//===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file // Implementation for the IROutliner which is used by the IROutliner Pass. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/IROutliner.h" #include "llvm/Analysis/IRSimilarityIdentifier.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/PassManager.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Transforms/IPO.h" #include #include #include #define DEBUG_TYPE "iroutliner" using namespace llvm; using namespace IRSimilarity; // A command flag to be used for debugging to exclude branches from similarity // matching and outlining. namespace llvm { extern cl::opt DisableBranches; // A command flag to be used for debugging to indirect calls from similarity // matching and outlining. extern cl::opt DisableIndirectCalls; // A command flag to be used for debugging to exclude intrinsics from similarity // matching and outlining. extern cl::opt DisableIntrinsics; } // namespace llvm // Set to true if the user wants the ir outliner to run on linkonceodr linkage // functions. This is false by default because the linker can dedupe linkonceodr // functions. Since the outliner is confined to a single module (modulo LTO), // this is off by default. It should, however, be the default behavior in // LTO. static cl::opt EnableLinkOnceODRIROutlining( "enable-linkonceodr-ir-outlining", cl::Hidden, cl::desc("Enable the IR outliner on linkonceodr functions"), cl::init(false)); // This is a debug option to test small pieces of code to ensure that outlining // works correctly. static cl::opt NoCostModel( "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden, cl::desc("Debug option to outline greedily, without restriction that " "calculated benefit outweighs cost")); /// The OutlinableGroup holds all the overarching information for outlining /// a set of regions that are structurally similar to one another, such as the /// types of the overall function, the output blocks, the sets of stores needed /// and a list of the different regions. This information is used in the /// deduplication of extracted regions with the same structure. struct OutlinableGroup { /// The sections that could be outlined std::vector Regions; /// The argument types for the function created as the overall function to /// replace the extracted function for each region. std::vector ArgumentTypes; /// The FunctionType for the overall function. FunctionType *OutlinedFunctionType = nullptr; /// The Function for the collective overall function. Function *OutlinedFunction = nullptr; /// Flag for whether we should not consider this group of OutlinableRegions /// for extraction. bool IgnoreGroup = false; /// The return blocks for the overall function. DenseMap EndBBs; /// The PHIBlocks with their corresponding return block based on the return /// value as the key. DenseMap PHIBlocks; /// A set containing the different GVN store sets needed. Each array contains /// a sorted list of the different values that need to be stored into output /// registers. DenseSet> OutputGVNCombinations; /// Flag for whether the \ref ArgumentTypes have been defined after the /// extraction of the first region. bool InputTypesSet = false; /// The number of input values in \ref ArgumentTypes. Anything after this /// index in ArgumentTypes is an output argument. unsigned NumAggregateInputs = 0; /// The mapping of the canonical numbering of the values in outlined sections /// to specific arguments. DenseMap CanonicalNumberToAggArg; /// The number of branches in the region target a basic block that is outside /// of the region. unsigned BranchesToOutside = 0; /// Tracker counting backwards from the highest unsigned value possible to /// avoid conflicting with the GVNs of assigned values. We start at -3 since /// -2 and -1 are assigned by the DenseMap. unsigned PHINodeGVNTracker = -3; DenseMap, SmallVector>> PHINodeGVNToGVNs; DenseMap GVNsToPHINodeGVN; /// The number of instructions that will be outlined by extracting \ref /// Regions. InstructionCost Benefit = 0; /// The number of added instructions needed for the outlining of the \ref /// Regions. InstructionCost Cost = 0; /// The argument that needs to be marked with the swifterr attribute. If not /// needed, there is no value. Optional SwiftErrorArgument; /// For the \ref Regions, we look at every Value. If it is a constant, /// we check whether it is the same in Region. /// /// \param [in,out] NotSame contains the global value numbers where the /// constant is not always the same, and must be passed in as an argument. void findSameConstants(DenseSet &NotSame); /// For the regions, look at each set of GVN stores needed and account for /// each combination. Add an argument to the argument types if there is /// more than one combination. /// /// \param [in] M - The module we are outlining from. void collectGVNStoreSets(Module &M); }; /// Move the contents of \p SourceBB to before the last instruction of \p /// TargetBB. /// \param SourceBB - the BasicBlock to pull Instructions from. /// \param TargetBB - the BasicBlock to put Instruction into. static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) { for (Instruction &I : llvm::make_early_inc_range(SourceBB)) I.moveBefore(TargetBB, TargetBB.end()); } /// A function to sort the keys of \p Map, which must be a mapping of constant /// values to basic blocks and return it in \p SortedKeys /// /// \param SortedKeys - The vector the keys will be return in and sorted. /// \param Map - The DenseMap containing keys to sort. static void getSortedConstantKeys(std::vector &SortedKeys, DenseMap &Map) { for (auto &VtoBB : Map) SortedKeys.push_back(VtoBB.first); stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) { const ConstantInt *LHSC = dyn_cast(LHS); const ConstantInt *RHSC = dyn_cast(RHS); assert(RHSC && "Not a constant integer in return value?"); assert(LHSC && "Not a constant integer in return value?"); return LHSC->getLimitedValue() < RHSC->getLimitedValue(); }); } Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other, Value *V) { Optional GVN = Candidate->getGVN(V); assert(GVN.hasValue() && "No GVN for incoming value"); Optional CanonNum = Candidate->getCanonicalNum(*GVN); Optional FirstGVN = Other.Candidate->fromCanonicalNum(*CanonNum); Optional FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN); return FoundValueOpt.getValueOr(nullptr); } /// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found /// in \p Included to branch to BasicBlock \p Replace if they currently branch /// to the BasicBlock \p Find. This is used to fix up the incoming basic blocks /// when PHINodes are included in outlined regions. /// /// \param PHIBlock - The BasicBlock containing the PHINodes that need to be /// checked. /// \param Find - The successor block to be replaced. /// \param Replace - The new succesor block to branch to. /// \param Included - The set of blocks about to be outlined. static void replaceTargetsFromPHINode(BasicBlock *PHIBlock, BasicBlock *Find, BasicBlock *Replace, DenseSet &Included) { for (PHINode &PN : PHIBlock->phis()) { for (unsigned Idx = 0, PNEnd = PN.getNumIncomingValues(); Idx != PNEnd; ++Idx) { // Check if the incoming block is included in the set of blocks being // outlined. BasicBlock *Incoming = PN.getIncomingBlock(Idx); if (!Included.contains(Incoming)) continue; BranchInst *BI = dyn_cast(Incoming->getTerminator()); assert(BI && "Not a branch instruction?"); // Look over the branching instructions into this block to see if we // used to branch to Find in this outlined block. for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ != End; Succ++) { // If we have found the block to replace, we do so here. if (BI->getSuccessor(Succ) != Find) continue; BI->setSuccessor(Succ, Replace); } } } } void OutlinableRegion::splitCandidate() { assert(!CandidateSplit && "Candidate already split!"); Instruction *BackInst = Candidate->backInstruction(); Instruction *EndInst = nullptr; // Check whether the last instruction is a terminator, if it is, we do // not split on the following instruction. We leave the block as it is. We // also check that this is not the last instruction in the Module, otherwise // the check for whether the current following instruction matches the // previously recorded instruction will be incorrect. if (!BackInst->isTerminator() || BackInst->getParent() != &BackInst->getFunction()->back()) { EndInst = Candidate->end()->Inst; assert(EndInst && "Expected an end instruction?"); } // We check if the current instruction following the last instruction in the // region is the same as the recorded instruction following the last // instruction. If they do not match, there could be problems in rewriting // the program after outlining, so we ignore it. if (!BackInst->isTerminator() && EndInst != BackInst->getNextNonDebugInstruction()) return; Instruction *StartInst = (*Candidate->begin()).Inst; assert(StartInst && "Expected a start instruction?"); StartBB = StartInst->getParent(); PrevBB = StartBB; DenseSet BBSet; Candidate->getBasicBlocks(BBSet); // We iterate over the instructions in the region, if we find a PHINode, we // check if there are predecessors outside of the region, if there are, // we ignore this region since we are unable to handle the severing of the // phi node right now. BasicBlock::iterator It = StartInst->getIterator(); while (PHINode *PN = dyn_cast(&*It)) { unsigned NumPredsOutsideRegion = 0; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (!BBSet.contains(PN->getIncomingBlock(i))) ++NumPredsOutsideRegion; if (NumPredsOutsideRegion > 1) return; It++; } // If the region starts with a PHINode, but is not the initial instruction of // the BasicBlock, we ignore this region for now. if (isa(StartInst) && StartInst != &*StartBB->begin()) return; // If the region ends with a PHINode, but does not contain all of the phi node // instructions of the region, we ignore it for now. if (isa(BackInst)) { EndBB = BackInst->getParent(); if (BackInst != &*std::prev(EndBB->getFirstInsertionPt())) return; } // The basic block gets split like so: // block: block: // inst1 inst1 // inst2 inst2 // region1 br block_to_outline // region2 block_to_outline: // region3 -> region1 // region4 region2 // inst3 region3 // inst4 region4 // br block_after_outline // block_after_outline: // inst3 // inst4 std::string OriginalName = PrevBB->getName().str(); StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline"); PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB); CandidateSplit = true; if (!BackInst->isTerminator()) { EndBB = EndInst->getParent(); FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline"); EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB); FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB); } else { EndBB = BackInst->getParent(); EndsInBranch = true; FollowBB = nullptr; } // Refind the basic block set. BBSet.clear(); Candidate->getBasicBlocks(BBSet); // For the phi nodes in the new starting basic block of the region, we // reassign the targets of the basic blocks branching instructions. replaceTargetsFromPHINode(StartBB, PrevBB, StartBB, BBSet); if (FollowBB) replaceTargetsFromPHINode(FollowBB, EndBB, FollowBB, BBSet); } void OutlinableRegion::reattachCandidate() { assert(CandidateSplit && "Candidate is not split!"); // The basic block gets reattached like so: // block: block: // inst1 inst1 // inst2 inst2 // br block_to_outline region1 // block_to_outline: -> region2 // region1 region3 // region2 region4 // region3 inst3 // region4 inst4 // br block_after_outline // block_after_outline: // inst3 // inst4 assert(StartBB != nullptr && "StartBB for Candidate is not defined!"); assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!"); PrevBB->getTerminator()->eraseFromParent(); // If we reattaching after outlining, we iterate over the phi nodes to // the initial block, and reassign the branch instructions of the incoming // blocks to the block we are remerging into. if (!ExtractedFunction) { DenseSet BBSet; Candidate->getBasicBlocks(BBSet); replaceTargetsFromPHINode(StartBB, StartBB, PrevBB, BBSet); if (!EndsInBranch) replaceTargetsFromPHINode(FollowBB, FollowBB, EndBB, BBSet); } moveBBContents(*StartBB, *PrevBB); BasicBlock *PlacementBB = PrevBB; if (StartBB != EndBB) PlacementBB = EndBB; if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) { assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!"); assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!"); PlacementBB->getTerminator()->eraseFromParent(); moveBBContents(*FollowBB, *PlacementBB); PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB); FollowBB->eraseFromParent(); } PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB); StartBB->eraseFromParent(); // Make sure to save changes back to the StartBB. StartBB = PrevBB; EndBB = nullptr; PrevBB = nullptr; FollowBB = nullptr; CandidateSplit = false; } /// Find whether \p V matches the Constants previously found for the \p GVN. /// /// \param V - The value to check for consistency. /// \param GVN - The global value number assigned