//===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// The goal of hot/cold splitting is to improve the memory locality of code. /// The splitting pass does this by identifying cold blocks and moving them into /// separate functions. /// /// When the splitting pass finds a cold block (referred to as "the sink"), it /// grows a maximal cold region around that block. The maximal region contains /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as /// cold as the sink. Once a region is found, it's split out of the original /// function provided it's profitable to do so. /// /// [*] In practice, there is some added complexity because some blocks are not /// safe to extract. /// /// TODO: Use the PM to get domtrees, and preserve BFI/BPI. /// TODO: Reorder outlined functions. /// //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/HotColdSplitting.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/PostDominators.h" #include "llvm/Analysis/ProfileSummaryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/BlockFrequency.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/CodeExtractor.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/ValueMapper.h" #include #include #include #include #define DEBUG_TYPE "hotcoldsplit" STATISTIC(NumColdRegionsFound, "Number of cold regions found."); STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined."); using namespace llvm; static cl::opt EnableStaticAnalysis("hot-cold-static-analysis", cl::init(true), cl::Hidden); static cl::opt SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden, cl::desc("Base penalty for splitting cold code (as a " "multiple of TCC_Basic)")); static cl::opt EnableColdSection( "enable-cold-section", cl::init(false), cl::Hidden, cl::desc("Enable placement of extracted cold functions" " into a separate section after hot-cold splitting.")); static cl::opt ColdSectionName("hotcoldsplit-cold-section-name", cl::init("__llvm_cold"), cl::Hidden, cl::desc("Name for the section containing cold functions " "extracted by hot-cold splitting.")); static cl::opt MaxParametersForSplit( "hotcoldsplit-max-params", cl::init(4), cl::Hidden, cl::desc("Maximum number of parameters for a split function")); namespace { // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify // this function unless you modify the MBB version as well. // /// A no successor, non-return block probably ends in unreachable and is cold. /// Also consider a block that ends in an indirect branch to be a return block, /// since many targets use plain indirect branches to return. bool blockEndsInUnreachable(const BasicBlock &BB) { if (!succ_empty(&BB)) return false; if (BB.empty()) return true; const Instruction *I = BB.getTerminator(); return !(isa(I) || isa(I)); } bool unlikelyExecuted(BasicBlock &BB) { // Exception handling blocks are unlikely executed. if (BB.isEHPad() || isa(BB.getTerminator())) return true; // The block is cold if it calls/invokes a cold function. However, do not // mark sanitizer traps as cold. for (Instruction &I : BB) if (auto *CB = dyn_cast(&I)) if (CB->hasFnAttr(Attribute::Cold) && !CB->getMetadata("nosanitize")) return true; // The block is cold if it has an unreachable terminator, unless it's // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp). if (blockEndsInUnreachable(BB)) { if (auto *CI = dyn_cast_or_null(BB.getTerminator()->getPrevNode())) if (CI->hasFnAttr(Attribute::NoReturn)) return false; return true; } return false; } /// Check whether it's safe to outline \p BB. static bool mayExtractBlock(const BasicBlock &BB) { // EH pads are unsafe to outline because doing so breaks EH type tables. It // follows that invoke instructions cannot be extracted, because CodeExtractor // requires unwind destinations to be within the extraction region. // // Resumes that are not reachable from a cleanup landing pad are considered to // be unreachable. It’s not safe to split them out either. if (BB.hasAddressTaken() || BB.isEHPad()) return false; auto Term = BB.getTerminator(); return !isa(Term) && !isa(Term); } /// Mark \p F cold. Based on this assumption, also optimize it for minimum size. /// If \p UpdateEntryCount is true (set when this is a new split function and /// module has profile data), set entry count to 0 to ensure treated as cold. /// Return true if the function is changed. static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) { assert(!F.hasOptNone() && "Can't mark this cold"); bool Changed = false; if (!F.hasFnAttribute(Attribute::Cold)) { F.addFnAttr(Attribute::Cold); Changed = true; } if (!F.hasFnAttribute(Attribute::MinSize)) { F.addFnAttr(Attribute::MinSize); Changed = true; } if (UpdateEntryCount) { // Set the entry count to 0 to ensure it is placed in the unlikely text // section when function sections are enabled. F.setEntryCount(0); Changed = true; } return Changed; } class HotColdSplittingLegacyPass : public ModulePass { public: static char ID; HotColdSplittingLegacyPass() : ModulePass(ID) { initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addUsedIfAvailable(); } bool runOnModule(Module &M) override; }; } // end anonymous namespace /// Check whether \p F is inherently cold. bool HotColdSplitting::isFunctionCold(const Function &F) const { if (F.hasFnAttribute(Attribute::Cold)) return true; if (F.getCallingConv() == CallingConv::Cold) return true; if (PSI->isFunctionEntryCold(&F)) return true; return false; } // Returns false if the function should not be considered for hot-cold split // optimization. bool HotColdSplitting::shouldOutlineFrom(const Function &F) const { if (F.hasFnAttribute(Attribute::AlwaysInline)) return false; if (F.hasFnAttribute(Attribute::NoInline)) return false; // A function marked `noreturn` may contain unreachable terminators: these // should not be considered cold, as the function may be a trampoline. if (F.hasFnAttribute(Attribute::NoReturn)) return false; if (F.hasFnAttribute(Attribute::SanitizeAddress) || F.hasFnAttribute(Attribute::SanitizeHWAddress) || F.hasFnAttribute(Attribute::SanitizeThread) || F.hasFnAttribute(Attribute::SanitizeMemory)) return false; return true; } /// Get the benefit score of outlining \p Region. static InstructionCost getOutliningBenefit(ArrayRef Region, TargetTransformInfo &TTI) { // Sum up the code size costs of non-terminator instructions. Tight coupling // with \ref getOutliningPenalty is needed to model the costs of terminators. InstructionCost Benefit = 0; for (BasicBlock *BB : Region) for (Instruction &I : BB->instructionsWithoutDebug()) if (&I != BB->getTerminator()) Benefit += TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); return Benefit; } /// Get the penalty score for outlining \p Region. static int getOutliningPenalty(ArrayRef Region, unsigned NumInputs, unsigned NumOutputs) { int Penalty = SplittingThreshold; LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n"); // If the splitting threshold is set at or below zero, skip the usual // profitability check. if (SplittingThreshold <= 0) return Penalty; // Find the number of distinct exit blocks for the region. Use a conservative // check to determine whether control returns from the region. bool NoBlocksReturn = true; SmallPtrSet SuccsOutsideRegion; for (BasicBlock *BB : Region) { // If a block has no successors, only assume it does not return if it's // unreachable. if (succ_empty(BB)) { NoBlocksReturn &= isa(BB->getTerminator()); continue; } for (BasicBlock *SuccBB : successors(BB)) { if (!is_contained(Region, SuccBB)) { NoBlocksReturn = false; SuccsOutsideRegion.insert(SuccBB); } } } // Count the number of phis in exit blocks with >= 2 incoming values from the // outlining region. These phis are split (\ref severSplitPHINodesOfExits), // and new outputs are created to supply the split phis. CodeExtractor can't // report these new outputs until extraction begins, but it's important to // factor the cost of the outputs into the cost calculation. unsigned NumSplitExitPhis = 0; for (BasicBlock *ExitBB : SuccsOutsideRegion) { for (PHINode &PN : ExitBB->phis()) { // Find all incoming values from the outlining region. int NumIncomingVals = 0; for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) if (llvm::is_contained(Region, PN.getIncomingBlock(i))) { ++NumIncomingVals; if (NumIncomingVals > 1) { ++NumSplitExitPhis; break; } } } } // Apply a penalty for calling the split function. Factor in the cost of // materializing all of the parameters. int NumOutputsAndSplitPhis = NumOutputs + NumSplitExitPhis; int NumParams = NumInputs + NumOutputsAndSplitPhis; if (NumParams > MaxParametersForSplit) { LLVM_DEBUG(dbgs() << NumInputs << " inputs and " << NumOutputsAndSplitPhis << " outputs exceeds parameter limit (" << MaxParametersForSplit << ")\n"); return std::numeric_limits::max(); } const int CostForArgMaterialization = 2 * TargetTransformInfo::TCC_Basic; LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumParams << " params\n"); Penalty += CostForArgMaterialization * NumParams; // Apply the typical code size cost for an output alloca and its associated // reload in the caller. Also penalize the associated store in the callee. LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputsAndSplitPhis << " outputs/split phis\n"); const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic; Penalty += CostForRegionOutput * NumOutputsAndSplitPhis; // Apply a `noreturn` bonus. if (NoBlocksReturn) { LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size() << " non-returning terminators\n"); Penalty -= Region.size(); } // Apply a penalty for having more than one successor outside of the region. // This penalty accounts for the switch needed in the caller. if (SuccsOutsideRegion.size() > 1) { LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size() << " non-region successors\n"); Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic; } return Penalty; } Function *HotColdSplitting::extractColdRegion( const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC, DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI, OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) { assert(!Region.empty()); // TODO: Pass BFI and BPI to update profile information. CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr, /* BPI */ nullptr, AC, /* AllowVarArgs */ false, /* AllowAlloca */ false, /* Suffix */ "cold." + std::to_string(Count)); // Perform a simple cost/benefit analysis to decide whether or not to permit // splitting. SetVector Inputs, Outputs, Sinks; CE.findInputsOutputs(Inputs, Outputs, Sinks); InstructionCost OutliningBenefit = getOutliningBenefit(Region, TTI); int OutliningPenalty = getOutliningPenalty(Region, Inputs.size(), Outputs.size()); LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit << ", penalty = " << OutliningPenalty << "\n"); if (!OutliningBenefit.isValid() || OutliningBenefit <= OutliningPenalty) return nullptr; Function *OrigF = Region[0]->getParent(); if (Function *OutF = CE.extractCodeRegion(CEAC)) { User *U = *OutF->user_begin(); CallInst *CI = cast(U); NumColdRegionsOutlined++; if (TTI.useColdCCForColdCall(*OutF)) { OutF->setCallingConv(CallingConv::Cold); CI->setCallingConv(CallingConv::Cold); } CI->setIsNoInline(); if (EnableColdSection) OutF->setSection(ColdSectionName); else { if (OrigF->hasSection()) OutF->setSection(OrigF->getSection()); } markFunctionCold(*OutF, BFI != nullptr); LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF); ORE.emit([&]() { return OptimizationRemark(DEBUG_TYPE, "HotColdSplit", &*Region[0]->begin()) << ore::NV("Original", OrigF) << " split cold code into " << ore::NV("Split", OutF); }); return OutF; } ORE.emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", &*Region[0]->begin()) << "Failed to extract region at block " << ore::NV("Block", Region.front()); }); return nullptr; } /// A pair of (basic block, score). using BlockTy = std::pair; namespace { /// A maximal outlining region. This contains all blocks post-dominated by a /// sink block, the sink block itself, and all blocks dominated by the sink. /// If sink-predecessors and sink-successors cannot be extracted in one region, /// the static constructor returns a list of suitable extraction regions. class OutliningRegion { /// A list of (block, score) pairs. A block's score is non-zero iff it's a /// viable sub-region entry point. Blocks with higher scores are better entry /// points (i.e. they are more distant ancestors of the sink block). SmallVector Blocks = {}; /// The suggested entry point into the region. If the region has multiple /// entry points, all blocks within the region may not be reachable from this /// entry point. BasicBlock *SuggestedEntryPoint = nullptr; /// Whether the entire function is cold. bool EntireFunctionCold = false; /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise. static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) { return mayExtractBlock(BB) ? Score : 0; } /// These scores should be lower than the score for predecessor blocks, /// because regions starting at predecessor blocks are typically larger. static constexpr unsigned ScoreForSuccBlock = 1; static constexpr unsigned ScoreForSinkBlock = 1; OutliningRegion(const OutliningRegion &) = delete; OutliningRegion &operator=(const OutliningRegion &) = delete; public: OutliningRegion() = default; OutliningRegion(OutliningRegion &&) = default; OutliningRegion &operator=(OutliningRegion &&) = default; static std::vector create(BasicBlock &SinkBB, const DominatorTree &DT, const PostDominatorTree &PDT) { std::vector Regions; SmallPtrSet RegionBlocks; Regions.emplace_back(); OutliningRegion *ColdRegion = &Regions.back(); auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) { RegionBlocks.insert(BB); ColdRegion->Blocks.emplace_back(BB, Score); }; // The ancestor farthest-away from SinkBB, and also post-dominated by it. unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock); ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr; unsigned BestScore = SinkScore; // Visit