// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "y_absl/strings/str_cat.h" #include #include #include #include #include #include #include #include "y_absl/base/config.h" #include "y_absl/base/internal/raw_logging.h" #include "y_absl/base/nullability.h" #include "y_absl/strings/internal/resize_uninitialized.h" #include "y_absl/strings/string_view.h" namespace y_absl { Y_ABSL_NAMESPACE_BEGIN // ---------------------------------------------------------------------- // StrCat() // This merges the given strings or integers, with no delimiter. This // is designed to be the fastest possible way to construct a string out // of a mix of raw C strings, string_views, strings, and integer values. // ---------------------------------------------------------------------- namespace { // Append is merely a version of memcpy that returns the address of the byte // after the area just overwritten. inline y_absl::Nonnull Append(y_absl::Nonnull out, const AlphaNum& x) { // memcpy is allowed to overwrite arbitrary memory, so doing this after the // call would force an extra fetch of x.size(). char* after = out + x.size(); if (x.size() != 0) { memcpy(out, x.data(), x.size()); } return after; } inline void STLStringAppendUninitializedAmortized(TString* dest, size_t to_append) { strings_internal::AppendUninitializedTraits::Append(dest, to_append); } } // namespace TString StrCat(const AlphaNum& a, const AlphaNum& b) { TString result; // Use uint64_t to prevent size_t overflow. We assume it is not possible for // in memory strings to overflow a uint64_t. constexpr uint64_t kMaxSize = uint64_t{std::numeric_limits::max()}; const uint64_t result_size = static_cast(a.size()) + static_cast(b.size()); Y_ABSL_INTERNAL_CHECK(result_size <= kMaxSize, "size_t overflow"); y_absl::strings_internal::STLStringResizeUninitialized( &result, static_cast(result_size)); char* const begin = &result[0]; char* out = begin; out = Append(out, a); out = Append(out, b); assert(out == begin + result.size()); return result; } TString StrCat(const AlphaNum& a, const AlphaNum& b, const AlphaNum& c) { TString result; // Use uint64_t to prevent size_t overflow. We assume it is not possible for // in memory strings to overflow a uint64_t. constexpr uint64_t kMaxSize = uint64_t{std::numeric_limits::max()}; const uint64_t result_size = static_cast(a.size()) + static_cast(b.size()) + static_cast(c.size()); Y_ABSL_INTERNAL_CHECK(result_size <= kMaxSize, "size_t overflow"); strings_internal::STLStringResizeUninitialized( &result, static_cast(result_size)); char* const begin = &result[0]; char* out = begin; out = Append(out, a); out = Append(out, b); out = Append(out, c); assert(out == begin + result.size()); return result; } TString StrCat(const AlphaNum& a, const AlphaNum& b, const AlphaNum& c, const AlphaNum& d) { TString result; // Use uint64_t to prevent size_t overflow. We assume it is not possible for // in memory strings to overflow a uint64_t. constexpr uint64_t kMaxSize = uint64_t{std::numeric_limits::max()}; const uint64_t result_size = static_cast(a.size()) + static_cast(b.size()) + static_cast(c.size()) + static_cast(d.size()); Y_ABSL_INTERNAL_CHECK(result_size <= kMaxSize, "size_t overflow"); strings_internal::STLStringResizeUninitialized( &result, static_cast(result_size)); char* const begin = &result[0]; char* out = begin; out = Append(out, a); out = Append(out, b); out = Append(out, c); out = Append(out, d); assert(out == begin + result.size()); return result; } namespace strings_internal { // Do not call directly - these are not part of the public API. TString CatPieces(std::initializer_list pieces) { TString result; // Use uint64_t to prevent size_t overflow. We assume it is not possible for // in memory strings to overflow a uint64_t. constexpr uint64_t kMaxSize = uint64_t{std::numeric_limits::max()}; uint64_t total_size = 0; for (y_absl::string_view piece : pieces) { total_size += piece.size(); } Y_ABSL_INTERNAL_CHECK(total_size <= kMaxSize, "size_t overflow"); strings_internal::STLStringResizeUninitialized( &result, static_cast(total_size)); char* const begin = &result[0]; char* out = begin; for (y_absl::string_view piece : pieces) { const size_t this_size = piece.size(); if (this_size != 0) { memcpy(out, piece.data(), this_size); out += this_size; } } assert(out == begin + result.size()); return result; } // It's possible to call StrAppend with an y_absl::string_view that is itself a // fragment of the string we're appending to. However the results of this are // random. Therefore, check for this in debug mode. Use unsigned math so we // only have to do one comparison. Note, there's an exception case: appending an // empty string is always allowed. #define ASSERT_NO_OVERLAP(dest, src) \ assert(((src).size() == 0) || \ (uintptr_t((src).data() - (dest).data()) > uintptr_t((dest).size()))) void AppendPieces(y_absl::Nonnull dest, std::initializer_list pieces) { size_t old_size = dest->size(); size_t to_append = 0; for (y_absl::string_view piece : pieces) { ASSERT_NO_OVERLAP(*dest, piece); to_append += piece.size(); } STLStringAppendUninitializedAmortized(dest, to_append); char* const begin = &(*dest)[0]; char* out = begin + old_size; for (y_absl::string_view piece : pieces) { const size_t this_size = piece.size(); if (this_size != 0) { memcpy(out, piece.data(), this_size); out += this_size; } } assert(out == begin + dest->size()); } } // namespace strings_internal void StrAppend(y_absl::Nonnull dest, const AlphaNum& a) { ASSERT_NO_OVERLAP(*dest, a); TString::size_type old_size = dest->size(); STLStringAppendUninitializedAmortized(dest, a.size()); char* const begin = &(*dest)[0]; char* out = begin + old_size; out = Append(out, a); assert(out == begin + dest->size()); } void StrAppend(y_absl::Nonnull dest, const AlphaNum& a, const AlphaNum& b) { ASSERT_NO_OVERLAP(*dest, a); ASSERT_NO_OVERLAP(*dest, b); TString::size_type old_size = dest->size(); STLStringAppendUninitializedAmortized(dest, a.size() + b.size()); char* const begin = &(*dest)[0]; char* out = begin + old_size; out = Append(out, a); out = Append(out, b); assert(out == begin + dest->size()); } void StrAppend(y_absl::Nonnull dest, const AlphaNum& a, const AlphaNum& b, const AlphaNum& c) { ASSERT_NO_OVERLAP(*dest, a); ASSERT_NO_OVERLAP(*dest, b); ASSERT_NO_OVERLAP(*dest, c); TString::size_type old_size = dest->size(); STLStringAppendUninitializedAmortized(dest, a.size() + b.size() + c.size()); char* const begin = &(*dest)[0]; char* out = begin + old_size; out = Append(out, a); out = Append(out, b); out = Append(out, c); assert(out == begin + dest->size()); } void StrAppend(y_absl::Nonnull dest, const AlphaNum& a, const AlphaNum& b, const AlphaNum& c, const AlphaNum& d) { ASSERT_NO_OVERLAP(*dest, a); ASSERT_NO_OVERLAP(*dest, b); ASSERT_NO_OVERLAP(*dest, c); ASSERT_NO_OVERLAP(*dest, d); TString::size_type old_size = dest->size(); STLStringAppendUninitializedAmortized( dest, a.size() + b.size() + c.size() + d.size()); char* const begin = &(*dest)[0]; char* out = begin + old_size; out = Append(out, a); out = Append(out, b); out = Append(out, c); out = Append(out, d); assert(out == begin + dest->size()); } Y_ABSL_NAMESPACE_END } // namespace y_absl