to \p V. /// \param GVNToConstant - The mapping of global value number to Constants. /// \returns true if the Value matches the Constant mapped to by V and false if /// it \p V is a Constant but does not match. /// \returns None if \p V is not a Constant. static Optional constantMatches(Value *V, unsigned GVN, DenseMap &GVNToConstant) { // See if we have a constants Constant *CST = dyn_cast(V); if (!CST) return None; // Holds a mapping from a global value number to a Constant. DenseMap::iterator GVNToConstantIt; bool Inserted; // If we have a constant, try to make a new entry in the GVNToConstant. std::tie(GVNToConstantIt, Inserted) = GVNToConstant.insert(std::make_pair(GVN, CST)); // If it was found and is not equal, it is not the same. We do not // handle this case yet, and exit early. if (Inserted || (GVNToConstantIt->second == CST)) return true; return false; } InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) { InstructionCost Benefit = 0; // Estimate the benefit of outlining a specific sections of the program. We // delegate mostly this task to the TargetTransformInfo so that if the target // has specific changes, we can have a more accurate estimate. // However, getInstructionCost delegates the code size calculation for // arithmetic instructions to getArithmeticInstrCost in // include/Analysis/TargetTransformImpl.h, where it always estimates that the // code size for a division and remainder instruction to be equal to 4, and // everything else to 1. This is not an accurate representation of the // division instruction for targets that have a native division instruction. // To be overly conservative, we only add 1 to the number of instructions for // each division instruction. for (IRInstructionData &ID : *Candidate) { Instruction *I = ID.Inst; switch (I->getOpcode()) { case Instruction::FDiv: case Instruction::FRem: case Instruction::SDiv: case Instruction::SRem: case Instruction::UDiv: case Instruction::URem: Benefit += 1; break; default: Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize); break; } } return Benefit; } /// Check the \p OutputMappings structure for value \p Input, if it exists /// it has been used as an output for outlining, and has been renamed, and we /// return the new value, otherwise, we return the same value. /// /// \param OutputMappings [in] - The mapping of values to their renamed value /// after being used as an output for an outlined region. /// \param Input [in] - The value to find the remapped value of, if it exists. /// \return The remapped value if it has been renamed, and the same value if has /// not. static Value *findOutputMapping(const DenseMap OutputMappings, Value *Input) { DenseMap::const_iterator OutputMapping = OutputMappings.find(Input); if (OutputMapping != OutputMappings.end()) return OutputMapping->second; return Input; } /// Find whether \p Region matches the global value numbering to Constant /// mapping found so far. /// /// \param Region - The OutlinableRegion we are checking for constants /// \param GVNToConstant - The mapping of global value number to Constants. /// \param NotSame - The set of global value numbers that do not have the same /// constant in each region. /// \returns true if all Constants are the same in every use of a Constant in \p /// Region and false if not static bool collectRegionsConstants(OutlinableRegion &Region, DenseMap &GVNToConstant, DenseSet &NotSame) { bool ConstantsTheSame = true; IRSimilarityCandidate &C = *Region.Candidate; for (IRInstructionData &ID : C) { // Iterate over the operands in an instruction. If the global value number, // assigned by the IRSimilarityCandidate, has been seen before, we check if // the the number has been found to be not the same value in each instance. for (Value *V : ID.OperVals) { Optional GVNOpt = C.getGVN(V); assert(GVNOpt.hasValue() && "Expected a GVN for operand?"); unsigned GVN = GVNOpt.getValue(); // Check if this global value has been found to not be the same already. if (NotSame.contains(GVN)) { if (isa(V)) ConstantsTheSame = false; continue; } // If it has been the same so far, we check the value for if the // associated Constant value match the previous instances of the same // global value number. If the global value does not map to a Constant, // it is considered to not be the same value. Optional ConstantMatches = constantMatches(V, GVN, GVNToConstant); if (ConstantMatches.hasValue()) { if (ConstantMatches.getValue()) continue; else ConstantsTheSame = false; } // While this value is a register, it might not have been previously, // make sure we don't already have a constant mapped to this global value // number. if (GVNToConstant.find(GVN) != GVNToConstant.end()) ConstantsTheSame = false; NotSame.insert(GVN); } } return ConstantsTheSame; } void OutlinableGroup::findSameConstants(DenseSet &NotSame) { DenseMap GVNToConstant; for (OutlinableRegion *Region : Regions) collectRegionsConstants(*Region, GVNToConstant, NotSame); } void OutlinableGroup::collectGVNStoreSets(Module &M) { for (OutlinableRegion *OS : Regions) OutputGVNCombinations.insert(OS->GVNStores); // We are adding an extracted argument to decide between which output path // to use in the basic block. It is used in a switch statement and only // needs to be an integer. if (OutputGVNCombinations.size() > 1) ArgumentTypes.push_back(Type::getInt32Ty(M.getContext())); } /// Get the subprogram if it exists for one of the outlined regions. /// /// \param [in] Group - The set of regions to find a subprogram for. /// \returns the subprogram if it exists, or nullptr. static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) { for (OutlinableRegion *OS : Group.Regions) if (Function *F = OS->Call->getFunction()) if (DISubprogram *SP = F->getSubprogram()) return SP; return nullptr; } Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group, unsigned FunctionNameSuffix) { assert(!Group.OutlinedFunction && "Function is already defined!"); Type *RetTy = Type::getVoidTy(M.getContext()); // All extracted functions _should_ have the same return type at this point // since the similarity identifier ensures that all branches outside of the // region occur in the same place. // NOTE: Should we ever move to the model that uses a switch at every point // needed, meaning that we could branch within the region or out, it is // possible that we will need to switch to using the most general case all of // the time. for (OutlinableRegion *R : Group.Regions) { Type *ExtractedFuncType = R->ExtractedFunction->getReturnType(); if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) || (RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16))) RetTy = ExtractedFuncType; } Group.OutlinedFunctionType = FunctionType::get( RetTy, Group.ArgumentTypes, false); // These functions will only be called from within the same module, so // we can set an internal linkage. Group.OutlinedFunction = Function::Create( Group.OutlinedFunctionType, GlobalValue::InternalLinkage, "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M); // Transfer the swifterr attribute to the correct function parameter. if (Group.SwiftErrorArgument.hasValue()) Group.OutlinedFunction->addParamAttr(Group.SwiftErrorArgument.getValue(), Attribute::SwiftError); Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize); Group.OutlinedFunction->addFnAttr(Attribute::MinSize); // If there's a DISubprogram associated with this outlined function, then // emit debug info for the outlined function. if (DISubprogram *SP = getSubprogramOrNull(Group)) { Function *F = Group.OutlinedFunction; // We have a DISubprogram. Get its DICompileUnit. DICompileUnit *CU = SP->getUnit(); DIBuilder DB(M, true, CU); DIFile *Unit = SP->getFile(); Mangler Mg; // Get the mangled name of the function for the linkage name. std::string Dummy; llvm::raw_string_ostream MangledNameStream(Dummy); Mg.getNameWithPrefix(MangledNameStream, F, false); DISubprogram *OutlinedSP = DB.createFunction( Unit /* Context */, F->getName(), MangledNameStream.str(), Unit /* File */, 0 /* Line 0 is reserved for compiler-generated code. */, DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */ 0, /* Line 0 is reserved for compiler-generated code. */ DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, /* Outlined code is optimized code by definition. */ DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); // Don't add any new variables to the subprogram. DB.finalizeSubprogram(OutlinedSP); // Attach subprogram to the function. F->setSubprogram(OutlinedSP); // We're done with the DIBuilder. DB.finalize(); } return Group.OutlinedFunction; } /// Move each BasicBlock in \p Old to \p New. /// /// \param [in] Old - The function to move the basic blocks from. /// \param [in] New - The function to move the basic blocks to. /// \param [out] NewEnds - The return blocks of the new overall function. static void moveFunctionData(Function &Old, Function &New, DenseMap &NewEnds) { for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) { CurrBB.removeFromParent(); CurrBB.insertInto(&New); Instruction *I = CurrBB.getTerminator(); // For each block we find a return instruction is, it is a potential exit // path for the function. We keep track of each block based on the return // value here. if (ReturnInst *RI = dyn_cast(I)) NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB)); std::vector DebugInsts; for (Instruction &Val : CurrBB) { // We must handle the scoping of called functions differently than // other outlined instructions. if (!isa(&Val)) { // Remove the debug information for outlined functions. Val.setDebugLoc(DebugLoc()); continue; } // From this point we are only handling call instructions. CallInst *CI = cast(&Val); // We add any debug statements here, to be removed after. Since the // instructions originate from many different locations in the program, // it will cause incorrect reporting from a debugger if we keep the // same debug instructions. if (isa(CI)) { DebugInsts.push_back(&Val); continue; } // Edit the scope of called functions inside of outlined functions. if (DISubprogram *SP = New.getSubprogram()) { DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP); Val.setDebugLoc(DI); } } for (Instruction *I : DebugInsts) I->eraseFromParent(); } assert(NewEnds.size() > 0 && "No return instruction for new function?"); } /// Find the the constants that will need to be lifted into arguments /// as they are not the same in each instance of the region. /// /// \param [in] C - The IRSimilarityCandidate containing the region we are /// analyzing. /// \param [in] NotSame - The set of global value numbers that do not have a /// single Constant across all OutlinableRegions similar to \p C. /// \param [out] Inputs - The list containing the global value numbers of the /// arguments needed for the region of code. static void findConstants(IRSimilarityCandidate &C, DenseSet &NotSame, std::vector &Inputs) { DenseSet Seen; // Iterate over the instructions, and find what constants will need to be // extracted into arguments. for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end(); IDIt != EndIDIt; IDIt++) { for (Value *V : (*IDIt).OperVals) { // Since these are stored before any outlining, they will be in the // global value numbering. unsigned GVN = C.getGVN(V).getValue(); if (isa(V)) if (NotSame.contains(GVN) && !Seen.contains(GVN)) { Inputs.push_back(GVN); Seen.insert(GVN); } } } } /// Find the GVN for the inputs that have been found by the CodeExtractor. /// /// \param [in] C - The IRSimilarityCandidate containing the region we are /// analyzing. /// \param [in] CurrentInputs - The set of inputs found by the /// CodeExtractor. /// \param [in] OutputMappings - The mapping of values that have been replaced /// by a new output value. /// \param [out] EndInputNumbers - The global value numbers for the extracted /// arguments. static void mapInputsToGVNs(IRSimilarityCandidate &C, SetVector &CurrentInputs, const DenseMap &OutputMappings, std::vector &EndInputNumbers) { // Get the Global Value Number for each input. We check if the Value has been // replaced by a different value at output, and use the original value before // replacement. for (Value *Input : CurrentInputs) { assert(Input && "Have a nullptr as an input"); if (OutputMappings.find(Input) != OutputMappings.end()) Input = OutputMappings.find(Input)->second; assert(C.getGVN(Input).hasValue() && "Could not find a numbering for the given input"); EndInputNumbers.push_back(C.getGVN(Input).getValue()); } } /// Find the original value for the \p ArgInput values if any one of them was /// replaced during a previous extraction. /// /// \param [in] ArgInputs - The inputs to be extracted by the code extractor. /// \param [in] OutputMappings - The mapping of values that have been replaced /// by a new output value. /// \param [out] RemappedArgInputs - The remapped values according to /// \p OutputMappings that will be extracted. static void remapExtractedInputs(const ArrayRef ArgInputs, const DenseMap &OutputMappings, SetVector &RemappedArgInputs) { // Get the global