, size_t length) noexcept { return DotProductSimple(lhs, rhs, length); } #endif