value number for each input that will be extracted as an // argument by the code extractor, remapping if needed for reloaded values. for (Value *Input : ArgInputs) { if (OutputMappings.find(Input) != OutputMappings.end()) Input = OutputMappings.find(Input)->second; RemappedArgInputs.insert(Input); } } /// Find the input GVNs and the output values for a region of Instructions. /// Using the code extractor, we collect the inputs to the extracted function. /// /// The \p Region can be identified as needing to be ignored in this function. /// It should be checked whether it should be ignored after a call to this /// function. /// /// \param [in,out] Region - The region of code to be analyzed. /// \param [out] InputGVNs - The global value numbers for the extracted /// arguments. /// \param [in] NotSame - The global value numbers in the region that do not /// have the same constant value in the regions structurally similar to /// \p Region. /// \param [in] OutputMappings - The mapping of values that have been replaced /// by a new output value after extraction. /// \param [out] ArgInputs - The values of the inputs to the extracted function. /// \param [out] Outputs - The set of values extracted by the CodeExtractor /// as outputs. static void getCodeExtractorArguments( OutlinableRegion &Region, std::vector &InputGVNs, DenseSet &NotSame, DenseMap &OutputMappings, SetVector &ArgInputs, SetVector &Outputs) { IRSimilarityCandidate &C = *Region.Candidate; // OverallInputs are the inputs to the region found by the CodeExtractor, // SinkCands and HoistCands are used by the CodeExtractor to find sunken // allocas of values whose lifetimes are contained completely within the // outlined region. PremappedInputs are the arguments found by the // CodeExtractor, removing conditions such as sunken allocas, but that // may need to be remapped due to the extracted output values replacing // the original values. We use DummyOutputs for this first run of finding // inputs and outputs since the outputs could change during findAllocas, // the correct set of extracted outputs will be in the final Outputs ValueSet. SetVector OverallInputs, PremappedInputs, SinkCands, HoistCands, DummyOutputs; // Use the code extractor to get the inputs and outputs, without sunken // allocas or removing llvm.assumes. CodeExtractor *CE = Region.CE; CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands); assert(Region.StartBB && "Region must have a start BasicBlock!"); Function *OrigF = Region.StartBB->getParent(); CodeExtractorAnalysisCache CEAC(*OrigF); BasicBlock *Dummy = nullptr; // The region may be ineligible due to VarArgs in the parent function. In this // case we ignore the region. if (!CE->isEligible()) { Region.IgnoreRegion = true; return; } // Find if any values are going to be sunk into the function when extracted CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy); CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands); // TODO: Support regions with sunken allocas: values whose lifetimes are // contained completely within the outlined region. These are not guaranteed // to be the same in every region, so we must elevate them all to arguments // when they appear. If these values are not equal, it means there is some // Input in OverallInputs that was removed for ArgInputs. if (OverallInputs.size() != PremappedInputs.size()) { Region.IgnoreRegion = true; return; } findConstants(C, NotSame, InputGVNs); mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs); remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings, ArgInputs); // Sort the GVNs, since we now have constants included in the \ref InputGVNs // we need to make sure they are in a deterministic order. stable_sort(InputGVNs); } /// Look over the inputs and map each input argument to an argument in the /// overall function for the OutlinableRegions. This creates a way to replace /// the arguments of the extracted function with the arguments of the new /// overall function. /// /// \param [in,out] Region - The region of code to be analyzed. /// \param [in] InputGVNs - The global value numbering of the input values /// collected. /// \param [in] ArgInputs - The values of the arguments to the extracted /// function. static void findExtractedInputToOverallInputMapping(OutlinableRegion &Region, std::vector &InputGVNs, SetVector &ArgInputs) { IRSimilarityCandidate &C = *Region.Candidate; OutlinableGroup &Group = *Region.Parent; // This counts the argument number in the overall function. unsigned TypeIndex = 0; // This counts the argument number in the extracted function. unsigned OriginalIndex = 0; // Find the mapping of the extracted arguments to the arguments for the // overall function. Since there may be extra arguments in the overall // function to account for the extracted constants, we have two different // counters as we find extracted arguments, and as we come across overall // arguments. // Additionally, in our first pass, for the first extracted function, // we find argument locations for the canonical value numbering. This // numbering overrides any discovered location for the extracted code. for (unsigned InputVal : InputGVNs) { Optional CanonicalNumberOpt = C.getCanonicalNum(InputVal); assert(CanonicalNumberOpt.hasValue() && "Canonical number not found?"); unsigned CanonicalNumber = CanonicalNumberOpt.getValue(); Optional InputOpt = C.fromGVN(InputVal); assert(InputOpt.hasValue() && "Global value number not found?"); Value *Input = InputOpt.getValue(); DenseMap::iterator AggArgIt = Group.CanonicalNumberToAggArg.find(CanonicalNumber); if (!Group.InputTypesSet) { Group.ArgumentTypes.push_back(Input->getType()); // If the input value has a swifterr attribute, make sure to mark the // argument in the overall function. if (Input->isSwiftError()) { assert( !Group.SwiftErrorArgument.hasValue() && "Argument already marked with swifterr for this OutlinableGroup!"); Group.SwiftErrorArgument = TypeIndex; } } // Check if we have a constant. If we do add it to the overall argument // number to Constant map for the region, and continue to the next input. if (Constant *CST = dyn_cast(Input)) { if (AggArgIt != Group.CanonicalNumberToAggArg.end()) Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST)); else { Group.CanonicalNumberToAggArg.insert( std::make_pair(CanonicalNumber, TypeIndex)); Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST)); } TypeIndex++; continue; } // It is not a constant, we create the mapping from extracted argument list // to the overall argument list, using the canonical location, if it exists. assert(ArgInputs.count(Input) && "Input cannot be found!"); if (AggArgIt != Group.CanonicalNumberToAggArg.end()) { if (OriginalIndex != AggArgIt->second) Region.ChangedArgOrder = true; Region.ExtractedArgToAgg.insert( std::make_pair(OriginalIndex, AggArgIt->second)); Region.AggArgToExtracted.insert( std::make_pair(AggArgIt->second, OriginalIndex)); } else { Group.CanonicalNumberToAggArg.insert( std::make_pair(CanonicalNumber, TypeIndex)); Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex)); Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex)); } OriginalIndex++; TypeIndex++; } // If the function type definitions for the OutlinableGroup holding the region // have not been set, set the length of the inputs here. We should have the // same inputs for all of the different regions contained in the // OutlinableGroup since they are all structurally similar to one another. if (!Group.InputTypesSet) { Group.NumAggregateInputs = TypeIndex; Group.InputTypesSet = true; } Region.NumExtractedInputs = OriginalIndex; } /// Check if the \p V has any uses outside of the region other than \p PN. /// /// \param V [in] - The value to check. /// \param PHILoc [in] - The location in the PHINode of \p V. /// \param PN [in] - The PHINode using \p V. /// \param Exits [in] - The potential blocks we exit to from the outlined /// region. /// \param BlocksInRegion [in] - The basic blocks contained in the region. /// \returns true if \p V has any use soutside its region other than \p PN. static bool outputHasNonPHI(Value *V, unsigned PHILoc, PHINode &PN, SmallPtrSet &Exits, DenseSet &BlocksInRegion) { // We check to see if the value is used by the PHINode from some other // predecessor not included in the region. If it is, we make sure // to keep it as an output. SmallVector IncomingNumbers(PN.getNumIncomingValues()); std::iota(IncomingNumbers.begin(), IncomingNumbers.end(), 0); if (any_of(IncomingNumbers, [PHILoc, &PN, V, &BlocksInRegion](unsigned Idx) { return (Idx != PHILoc && V == PN.getIncomingValue(Idx) && !BlocksInRegion.contains(PN.getIncomingBlock(Idx))); })) return true; // Check if the value is used by any other instructions outside the region. return any_of(V->users(), [&Exits, &BlocksInRegion](User *U) { Instruction *I = dyn_cast(U); if (!I) return false; // If the use of the item is inside the region, we skip it. Uses // inside the region give us useful information about how the item could be // used as an output. BasicBlock *Parent = I->getParent(); if (BlocksInRegion.contains(Parent)) return false; // If it's not a PHINode then we definitely know the use matters. This // output value will not completely combined with another item in a PHINode // as it is directly reference by another non-phi instruction if (!isa(I)) return true; // If we have a PHINode outside one of the exit locations, then it // can be considered an outside use as well. If there is a PHINode // contained in the Exit where this values use matters, it will be // caught when we analyze that PHINode. if (!Exits.contains(Parent)) return true; return false; }); } /// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be /// considered outputs. A PHINodes is an output when more than one incoming /// value has been marked by the CodeExtractor as an output. /// /// \param CurrentExitFromRegion [in] - The block to analyze. /// \param PotentialExitsFromRegion [in] - The potential exit blocks from the /// region. /// \param RegionBlocks [in] - The basic blocks in the region. /// \param Outputs [in, out] - The existing outputs for the region, we may add /// PHINodes to this as we find that they replace output values. /// \param OutputsReplacedByPHINode [out] - A set containing outputs that are /// totally replaced by a PHINode. /// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used /// in PHINodes, but have other uses, and should still be considered outputs. static void analyzeExitPHIsForOutputUses( BasicBlock *CurrentExitFromRegion, SmallPtrSet &PotentialExitsFromRegion, DenseSet &RegionBlocks, SetVector &Outputs, DenseSet &OutputsReplacedByPHINode, DenseSet &OutputsWithNonPhiUses) { for (PHINode &PN : CurrentExitFromRegion->phis()) { // Find all incoming values from the outlining region. SmallVector IncomingVals; for (unsigned I = 0, E = PN.getNumIncomingValues(); I < E; ++I) if (RegionBlocks.contains(PN.getIncomingBlock(I))) IncomingVals.push_back(I); // Do not process PHI if there are no predecessors from region. unsigned NumIncomingVals = IncomingVals.size(); if (NumIncomingVals == 0) continue; // If there is one predecessor, we mark it as a value that needs to be kept // as an output. if (NumIncomingVals == 1) { Value *V = PN.getIncomingValue(*IncomingVals.begin()); OutputsWithNonPhiUses.insert(V); OutputsReplacedByPHINode.erase(V); continue; } // This PHINode will be used as an output value, so we add it to our list. Outputs.insert(&PN); // Not all of the incoming values should be ignored as other inputs and // outputs may have uses in outlined region. If they have other uses // outside of the single PHINode we should not skip over it. for (unsigned Idx : IncomingVals) { Value *V = PN.getIncomingValue(Idx); if (outputHasNonPHI(V, Idx, PN, PotentialExitsFromRegion, RegionBlocks)) { OutputsWithNonPhiUses.insert(V); OutputsReplacedByPHINode.erase(V); continue; } if (!OutputsWithNonPhiUses.contains(V)) OutputsReplacedByPHINode.insert(V); } } } // Represents the type for the unsigned number denoting the output number for // phi node, along with the canonical number for the exit block. using ArgLocWithBBCanon = std::pair; // The list of canonical numbers for the incoming values to a PHINode. using CanonList = SmallVector; // The pair type representing the set of canonical values being combined in the // PHINode, along with the location data for the PHINode. using PHINodeData = std::pair; /// Encode \p PND as an integer for easy lookup based on the argument location, /// the parent BasicBlock canonical numbering, and the canonical numbering of /// the values stored in the PHINode. /// /// \param PND - The data to hash. /// \returns The hash code of \p PND. static hash_code encodePHINodeData(PHINodeData &PND) { return llvm::hash_combine( llvm::hash_value(PND.first.first), llvm::hash_value(PND.first.second), llvm::hash_combine_range(PND.second.begin(), PND.second.end())); } /// Create a special GVN for PHINodes that will be used outside of /// the region. We create a hash code based on the Canonical number of the /// parent BasicBlock, the canonical numbering of the values stored in the /// PHINode and the aggregate argument location. This is used to find whether /// this PHINode type has been given a canonical numbering already. If not, we /// assign it a value and store it for later use. The value is returned to /// identify different output schemes for the set of regions. /// /// \param Region - The region that \p PN is an output for. /// \param PN - The PHINode we are analyzing. /// \param AggArgIdx - The argument \p PN will be stored into. /// \returns An optional holding the assigned canonical number, or None if /// there is some attribute of the PHINode blocking it from being used. static Optional getGVNForPHINode(OutlinableRegion &Region, PHINode *PN, unsigned AggArgIdx) { OutlinableGroup &Group = *Region.Parent; IRSimilarityCandidate &Cand = *Region.Candidate; BasicBlock *PHIBB = PN->getParent(); CanonList PHIGVNs; for (Value *Incoming : PN->incoming_values()) { // If we cannot find a GVN, this means that the input to the PHINode is // not included in the region we are trying to analyze, meaning, that if // it was outlined, we would be adding an extra input. We ignore this // case for now, and so ignore the region. Optional OGVN = Cand.getGVN(Incoming); if (!OGVN.hasValue()) { Region.IgnoreRegion = true; return None; } // Collect the canonical numbers of the values in the PHINode. unsigned GVN = OGVN.getValue(); OGVN = Cand.getCanonicalNum(GVN); assert(OGVN.hasValue() && "No GVN found for incoming value?"); PHIGVNs.push_back(*OGVN); } // Now that we have the GVNs for the incoming values, we are going to combine // them with the GVN of the incoming bock, and the output location of the // PHINode to generate a hash value representing this instance of the PHINode. DenseMap::iterator GVNToPHIIt; DenseMap::iterator PHIToGVNIt; Optional BBGVN = Cand.getGVN(PHIBB); assert(BBGVN.hasValue() && "Could not find GVN for the incoming block!"); BBGVN = Cand.getCanonicalNum(BBGVN.getValue()); assert(BBGVN.hasValue() && "Could not find canonical number for the incoming block!"); // Create a pair of the exit block canonical value, and the aggregate // argument location, connected to the canonical numbers stored in the // PHINode. PHINodeData TemporaryPair = std::make_pair(std::make_pair(BBGVN.getValue(), AggArgIdx), PHIGVNs); hash_code PHINodeDataHash = encodePHINodeData(TemporaryPair); // Look for and create a new entry in our connection between canonical // numbers for PHINodes, and the set of objects we just created. GVNToPHIIt = Group.GVNsToPHINodeGVN.find(PHINodeDataHash); if (GVNToPHIIt == Group.GVNsToPHINodeGVN.end()) { bool Inserted = false; std::tie(PHIToGVNIt, Inserted) = Group.PHINodeGVNToGVNs.insert( std::make_pair(Group.PHINodeGVNTracker, TemporaryPair)); std::tie(GVNToPHIIt, Inserted) = Group.GVNsToPHINodeGVN.insert( std::make_pair(PHINodeDataHash, Group.PHINodeGVNTracker--)); } return GVNToPHIIt->second; } /// Create a mapping of the output arguments for the \p Region to the output /// arguments of the overall outlined function. /// /// \param [in,out] Region - The region of code to be analyzed. /// \param [in] Outputs - The values found by the code extractor. static void findExtractedOutputToOverallOutputMapping(OutlinableRegion &Region, SetVector &Outputs) { OutlinableGroup &Group = *Region.Parent; IRSimilarityCandidate &C = *Region.Candidate; SmallVector BE; DenseSet BlocksInRegion; C.getBasicBlocks(BlocksInRegion, BE); // Find the exits to the region. SmallPtrSet Exits; for (BasicBlock *Block : BE) for (BasicBlock *Succ : successors(Block)) if (!BlocksInRegion.contains(Succ)) Exits.insert(Succ); // After determining which blocks exit to PHINodes, we add these PHINodes to // the set of outputs to be processed. We also check the incoming values of // the PHINodes for whether they should no longer be considered outputs. DenseSet OutputsReplacedByPHINode; DenseSet OutputsWithNonPhiUses; for (BasicBlock *ExitBB : Exits) analyzeExitPHIsForOutputUses(ExitBB, Exits, BlocksInRegion, Outputs, OutputsReplacedByPHINode, OutputsWithNonPhiUses); // This counts the argument number in the extracted function. unsigned OriginalIndex = Region.NumExtractedInputs; // This counts the argument number in the overall function. unsigned TypeIndex = Group.NumAggregateInputs; bool TypeFound; DenseSet AggArgsUsed; // Iterate over the output types and identify if there is an aggregate pointer // type whose base type matches the current output type. If there is, we mark // that we will use this output register for this value. If not we add another // type to the overall argument type list. We also store the GVNs used for // stores to identify which values will need to be moved into an special // block that holds the stores to the output registers. for (Value *Output : Outputs) { TypeFound = false; // We can do this since it is a result value, and will have a number // that is necessarily the same. BUT if in the future, the instructions // do not have to be in same order, but are functionally the same, we will // have to use a different scheme, as one-to-one correspondence is not // guaranteed. unsigned ArgumentSize = Group.ArgumentTypes.size(); // If the output is combined in a PHINode, we make sure to skip over it. if (OutputsReplacedByPHINode.contains(Output)) continue; unsigned AggArgIdx = 0; for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) { if (Group.ArgumentTypes[Jdx] != PointerType::getUnqual(Output->getType())) continue; if (AggArgsUsed.contains(Jdx)) continue; TypeFound = true; AggArgsUsed.insert(Jdx); Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx)); Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex)); AggArgIdx = Jdx; break; } // We were unable to find an unused type in the output type set that matches // the output, so we add a pointer type to the argument types of the overall // function to handle this output and create a mapping to it. if (!TypeFound) { Group.ArgumentTypes.push_back(PointerType::getUnqual(Output->getType())); // Mark the new pointer type as the last value in the aggregate argument // list. unsigned ArgTypeIdx = Group.ArgumentTypes.size() - 1; AggArgsUsed.insert(ArgTypeIdx); Region.ExtractedArgToAgg.insert( std::make_pair(OriginalIndex, ArgTypeIdx)); Region.AggArgToExtracted.insert( std::make_pair(ArgTypeIdx, OriginalIndex)); AggArgIdx = ArgTypeIdx; } // TODO: Adapt to the extra input from the PHINode. PHINode *PN = dyn_cast(Output); Optional GVN; if (PN && !BlocksInRegion.contains(PN->getParent())) { // Values outside the region can be combined into PHINode when we // have multiple exits. We collect both of these into a list to identify // which values are being used in the PHINode. Each list identifies a // different PHINode, and a different output. We store the PHINode as it's // own canonical value. These canonical values are also dependent on the // output argument it is saved to. // If two PHINodes have the same canonical values, but different aggregate // argument locations, then they will have distinct Canonical Values. GVN = getGVNForPHINode(Region, PN, AggArgIdx); if (!GVN.hasValue()) return; } else { // If we do not have a PHINode we use the global value numbering for the // output value, to find the canonical number to add to the set of stored // values. GVN = C.getGVN(Output); GVN = C.getCanonicalNum(*GVN); } // Each region has a potentially unique set of outputs. We save which // values are output in a list of canonical values so we can differentiate // among the different store schemes. Region.GVNStores.push_back(*GVN); OriginalIndex++; TypeIndex++; } // We sort the stored values to make sure that we are not affected by analysis // order when determining what combination of items were stored. stable_sort(Region.GVNStores); } void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region, DenseSet &NotSame) { std::vector Inputs; SetVector ArgInputs, Outputs; getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs, Outputs); if (Region.IgnoreRegion) return; // Map the inputs found by the CodeExtractor to the arguments found for // the overall function. findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs); // Map the outputs found by the CodeExtractor to the arguments found for // the overall function. findExtractedOutputToOverallOutputMapping(Region, Outputs); } /// Replace the extracted function in the Region with a call to the overall /// function constructed from the deduplicated similar regions, replacing and /// remapping the values passed to the extracted function as arguments to the /// new arguments of the overall function. /// /// \param [in] M - The module to outline from. /// \param [in] Region - The regions of extracted code to be replaced with a new /// function. /// \returns a call instruction with the replaced function. CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) { std::vector NewCallArgs; DenseMap::iterator ArgPair; OutlinableGroup &Group = *Region.Parent; CallInst *Call = Region.Call; assert(Call && "Call to replace is nullptr?"); Function *AggFunc = Group.OutlinedFunction; assert(AggFunc && "Function to replace with is nullptr?"); // If the arguments are the same size, there are not values that need to be // made into an argument, the argument ordering has not been change, or // different output registers to handle. We can simply replace the called // function in this case. if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) { LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " << *AggFunc << " with same number of arguments\n"); Call->setCalledFunction(AggFunc); return Call; } // We have a different number of arguments than the new function, so // we need to use our previously mappings off extracted argument to overall // function argument, and constants to overall function argument to create the // new argument list. for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) { if (AggArgIdx == AggFunc->arg_size() - 1 && Group.OutputGVNCombinations.size() > 1) { // If we are on the last argument, and we need to differentiate between // output blocks, add an integer to the argument list to determine // what block to take LLVM_DEBUG(dbgs() << "Set switch block argument to " << Region.OutputBlockNum << "\n"); NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()), Region.OutputBlockNum)); continue; } ArgPair = Region.AggArgToExtracted.find(AggArgIdx); if (ArgPair != Region.AggArgToExtracted.end()) { Value *ArgumentValue = Call->getArgOperand(ArgPair->second); // If we found the mapping from the extracted function to the overall // function, we simply add it to the argument list. We use the same // value, it just needs to honor the new order of arguments. LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " << *ArgumentValue << "\n"); NewCallArgs.push_back(ArgumentValue); continue; } // If it is a constant, we simply add it to the argument list as a value. if (Region.AggArgToConstant.find(AggArgIdx) != Region.AggArgToConstant.end()) { Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second; LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " << *CST << "\n"); NewCallArgs.push_back(CST); continue; } // Add a nullptr value if the argument is not found in the extracted // function. If we cannot find a value, it means it is not in use // for the region, so we should not pass anything to it. LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n"); NewCallArgs.push_back(ConstantPointerNull::get( static_cast(AggFunc->getArg(AggArgIdx)->getType()))); } LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " << *AggFunc << " with new set of arguments\n"); // Create the new call instruction and erase the old one. Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "", Call); // It is possible that the call to the outlined function is either the first // instruction is in the new block, the last instruction, or both. If either // of these is the case, we need to make sure that we replace the instruction // in the IRInstructionData struct with the new call. CallInst *OldCall = Region.Call; if (Region.NewFront->Inst == OldCall) Region.NewFront->Inst = Call; if (Region.NewBack->Inst == OldCall) Region.NewBack->Inst = Call; // Transfer any debug information. Call->setDebugLoc(Region.Call->getDebugLoc()); // Since our output may determine which branch we go to, we make sure to // propogate this new call value through the module. OldCall->replaceAllUsesWith(Call); // Remove the old instruction. OldCall->eraseFromParent(); Region.Call = Call; // Make sure that the argument in the new function has the SwiftError // argument. if (Group.SwiftErrorArgument.hasValue()) Call->addParamAttr(Group.SwiftErrorArgument.getValue(), Attribute::SwiftError); return Call; } /// Find or create a BasicBlock in the outlined function containing PhiBlocks /// for \p RetVal. /// /// \param Group - The OutlinableGroup containing the information about the /// overall outlined function. /// \param RetVal - The return value or exit option that we are currently /// evaluating. /// \returns The found or newly created BasicBlock to contain the needed /// PHINodes to be used as outputs. static BasicBlock *findOrCreatePHIBlock(OutlinableGroup &Group, Value *RetVal) { DenseMap::iterator PhiBlockForRetVal, ReturnBlockForRetVal; PhiBlockForRetVal = Group.PHIBlocks.find(RetVal); ReturnBlockForRetVal = Group.EndBBs.find(RetVal); assert(ReturnBlockForRetVal != Group.EndBBs.end() && "Could not find output value!"); BasicBlock *ReturnBB = ReturnBlockForRetVal->second; // Find if a PHIBlock exists for this return value already. If it is // the first time we are analyzing this, we will not, so we record it. PhiBlockForRetVal = Group.PHIBlocks.find(RetVal); if (PhiBlockForRetVal != Group.PHIBlocks.end()) return PhiBlockForRetVal->second; // If we did not find a block, we create one, and insert it into the // overall function and record it. bool Inserted = false; BasicBlock *PHIBlock = BasicBlock::Create(ReturnBB->getContext(), "phi_block", ReturnBB->getParent()); std::tie(PhiBlockForRetVal, Inserted) = Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock)); // We find the predecessors of the return block in the newly created outlined // function in order to point them to the new PHIBlock rather than the already // existing return block. SmallVector BranchesToChange; for (BasicBlock *Pred : predecessors(ReturnBB)) BranchesToChange.push_back(cast(Pred->getTerminator())); // Now we mark the branch instructions found, and change the references of the // return block to the newly created PHIBlock. for (BranchInst *BI : BranchesToChange) for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ < End; Succ++) { if (BI->getSuccessor(Succ) != ReturnBB) continue; BI->setSuccessor(Succ, PHIBlock); } BranchInst::Create(ReturnBB, PHIBlock); return PhiBlockForRetVal->second; } /// For the function call now representing the \p Region, find the passed value /// to that call that represents Argument \p A at the call location if the /// call has already been replaced with a call to the overall, aggregate /// function. /// /// \param A - The Argument to get the passed value for. /// \param Region - The extracted Region corresponding to the outlined function. /// \returns The Value representing \p A at the call site. static Value * getPassedArgumentInAlreadyOutlinedFunction(const Argument *A, const OutlinableRegion &Region) { // If we don't need to adjust the argument number at all (since the call // has already been replaced by a call to the overall outlined function) // we can just get the specified argument. return Region.Call->getArgOperand(A->getArgNo()); } /// For the function call now representing the \p Region, find the passed value /// to that call that represents Argument \p A at the call location if the /// call has only been replaced by the call to the aggregate function. /// /// \param A - The Argument to get the passed value for. /// \param Region - The extracted Region corresponding to the outlined function. /// \returns The Value representing \p A at the call site. static Value * getPassedArgumentAndAdjustArgumentLocation(const Argument *A, const OutlinableRegion &Region) { unsigned ArgNum = A->getArgNo(); // If it is a constant, we can look at our mapping from when we created // the outputs to figure out what the constant value is. if (Region.AggArgToConstant.count(ArgNum)) return Region.AggArgToConstant.find(ArgNum)->second; // If it is not a constant, and we are not looking at the overall function, we // need to adjust which argument we are looking at. ArgNum = Region.AggArgToExtracted.find(ArgNum)->second; return Region.Call->getArgOperand(ArgNum); } /// Find the canonical numbering for the incoming Values into the PHINode \p PN. /// /// \param PN [in] - The PHINode that we are finding the canonical numbers for. /// \param Region [in] - The OutlinableRegion containing \p PN. /// \param OutputMappings [in] - The mapping of output values from outlined /// region to their original values. /// \param CanonNums [out] - The canonical numbering for the incoming values to /// \p PN. /// \param ReplacedWithOutlinedCall - A flag to use the extracted function call /// of \p Region rather than the overall function's call. static void findCanonNumsForPHI(PHINode *PN, OutlinableRegion &Region, const DenseMap &OutputMappings, DenseSet &CanonNums, bool ReplacedWithOutlinedCall = true) { // Iterate over the incoming values. for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) { Value *IVal = PN->getIncomingValue(Idx); // If we have an argument as incoming value, we need to grab the passed // value from the call itself. if (Argument *A = dyn_cast(IVal)) { if (ReplacedWithOutlinedCall) IVal = getPassedArgumentInAlreadyOutlinedFunction(A, Region); else IVal = getPassedArgumentAndAdjustArgumentLocation(A, Region); } // Get the original value if it has been replaced by an output value. IVal = findOutputMapping(OutputMappings, IVal); // Find and add the canonical number for the incoming value. Optional GVN = Region.Candidate->getGVN(IVal); assert(GVN.hasValue() && "No GVN for incoming value"); Optional CanonNum = Region.Candidate->getCanonicalNum(*GVN); assert(CanonNum.hasValue() && "No Canonical Number for GVN"); CanonNums.insert(*CanonNum); } } /// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock /// in order to condense the number of instructions added to the outlined /// function. /// /// \param PN [in] - The PHINode that we are finding the canonical numbers for. /// \param Region [in] - The OutlinableRegion containing \p PN. /// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find /// \p PN in. /// \param OutputMappings [in] - The mapping of output values from outlined /// region to their original values. /// \return the newly found or created PHINode in \p OverallPhiBlock. static PHINode* findOrCreatePHIInBlock(PHINode &PN, OutlinableRegion &Region, BasicBlock *OverallPhiBlock, const DenseMap &OutputMappings) { OutlinableGroup &Group = *Region.Parent; DenseSet PNCanonNums; // We have to use the extracted function since we have merged this region into // the overall function yet. We make sure to reassign the argument numbering // since it is possible that the argument ordering is different between the // functions. findCanonNumsForPHI(&PN, Region, OutputMappings, PNCanonNums, /* ReplacedWithOutlinedCall = */ false); OutlinableRegion *FirstRegion = Group.Regions[0]; DenseSet CurrentCanonNums; // Find the Canonical Numbering for each PHINode, if it matches, we replace // the uses of the PHINode we are searching for, with the found PHINode. for (PHINode &CurrPN : OverallPhiBlock->phis()) { CurrentCanonNums.clear(); findCanonNumsForPHI(&CurrPN, *FirstRegion, OutputMappings, CurrentCanonNums, /* ReplacedWithOutlinedCall = */ true); if (all_of(PNCanonNums, [&CurrentCanonNums](unsigned CanonNum) { return CurrentCanonNums.contains(CanonNum); })) return &CurrPN; } // If we've made it here, it means we weren't able to replace the PHINode, so // we must insert it ourselves. PHINode *NewPN = cast(PN.clone()); NewPN->insertBefore(&*OverallPhiBlock->begin()); for (unsigned Idx = 0, Edx = NewPN->getNumIncomingValues(); Idx < Edx; Idx++) { Value *IncomingVal = NewPN->getIncomingValue(Idx); BasicBlock *IncomingBlock = NewPN->getIncomingBlock(Idx); // Find corresponding basic block in the overall function for the incoming // block. Instruction *FirstNonPHI = IncomingBlock->getFirstNonPHI(); assert(FirstNonPHI && "Incoming block is empty?"); Value *CorrespondingVal = Region.findCorrespondingValueIn(*FirstRegion, FirstNonPHI); assert(CorrespondingVal && "Value is nullptr?"); BasicBlock *BlockToUse = cast(CorrespondingVal)->getParent(); NewPN->setIncomingBlock(Idx, BlockToUse); // If we have an argument we make sure we replace using the argument from // the correct function. if (Argument *A = dyn_cast(IncomingVal)) { Value *Val = Group.OutlinedFunction->getArg(A->getArgNo()); NewPN->setIncomingValue(Idx, Val); continue; } // Find the corresponding value in the overall function. IncomingVal = findOutputMapping(OutputMappings, IncomingVal); Value *Val = Region.findCorrespondingValueIn(*FirstRegion, IncomingVal); assert(Val && "Value is nullptr?"); NewPN->setIncomingValue(Idx, Val); } return NewPN; } // Within an extracted function, replace the argument uses of the extracted // region with the arguments of the function for an OutlinableGroup. // /// \param [in] Region - The region of extracted code to be changed. /// \param [in,out] OutputBBs - The BasicBlock for the output stores for this /// region. /// \param [in] FirstFunction - A flag to indicate whether we are using this /// function to define the overall outlined function for all the regions, or /// if we are operating on one of the following regions. static void replaceArgumentUses(OutlinableRegion &Region, DenseMap &OutputBBs, const DenseMap &OutputMappings, bool FirstFunction = false) { OutlinableGroup &Group = *Region.Parent; assert(Region.ExtractedFunction && "Region has no extracted function?"); Function *DominatingFunction = Region.ExtractedFunction; if (FirstFunction) DominatingFunction = Group.OutlinedFunction; DominatorTree DT(*DominatingFunction); for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size(); ArgIdx++) { assert(Region.ExtractedArgToAgg.find(ArgIdx) != Region.ExtractedArgToAgg.end() && "No mapping from extracted to outlined?"); unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second; Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx); Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx); // The argument is an input, so we can simply replace it with the overall // argument value if (ArgIdx < Region.NumExtractedInputs) { LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function " << *Region.ExtractedFunction << " with " << *AggArg << " in function " << *Group.OutlinedFunction << "\n"); Arg->replaceAllUsesWith(AggArg); continue; } // If we are replacing an output, we place the store value in its own // block inside the overall function before replacing the use of the output // in the function. assert(Arg->hasOneUse() && "Output argument can only have one use"); User *InstAsUser = Arg->user_back(); assert(InstAsUser && "User is nullptr!"); Instruction *I = cast(InstAsUser); BasicBlock *BB = I->getParent(); SmallVector Descendants; DT.getDescendants(BB, Descendants); bool EdgeAdded = false; if (Descendants.size() == 0) { EdgeAdded = true; DT.insertEdge(&DominatingFunction->getEntryBlock(), BB); DT.getDescendants(BB, Descendants); } // Iterate over the following blocks, looking for return instructions, // if we find one, find the corresponding output block for the return value // and move our store instruction there. for (BasicBlock *DescendBB : Descendants) { ReturnInst *RI = dyn_cast(DescendBB->getTerminator()); if (!RI) continue; Value *RetVal = RI->getReturnValue(); auto VBBIt = OutputBBs.find(RetVal); assert(VBBIt != OutputBBs.end() && "Could not find output value!"); // If this is storing a PHINode, we must make sure it is included in the // overall function. StoreInst *SI = cast(I); Value *ValueOperand = SI->getValueOperand(); StoreInst *NewI = cast(I->clone()); NewI->setDebugLoc(DebugLoc()); BasicBlock *OutputBB = VBBIt->second; OutputBB->getInstList().push_back(NewI); LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to " << *OutputBB << "\n"); // If this is storing a PHINode, we must make sure it is included in the // overall function. if (!isa(ValueOperand) || Region.Candidate->getGVN(ValueOperand).hasValue()) { if (FirstFunction) continue; Value *CorrVal = Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand); assert(CorrVal && "Value is nullptr?"); NewI->setOperand(0, CorrVal); continue; } PHINode *PN = cast(SI->getValueOperand()); // If it has a value, it was not split by the code extractor, which // is what we are looking for. if (Region.Candidate->getGVN(PN).hasValue()) continue; // We record the parent block for the PHINode in the Region so that // we can exclude it from checks later on. Region.PHIBlocks.insert(std::make_pair(RetVal, PN->getParent())); // If this is the first function, we do not need to worry about mergiing // this with any other block in the overall outlined function, so we can // just continue. if (FirstFunction) { BasicBlock *PHIBlock = PN->getParent(); Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock)); continue; } // We look for the aggregate block that contains the PHINodes leading into // this exit path. If we can't find one, we create one. BasicBlock *OverallPhiBlock = findOrCreatePHIBlock(Group, RetVal); // For our PHINode, we find the combined canonical numbering, and // attempt to find a matching PHINode in the overall PHIBlock. If we // cannot, we copy the PHINode and move it into this new block. PHINode *NewPN = findOrCreatePHIInBlock(*PN, Region, OverallPhiBlock, OutputMappings); NewI->setOperand(0, NewPN); } // If we added an edge for basic blocks without a predecessor, we remove it // here. if (EdgeAdded) DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB); I->eraseFromParent(); LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function " << *Region.ExtractedFunction << " with " << *AggArg << " in function " << *Group.OutlinedFunction << "\n"); Arg->replaceAllUsesWith(AggArg); } } /// Within an extracted function, replace the constants that need to be lifted /// into arguments with the actual argument. /// /// \param Region [in] - The region of extracted code to be changed. void replaceConstants(OutlinableRegion &Region) { OutlinableGroup &Group = *Region.Parent; // Iterate over the constants that need to be elevated into arguments for (std::pair &Const : Region.AggArgToConstant) { unsigned AggArgIdx = Const.first; Function *OutlinedFunction = Group.OutlinedFunction; assert(OutlinedFunction && "Overall Function is not defined?"); Constant *CST = Const.second; Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx); // Identify the argument it will be elevated to, and replace instances of // that constant in the function. // TODO: If in the future constants do not have one global value number, // i.e. a constant 1 could be mapped to several values, this check will // have to be more strict. It cannot be using only replaceUsesWithIf. LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST << " in function " << *OutlinedFunction << " with " << *Arg << "\n"); CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) { if (Instruction *I = dyn_cast(U.getUser())) return I->getFunction() == OutlinedFunction; return false; }); } } /// It is possible that there is a basic block that already performs the same /// stores. This returns a duplicate block, if it exists /// /// \param OutputBBs [in] the blocks we are looking for a duplicate of. /// \param OutputStoreBBs [in] The existing output blocks. /// \returns an optional value with the number output block if there is a match. Optional findDuplicateOutputBlock( DenseMap &OutputBBs, std::vector> &OutputStoreBBs) { bool Mismatch = false; unsigned MatchingNum = 0; // We compare the new set output blocks to the other sets of output blocks. // If they are the same number, and have identical instructions, they are // considered to be the same. for (DenseMap &CompBBs : OutputStoreBBs) { Mismatch = false; for (std::pair &VToB : CompBBs) { DenseMap::iterator OutputBBIt = OutputBBs.find(VToB.first); if (OutputBBIt == OutputBBs.end()) { Mismatch = true; break; } BasicBlock *CompBB = VToB.second; BasicBlock *OutputBB = OutputBBIt->second; if (CompBB->size() - 1 != OutputBB->size()) { Mismatch = true; break; } BasicBlock::iterator NIt = OutputBB->begin(); for (Instruction &I : *CompBB) { if (isa(&I)) continue; if (!I.isIdenticalTo(&(*NIt))) { Mismatch = true; break; } NIt++; } } if (!Mismatch) return MatchingNum; MatchingNum++; } return None; } /// Remove empty output blocks from the outlined region. /// /// \param BlocksToPrune - Mapping of return values output blocks for the \p /// Region. /// \param Region - The OutlinableRegion we are analyzing. static bool analyzeAndPruneOutputBlocks(DenseMap &BlocksToPrune, OutlinableRegion &Region) { bool AllRemoved = true; Value *RetValueForBB; BasicBlock *NewBB; SmallVector ToRemove; // Iterate over the output blocks created in the outlined section. for (std::pair &VtoBB : BlocksToPrune) { RetValueForBB = VtoBB.first; NewBB = VtoBB.second; // If there are no instructions, we remove it from the module, and also // mark the value for removal from the return value to output block mapping. if (NewBB->size() == 0) { NewBB->eraseFromParent(); ToRemove.push_back(RetValueForBB); continue; } // Mark that we could not remove all the blocks since they were not all // empty. AllRemoved = false; } // Remove the return value from the mapping. for (Value *V : ToRemove) BlocksToPrune.erase(V); // Mark the region as having the no output scheme. if (AllRemoved) Region.OutputBlockNum = -1; return AllRemoved; } /// For the outlined section, move needed the StoreInsts for the output /// registers into their own block. Then, determine if there is a duplicate /// output block already created. /// /// \param [in] OG - The OutlinableGroup of regions to be outlined. /// \param [in] Region - The OutlinableRegion that is being analyzed. /// \param [in,out] OutputBBs - the blocks that stores for this region will be /// placed in. /// \param [in] EndBBs - the final blocks of the extracted function. /// \param [in] OutputMappings - OutputMappings the mapping of values that have /// been replaced by a new output value. /// \param [in,out] OutputStoreBBs - The existing output blocks. static void alignOutputBlockWithAggFunc( OutlinableGroup &OG, OutlinableRegion &Region, DenseMap &OutputBBs, DenseMap &EndBBs, const DenseMap &OutputMappings, std::vector> &OutputStoreBBs) { // If none of the output blocks have any instructions, this means that we do // not have to determine if it matches any of the other output schemes, and we // don't have to do anything else. if (analyzeAndPruneOutputBlocks(OutputBBs, Region)) return; // Determine is there is a duplicate set of blocks. Optional MatchingBB = findDuplicateOutputBlock(OutputBBs, OutputStoreBBs); // If there is, we remove the new output blocks. If it does not, // we add it to our list of sets of output blocks. if (MatchingBB.hasValue()) { LLVM_DEBUG(dbgs() << "Set output block for region in function" << Region.ExtractedFunction << " to " << MatchingBB.getValue()); Region.OutputBlockNum = MatchingBB.getValue(); for (std::pair &VtoBB : OutputBBs) VtoBB.second->eraseFromParent(); return; } Region.OutputBlockNum = OutputStoreBBs.size(); Value *RetValueForBB; BasicBlock *NewBB; OutputStoreBBs.push_back(DenseMap()); for (std::pair &VtoBB : OutputBBs) { RetValueForBB = VtoBB.first; NewBB = VtoBB.second; DenseMap::iterator VBBIt = EndBBs.find(RetValueForBB); LLVM_DEBUG(dbgs() << "Create output block for region in" << Region.ExtractedFunction << " to " << *NewBB); BranchInst::Create(VBBIt->second, NewBB); OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB)); } } /// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys, /// before creating a basic block for each \p NewMap, and inserting into the new /// block. Each BasicBlock is named with the scheme "_". /// /// \param OldMap [in] - The mapping to base the new mapping off of. /// \param NewMap [out] - The output mapping using the keys of \p OldMap. /// \param ParentFunc [in] - The function to put the new basic block in. /// \param BaseName [in] - The start of the BasicBlock names to be appended to /// by an index value. static void createAndInsertBasicBlocks(DenseMap &OldMap, DenseMap &NewMap, Function *ParentFunc, Twine BaseName) { unsigned Idx = 0; std::vector SortedKeys; getSortedConstantKeys(SortedKeys, OldMap); for (Value *RetVal : SortedKeys) { BasicBlock *NewBB = BasicBlock::Create( ParentFunc->getContext(), Twine(BaseName) + Twine("_") + Twine(static_cast(Idx++)), ParentFunc); NewMap.insert(std::make_pair(RetVal, NewBB)); } } /// Create the switch statement for outlined function to differentiate between /// all the output blocks. /// /// For the outlined section, determine if an outlined block already exists that /// matches the needed stores for the extracted section. /// \param [in] M - The module we are outlining from. /// \param [in] OG - The group of regions to be outlined. /// \param [in] EndBBs - The final blocks of the extracted function. /// \param [in,out] OutputStoreBBs - The existing output blocks. void createSwitchStatement( Module &M, OutlinableGroup &OG, DenseMap &EndBBs, std::vector> &OutputStoreBBs) { // We only need the switch statement if there is more than one store // combination, or there is more than one set of output blocks. The first // will occur when we store different sets of values for two different // regions. The second will occur when we have two outputs that are combined // in a PHINode outside of the region in one outlined instance, and are used // seaparately in another. This will create the same set of OutputGVNs, but // will generate two different output schemes. if (OG.OutputGVNCombinations.size() > 1) { Function *AggFunc = OG.OutlinedFunction; // Create a final block for each different return block. DenseMap ReturnBBs; createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block"); for (std::pair &RetBlockPair : ReturnBBs) { std::pair &OutputBlock = *OG.EndBBs.find(RetBlockPair.first); BasicBlock *ReturnBlock = RetBlockPair.second; BasicBlock *EndBB = OutputBlock.second; Instruction *Term = EndBB->getTerminator(); // Move the return value to the final block instead of the original exit // stub. Term->moveBefore(*ReturnBlock, ReturnBlock->end()); // Put the switch statement in the old end basic block for the function // with a fall through to the new return block. LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for " << OutputStoreBBs.size() << "\n"); SwitchInst *SwitchI = SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1), ReturnBlock, OutputStoreBBs.size(), EndBB); unsigned Idx = 0; for (DenseMap &OutputStoreBB : OutputStoreBBs) { DenseMap::iterator OSBBIt = OutputStoreBB.find(OutputBlock.first); if (OSBBIt == OutputStoreBB.end()) continue; BasicBlock *BB = OSBBIt->second; SwitchI->addCase( ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB); Term = BB->getTerminator(); Term->setSuccessor(0, ReturnBlock); Idx++; } } return; } assert(OutputStoreBBs.size() < 2 && "Different store sets not handled!"); // If there needs to be stores, move them from the output blocks to their // corresponding ending block. We do not check that the OutputGVNCombinations // is equal to 1 here since that could just been the case where there are 0 // outputs. Instead, we check whether there is more than one set of output // blocks since this is the only case where we would have to move the // stores, and erase the extraneous blocks. if (OutputStoreBBs.size() == 1) { LLVM_DEBUG(dbgs() << "Move store instructions to the end block in " << *OG.OutlinedFunction << "\n"); DenseMap OutputBlocks = OutputStoreBBs[0]; for (std::pair &VBPair : OutputBlocks) { DenseMap::iterator EndBBIt = EndBBs.find(VBPair.first); assert(EndBBIt != EndBBs.end() && "Could not find end block"); BasicBlock *EndBB = EndBBIt->second; BasicBlock *OutputBB = VBPair.second; Instruction *Term = OutputBB->getTerminator(); Term->eraseFromParent(); Term = EndBB->getTerminator(); moveBBContents(*OutputBB, *EndBB); Term->moveBefore(*EndBB, EndBB->end()); OutputBB->eraseFromParent(); } } } /// Fill the new function that will serve as the replacement function for all of /// the extracted regions of a certain structure from the first region in the /// list of regions. Replace this first region's extracted function with the /// new overall function. /// /// \param [in] M - The module we are outlining from. /// \param [in] CurrentGroup - The group of regions to be outlined. /// \param [in,out] OutputStoreBBs - The output blocks for each different /// set of stores needed for the different functions. /// \param [in,out] FuncsToRemove - Extracted functions to erase from module /// once outlining is complete. /// \param [in] OutputMappings - Extracted functions to erase from module /// once outlining is complete. static void fillOverallFunction( Module &M, OutlinableGroup &CurrentGroup, std::vector> &OutputStoreBBs, std::vector &FuncsToRemove, const DenseMap &OutputMappings) { OutlinableRegion *CurrentOS = CurrentGroup.Regions[0]; // Move first extracted function's instructions into new function. LLVM_DEBUG(dbgs() << "Move instructions from " << *CurrentOS->ExtractedFunction << " to instruction " << *CurrentGroup.OutlinedFunction << "\n"); moveFunctionData(*CurrentOS->ExtractedFunction, *CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs); // Transfer the attributes from the function to the new function. for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs()) CurrentGroup.OutlinedFunction->addFnAttr(A); // Create a new set of output blocks for the first extracted function. DenseMap NewBBs; createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction, "output_block_0"); CurrentOS->OutputBlockNum = 0; replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings, true); replaceConstants(*CurrentOS); // We first identify if any output blocks are empty, if they are we remove // them. We then create a branch instruction to the basic block to the return // block for the function for each non empty output block. if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) { OutputStoreBBs.push_back(DenseMap()); for (std::pair &VToBB : NewBBs) { DenseMap::iterator VBBIt = CurrentGroup.EndBBs.find(VToBB.first); BasicBlock *EndBB = VBBIt->second; BranchInst::Create(EndBB, VToBB.second); OutputStoreBBs.back().insert(VToBB); } } // Replace the call to the extracted function with the outlined function. CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); // We only delete the extracted functions at the end since we may need to // reference instructions contained in them for mapping purposes. FuncsToRemove.push_back(CurrentOS->ExtractedFunction); } void IROutliner::deduplicateExtractedSections( Module &M, OutlinableGroup &CurrentGroup, std::vector &FuncsToRemove, unsigned &OutlinedFunctionNum) { createFunction(M, CurrentGroup, OutlinedFunctionNum); std::vector> OutputStoreBBs; OutlinableRegion *CurrentOS; fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove, OutputMappings); std::vector SortedKeys; for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) { CurrentOS = CurrentGroup.Regions[Idx]; AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction, *CurrentOS->ExtractedFunction); // Create a set of BasicBlocks, one for each return block, to hold the // needed store instructions. DenseMap NewBBs; createAndInsertBasicBlocks( CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction, "output_block_" + Twine(static_cast(Idx))); replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings); alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs, CurrentGroup.EndBBs, OutputMappings, OutputStoreBBs); CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); FuncsToRemove.push_back(CurrentOS->ExtractedFunction); } // Create a switch statement to handle the different output schemes. createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs); OutlinedFunctionNum++; } /// Checks that the next instruction in the InstructionDataList matches the /// next instruction in the module. If they do not, there could be the /// possibility that extra code has been inserted, and we must ignore it. /// /// \param ID - The IRInstructionData to check the next instruction of. /// \returns true if the InstructionDataList and actual instruction match. static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) { // We check if there is a discrepancy between the InstructionDataList // and the actual next instruction in the module. If there is, it means // that an extra instruction was added, likely by the CodeExtractor. // Since we do not have any similarity data about this particular // instruction, we cannot confidently outline it, and must discard this // candidate. IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator()); Instruction *NextIDLInst = NextIDIt->Inst; Instruction *NextModuleInst = nullptr; if (!ID.Inst->isTerminator()) NextModuleInst = ID.Inst->getNextNonDebugInstruction(); else if (NextIDLInst != nullptr) NextModuleInst = &*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin(); if (NextIDLInst && NextIDLInst != NextModuleInst) return false; return true; } bool IROutliner::isCompatibleWithAlreadyOutlinedCode( const OutlinableRegion &Region) { IRSimilarityCandidate *IRSC = Region.Candidate; unsigned StartIdx = IRSC->getStartIdx(); unsigned EndIdx = IRSC->getEndIdx(); // A check to make sure that we are not about to attempt to outline something // that has already been outlined. for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) if (Outlined.contains(Idx)) return false; // We check if the recorded instruction matches the actual next instruction, // if it does not, we fix it in the InstructionDataList. if (!Region.Candidate->backInstruction()->isTerminator()) { Instruction *NewEndInst = Region.Candidate->backInstruction()->getNextNonDebugInstruction(); assert(NewEndInst && "Next instruction is a nullptr?"); if (Region.Candidate->end()->Inst != NewEndInst) { IRInstructionDataList *IDL = Region.Candidate->front()->IDL; IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate()) IRInstructionData(*NewEndInst, InstructionClassifier.visit(*NewEndInst), *IDL); // Insert the first IRInstructionData of the new region after the // last IRInstructionData of the IRSimilarityCandidate. IDL->insert(Region.Candidate->end(), *NewEndIRID); } } return none_of(*IRSC, [this](IRInstructionData &ID) { if (!nextIRInstructionDataMatchesNextInst(ID)) return true; return !this->InstructionClassifier.visit(ID.Inst); }); } void IROutliner::pruneIncompatibleRegions( std::vector &CandidateVec, OutlinableGroup &CurrentGroup) { bool PreviouslyOutlined; // Sort from beginning to end, so the IRSimilarityCandidates are in order. stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS, const IRSimilarityCandidate &RHS) { return LHS.getStartIdx() < RHS.getStartIdx(); }); IRSimilarityCandidate &FirstCandidate = CandidateVec[0]; // Since outlining a call and a branch instruction will be the same as only // outlinining a call instruction, we ignore it as a space saving. if (FirstCandidate.getLength() == 2) { if (isa(FirstCandidate.front()->Inst) && isa(FirstCandidate.back()->Inst)) return; } unsigned CurrentEndIdx = 0; for (IRSimilarityCandidate &IRSC : CandidateVec) { PreviouslyOutlined = false; unsigned StartIdx = IRSC.getStartIdx(); unsigned EndIdx = IRSC.getEndIdx(); for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) if (Outlined.contains(Idx)) { PreviouslyOutlined = true; break; } if (PreviouslyOutlined) continue; // Check over the instructions, and if the basic block has its address // taken for use somewhere else, we do not outline that block. bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){ return ID.Inst->getParent()->hasAddressTaken(); }); if (BBHasAddressTaken) continue; if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() && !OutlineFromLinkODRs) continue; // Greedily prune out any regions that will overlap with already chosen // regions. if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx) continue; bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) { if (!nextIRInstructionDataMatchesNextInst(ID)) return true; return !this->InstructionClassifier.visit(ID.Inst); }); if (BadInst) continue; OutlinableRegion *OS = new (RegionAllocator.Allocate()) OutlinableRegion(IRSC, CurrentGroup); CurrentGroup.Regions.push_back(OS); CurrentEndIdx = EndIdx; } } InstructionCost IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) { InstructionCost RegionBenefit = 0; for (OutlinableRegion *Region : CurrentGroup.Regions) { TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); // We add the number of instructions in the region to the benefit as an // estimate as to how much will be removed. RegionBenefit += Region->getBenefit(TTI); LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit << " saved instructions to overfall benefit.\n"); } return RegionBenefit; } /// For the \p OutputCanon number passed in find the value represented by this /// canonical number. If it is from a PHINode, we pick the first incoming /// value and return that Value instead. /// /// \param Region - The OutlinableRegion to get the Value from. /// \param OutputCanon - The canonical number to find the Value from. /// \returns The Value represented by a canonical number \p OutputCanon in \p /// Region. static Value *findOutputValueInRegion(OutlinableRegion &Region, unsigned OutputCanon) { OutlinableGroup &CurrentGroup = *Region.Parent; // If the value is greater than the value in the tracker, we have a // PHINode and will instead use one of the incoming values to find the // type. if (OutputCanon > CurrentGroup.PHINodeGVNTracker) { auto It = CurrentGroup.PHINodeGVNToGVNs.find(OutputCanon); assert(It != CurrentGroup.PHINodeGVNToGVNs.end() && "Could not find GVN set for PHINode number!"); assert(It->second.second.size() > 0 && "PHINode does not have any values!"); OutputCanon = *It->second.second.begin(); } Optional OGVN = Region.Candidate->fromCanonicalNum(OutputCanon); assert(OGVN.hasValue() && "Could not find GVN for Canonical Number?"); Optional OV = Region.Candidate->fromGVN(*OGVN); assert(OV.hasValue() && "Could not find value for GVN?"); return *OV; } InstructionCost IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) { InstructionCost OverallCost = 0; for (OutlinableRegion *Region : CurrentGroup.Regions) { TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); // Each output incurs a load after the call, so we add that to the cost. for (unsigned OutputCanon : Region->GVNStores) { Value *V = findOutputValueInRegion(*Region, OutputCanon); InstructionCost LoadCost = TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, TargetTransformInfo::TCK_CodeSize); LLVM_DEBUG(dbgs() << "Adding: " << LoadCost << " instructions to cost for output of type " << *V->getType() << "\n"); OverallCost += LoadCost; } } return OverallCost; } /// Find the extra instructions needed to handle any output values for the /// region. /// /// \param [in] M - The Module to outline from. /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze. /// \param [in] TTI - The TargetTransformInfo used to collect information for /// new instruction costs. /// \returns the additional cost to handle the outputs. static InstructionCost findCostForOutputBlocks(Module &M, OutlinableGroup &CurrentGroup, TargetTransformInfo &TTI) { InstructionCost OutputCost = 0; unsigned NumOutputBranches = 0; OutlinableRegion &FirstRegion = *CurrentGroup.Regions[0]; IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate; DenseSet CandidateBlocks; Candidate.getBasicBlocks(CandidateBlocks); // Count the number of different output branches that point to blocks outside // of the region. DenseSet FoundBlocks; for (IRInstructionData &ID : Candidate) { if (!isa(ID.Inst)) continue; for (Value *V : ID.OperVals) { BasicBlock *BB = static_cast(V); DenseSet::iterator CBIt = CandidateBlocks.find(BB); if (CBIt != CandidateBlocks.end() || FoundBlocks.contains(BB)) continue; FoundBlocks.insert(BB); NumOutputBranches++; } } CurrentGroup.BranchesToOutside = NumOutputBranches; for (const ArrayRef &OutputUse : CurrentGroup.OutputGVNCombinations) { for (unsigned OutputCanon : OutputUse) { Value *V = findOutputValueInRegion(FirstRegion, OutputCanon); InstructionCost StoreCost = TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, TargetTransformInfo::TCK_CodeSize); // An instruction cost is added for each store set that needs to occur for // various output combinations inside the function, plus a branch to // return to the exit block. LLVM_DEBUG(dbgs() << "Adding: " << StoreCost << " instructions to cost for output of type " << *V->getType() << "\n"); OutputCost += StoreCost * NumOutputBranches; } InstructionCost BranchCost = TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for" << " a branch instruction\n"); OutputCost += BranchCost * NumOutputBranches; } // If there is more than one output scheme, we must have a comparison and // branch for each different item in the switch statement. if (CurrentGroup.OutputGVNCombinations.size() > 1) { InstructionCost ComparisonCost = TTI.getCmpSelInstrCost( Instruction::ICmp, Type::getInt32Ty(M.getContext()), Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE, TargetTransformInfo::TCK_CodeSize); InstructionCost BranchCost = TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size(); InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks; LLVM_DEBUG(dbgs() << "Adding: " << TotalCost << " instructions for each switch case for each different" << " output path in a function\n"); OutputCost += TotalCost * NumOutputBranches; } return OutputCost; } void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) { InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup); CurrentGroup.Benefit += RegionBenefit; LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n"); InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup); CurrentGroup.Cost += OutputReloadCost; LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); InstructionCost AverageRegionBenefit = RegionBenefit / CurrentGroup.Regions.size(); unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size(); unsigned NumRegions = CurrentGroup.Regions.size(); TargetTransformInfo &TTI = getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction()); // We add one region to the cost once, to account for the instructions added // inside of the newly created function. LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit << " instructions to cost for body of new function.\n"); CurrentGroup.Cost += AverageRegionBenefit; LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); // For each argument, we must add an instruction for loading the argument // out of the register and into a value inside of the newly outlined function. LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum << " instructions to cost for each argument in the new" << " function.\n"); CurrentGroup.Cost += OverallArgumentNum * TargetTransformInfo::TCC_Basic; LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); // Each argument needs to either be loaded into a register or onto the stack. // Some arguments will only be loaded into the stack once the argument // registers are filled. LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum << " instructions to cost for each argument in the new" << " function " << NumRegions << " times for the " << "needed argument handling at the call site.\n"); CurrentGroup.Cost += 2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions; LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI); LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); } void IROutliner::updateOutputMapping(OutlinableRegion &Region, ArrayRef Outputs, LoadInst *LI) { // For and load instructions following the call Value *Operand = LI->getPointerOperand(); Optional OutputIdx = None; // Find if the operand it is an output register. for (unsigned ArgIdx = Region.NumExtractedInputs; ArgIdx < Region.Call->arg_size(); ArgIdx++) { if (Operand == Region.Call->getArgOperand(ArgIdx)) { OutputIdx = ArgIdx - Region.NumExtractedInputs; break; } } // If we found an output register, place a mapping of the new value // to the original in the mapping. if (!OutputIdx.hasValue()) return; if (OutputMappings.find(Outputs[OutputIdx.getValue()]) == OutputMappings.end()) { LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to " << *Outputs[OutputIdx.getValue()] << "\n"); OutputMappings.insert(std::make_pair(LI, Outputs[OutputIdx.getValue()])); } else { Value *Orig = OutputMappings.find(Outputs[OutputIdx.getValue()])->second; LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to " << *Outputs[OutputIdx.getValue()] << "\n"); OutputMappings.insert(std::make_pair(LI, Orig)); } } bool IROutliner::extractSection(OutlinableRegion &Region) { SetVector ArgInputs, Outputs, SinkCands; assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!"); BasicBlock *InitialStart = Region.StartBB; Function *OrigF = Region.StartBB->getParent(); CodeExtractorAnalysisCache CEAC(*OrigF); Region.ExtractedFunction = Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs); // If the extraction was successful, find the BasicBlock, and reassign the // OutlinableRegion blocks if (!Region.ExtractedFunction) { LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB << "\n"); Region.reattachCandidate(); return false; } // Get the block containing the called branch, and reassign the blocks as // necessary. If the original block still exists, it is because we ended on // a branch instruction, and so we move the contents into the block before // and assign the previous block correctly. User *InstAsUser = Region.ExtractedFunction->user_back(); BasicBlock *RewrittenBB = cast(InstAsUser)->getParent(); Region.PrevBB = RewrittenBB->getSinglePredecessor(); assert(Region.PrevBB && "PrevBB is nullptr?"); if (Region.PrevBB == InitialStart) { BasicBlock *NewPrev = InitialStart->getSinglePredecessor(); Instruction *BI = NewPrev->getTerminator(); BI->eraseFromParent(); moveBBContents(*InitialStart, *NewPrev); Region.PrevBB = NewPrev; InitialStart->eraseFromParent(); } Region.StartBB = RewrittenBB; Region.EndBB = RewrittenBB; // The sequences of outlinable regions has now changed. We must fix the // IRInstructionDataList for consistency. Although they may not be illegal // instructions, they should not be compared with anything else as they // should not be outlined in this round. So marking these as illegal is // allowed. IRInstructionDataList *IDL = Region.Candidate->front()->IDL; Instruction *BeginRewritten = &*RewrittenBB->begin(); Instruction *EndRewritten = &*RewrittenBB->begin(); Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData( *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL); Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData( *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL); // Insert the first IRInstructionData of the new region in front of the // first IRInstructionData of the IRSimilarityCandidate. IDL->insert(Region.Candidate->begin(), *Region.NewFront); // Insert the first IRInstructionData of the new region after the // last IRInstructionData of the IRSimilarityCandidate. IDL->insert(Region.Candidate->end(), *Region.NewBack); // Remove the IRInstructionData from the IRSimilarityCandidate. IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end())); assert(RewrittenBB != nullptr && "Could not find a predecessor after extraction!"); // Iterate over the new set of instructions to find the new call // instruction. for (Instruction &I : *RewrittenBB) if (CallInst *CI = dyn_cast(&I)) { if (Region.ExtractedFunction == CI->getCalledFunction()) Region.Call = CI; } else if (LoadInst *LI = dyn_cast(&I)) updateOutputMapping(Region, Outputs.getArrayRef(), LI); Region.reattachCandidate(); return true; } unsigned IROutliner::doOutline(Module &M) { // Find the possible similarity sections. InstructionClassifier.EnableBranches = !DisableBranches; InstructionClassifier.EnableIndirectCalls = !DisableIndirectCalls; InstructionClassifier.EnableIntrinsics = !DisableIntrinsics; IRSimilarityIdentifier &Identifier = getIRSI(M); SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity(); // Sort them by size of extracted sections unsigned OutlinedFunctionNum = 0; // If we only have one SimilarityGroup in SimilarityCandidates, we do not have // to sort them by the potential number of instructions to be outlined if (SimilarityCandidates.size() > 1) llvm::stable_sort(SimilarityCandidates, [](const std::vector &LHS, const std::vector &RHS) { return LHS[0].getLength() * LHS.size() > RHS[0].getLength() * RHS.size(); }); // Creating OutlinableGroups for each SimilarityCandidate to be used in // each of the following for loops to avoid making an allocator. std::vector PotentialGroups(SimilarityCandidates.size()); DenseSet NotSame; std::vector NegativeCostGroups; std::vector OutlinedRegions; // Iterate over the possible sets of similarity. unsigned PotentialGroupIdx = 0; for (SimilarityGroup &CandidateVec : SimilarityCandidates) { OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++]; // Remove entries that were previously outlined pruneIncompatibleRegions(CandidateVec, CurrentGroup); // We pruned the number of regions to 0 to 1, meaning that it's not worth // trying to outlined since there is no compatible similar instance of this // code. if (CurrentGroup.Regions.size() < 2) continue; // Determine if there are any values that are the same constant throughout // each section in the set. NotSame.clear(); CurrentGroup.findSameConstants(NotSame); if (CurrentGroup.IgnoreGroup) continue; // Create a CodeExtractor for each outlinable region. Identify inputs and // outputs for each section using the code extractor and create the argument // types for the Aggregate Outlining Function. OutlinedRegions.clear(); for (OutlinableRegion *OS : CurrentGroup.Regions) { // Break the outlinable region out of its parent BasicBlock into its own // BasicBlocks (see function implementation). OS->splitCandidate(); // There's a chance that when the region is split, extra instructions are // added to the region. This makes the region no longer viable // to be split, so we ignore it for outlining. if (!OS->CandidateSplit) continue; SmallVector BE; DenseSet BlocksInRegion; OS->Candidate->getBasicBlocks(BlocksInRegion, BE); OS->CE = new (ExtractorAllocator.Allocate()) CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, false, "outlined"); findAddInputsOutputs(M, *OS, NotSame); if (!OS->IgnoreRegion) OutlinedRegions.push_back(OS); // We recombine the blocks together now that we have gathered all the // needed information. OS->reattachCandidate(); } CurrentGroup.Regions = std::move(OutlinedRegions); if (CurrentGroup.Regions.empty()) continue; CurrentGroup.collectGVNStoreSets(M); if (CostModel) findCostBenefit(M, CurrentGroup); // If we are adhering to the cost model, skip those groups where the cost // outweighs the benefits. if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) { OptimizationRemarkEmitter &ORE = getORE(*CurrentGroup.Regions[0]->Candidate->getFunction()); ORE.emit([&]() { IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize", C->frontInstruction()); R << "did not outline " << ore::NV(std::to_string(CurrentGroup.Regions.size())) << " regions due to estimated increase of " << ore::NV("InstructionIncrease", CurrentGroup.Cost - CurrentGroup.Benefit) << " instructions at locations "; interleave( CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), [&R](OutlinableRegion *Region) { R << ore::NV( "DebugLoc", Region->Candidate->frontInstruction()->getDebugLoc()); }, [&R]() { R << " "; }); return R; }); continue; } NegativeCostGroups.push_back(&CurrentGroup); } ExtractorAllocator.DestroyAll(); if (NegativeCostGroups.size() > 1) stable_sort(NegativeCostGroups, [](const OutlinableGroup *LHS, const OutlinableGroup *RHS) { return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost; }); std::vector FuncsToRemove; for (OutlinableGroup *CG : NegativeCostGroups) { OutlinableGroup &CurrentGroup = *CG; OutlinedRegions.clear(); for (OutlinableRegion *Region : CurrentGroup.Regions) { // We check whether our region is compatible with what has already been // outlined, and whether we need to ignore this item. if (!isCompatibleWithAlreadyOutlinedCode(*Region)) continue; OutlinedRegions.push_back(Region); } if (OutlinedRegions.size() < 2) continue; // Reestimate the cost and benefit of the OutlinableGroup. Continue only if // we are still outlining enough regions to make up for the added cost. CurrentGroup.Regions = std::move(OutlinedRegions); if (CostModel) { CurrentGroup.Benefit = 0; CurrentGroup.Cost = 0; findCostBenefit(M, CurrentGroup); if (CurrentGroup.Cost >= CurrentGroup.Benefit) continue; } OutlinedRegions.clear(); for (OutlinableRegion *Region : CurrentGroup.Regions) { Region->splitCandidate(); if (!Region->CandidateSplit) continue; OutlinedRegions.push_back(Region); } CurrentGroup.Regions = std::move(OutlinedRegions); if (CurrentGroup.Regions.size() < 2) { for (OutlinableRegion *R : CurrentGroup.Regions) R->reattachCandidate(); continue; } LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost << " and benefit " << CurrentGroup.Benefit << "\n"); // Create functions out of all the sections, and mark them as outlined. OutlinedRegions.clear(); for (OutlinableRegion *OS : CurrentGroup.Regions) { SmallVector BE; DenseSet BlocksInRegion; OS->Candidate->getBasicBlocks(BlocksInRegion, BE); OS->CE = new (ExtractorAllocator.Allocate()) CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, false, "outlined"); bool FunctionOutlined = extractSection(*OS); if (FunctionOutlined) { unsigned StartIdx = OS->Candidate->getStartIdx(); unsigned EndIdx = OS->Candidate->getEndIdx(); for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) Outlined.insert(Idx); OutlinedRegions.push_back(OS); } } LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size() << " with benefit " << CurrentGroup.Benefit << " and cost " << CurrentGroup.Cost << "\n"); CurrentGroup.Regions = std::move(OutlinedRegions); if (CurrentGroup.Regions.empty()) continue; OptimizationRemarkEmitter &ORE = getORE(*CurrentGroup.Regions[0]->Call->getFunction()); ORE.emit([&]() { IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst); R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size())) << " regions with decrease of " << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost) << " instructions at locations "; interleave( CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), [&R](OutlinableRegion *Region) { R << ore::NV("DebugLoc", Region->Candidate->frontInstruction()->getDebugLoc()); }, [&R]() { R << " "; }); return R; }); deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove, OutlinedFunctionNum); } for (Function *F : FuncsToRemove) F->eraseFromParent(); return OutlinedFunctionNum; } bool IROutliner::run(Module &M) { CostModel = !NoCostModel; OutlineFromLinkODRs = EnableLinkOnceODRIROutlining; return doOutline(M) > 0; } // Pass Manager Boilerplate namespace { class IROutlinerLegacyPass : public ModulePass { public: static char ID; IROutlinerLegacyPass() : ModulePass(ID) { initializeIROutlinerLegacyPassPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); } bool runOnModule(Module &M) override; }; } // namespace bool IROutlinerLegacyPass::runOnModule(Module &M) { if (skipModule(M)) return false; std::unique_ptr ORE; auto GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & { ORE.reset(new OptimizationRemarkEmitter(&F)); return *ORE.get(); }; auto GTTI = [this](Function &F) -> TargetTransformInfo & { return this->getAnalysis().getTTI(F); }; auto GIRSI = [this](Module &) -> IRSimilarityIdentifier & { return this->getAnalysis().getIRSI(); }; return IROutliner(GTTI, GIRSI, GORE).run(M); } PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) { auto &FAM = AM.getResult(M).getManager(); std::function GTTI = [&FAM](Function &F) -> TargetTransformInfo & { return FAM.getResult(F); }; std::function GIRSI = [&AM](Module &M) -> IRSimilarityIdentifier & { return AM.getResult(M); }; std::unique_ptr ORE; std::function GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & { ORE.reset(new OptimizationRemarkEmitter(&F)); return *ORE.get(); }; if (IROutliner(GTTI, GIRSI, GORE).run(M)) return PreservedAnalyses::none(); return PreservedAnalyses::all(); } char IROutlinerLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, false) INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass) INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_END(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, false) ModulePass *llvm::createIROutlinerPass() { return new IROutlinerLegacyPass(); }