SinkBB's ancestors using inverse DFS. auto PredIt = ++idf_begin(&SinkBB); auto PredEnd = idf_end(&SinkBB); while (PredIt != PredEnd) { BasicBlock &PredBB = **PredIt; bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB); // If the predecessor is cold and has no predecessors, the entire // function must be cold. if (SinkPostDom && pred_empty(&PredBB)) { ColdRegion->EntireFunctionCold = true; return Regions; } // If SinkBB does not post-dominate a predecessor, do not mark the // predecessor (or any of its predecessors) cold. if (!SinkPostDom || !mayExtractBlock(PredBB)) { PredIt.skipChildren(); continue; } // Keep track of the post-dominated ancestor farthest away from the sink. // The path length is always >= 2, ensuring that predecessor blocks are // considered as entry points before the sink block. unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength()); if (PredScore > BestScore) { ColdRegion->SuggestedEntryPoint = &PredBB; BestScore = PredScore; } addBlockToRegion(&PredBB, PredScore); ++PredIt; } // If the sink can be added to the cold region, do so. It's considered as // an entry point before any sink-successor blocks. // // Otherwise, split cold sink-successor blocks using a separate region. // This satisfies the requirement that all extraction blocks other than the // first have predecessors within the extraction region. if (mayExtractBlock(SinkBB)) { addBlockToRegion(&SinkBB, SinkScore); if (pred_empty(&SinkBB)) { ColdRegion->EntireFunctionCold = true; return Regions; } } else { Regions.emplace_back(); ColdRegion = &Regions.back(); BestScore = 0; } // Find all successors of SinkBB dominated by SinkBB using DFS. auto SuccIt = ++df_begin(&SinkBB); auto SuccEnd = df_end(&SinkBB); while (SuccIt != SuccEnd) { BasicBlock &SuccBB = **SuccIt; bool SinkDom = DT.dominates(&SinkBB, &SuccBB); // Don't allow the backwards & forwards DFSes to mark the same block. bool DuplicateBlock = RegionBlocks.count(&SuccBB); // If SinkBB does not dominate a successor, do not mark the successor (or // any of its successors) cold. if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) { SuccIt.skipChildren(); continue; } unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock); if (SuccScore > BestScore) { ColdRegion->SuggestedEntryPoint = &SuccBB; BestScore = SuccScore; } addBlockToRegion(&SuccBB, SuccScore); ++SuccIt; } return Regions; } /// Whether this region has nothing to extract. bool empty() const { return !SuggestedEntryPoint; } /// The blocks in this region. ArrayRef> blocks() const { return Blocks; } /// Whether the entire function containing this region is cold. bool isEntireFunctionCold() const { return EntireFunctionCold; } /// Remove a sub-region from this region and return it as a block sequence. BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) { assert(!empty() && !isEntireFunctionCold() && "Nothing to extract"); // Remove blocks dominated by the suggested entry point from this region. // During the removal, identify the next best entry point into the region. // Ensure that the first extracted block is the suggested entry point. BlockSequence SubRegion = {SuggestedEntryPoint}; BasicBlock *NextEntryPoint = nullptr; unsigned NextScore = 0; auto RegionEndIt = Blocks.end(); auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) { BasicBlock *BB = Block.first; unsigned Score = Block.second; bool InSubRegion = BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB); if (!InSubRegion && Score > NextScore) { NextEntryPoint = BB; NextScore = Score; } if (InSubRegion && BB != SuggestedEntryPoint) SubRegion.push_back(BB); return InSubRegion; }); Blocks.erase(RegionStartIt, RegionEndIt); // Update the suggested entry point. SuggestedEntryPoint = NextEntryPoint; return SubRegion; } }; } // namespace bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) { bool Changed = false; // The set of cold blocks. SmallPtrSet ColdBlocks; // The worklist of non-intersecting regions left to outline. SmallVector OutliningWorklist; // Set up an RPO traversal. Experimentally, this performs better (outlines // more) than a PO traversal, because we prevent region overlap by keeping // the first region to contain a block. ReversePostOrderTraversal RPOT(&F); // Calculate domtrees lazily. This reduces compile-time significantly. std::unique_ptr DT; std::unique_ptr PDT; // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This // reduces compile-time significantly. TODO: When we *do* use BFI, we should // be able to salvage its domtrees instead of recomputing them. BlockFrequencyInfo *BFI = nullptr; if (HasProfileSummary) BFI = GetBFI(F); TargetTransformInfo &TTI = GetTTI(F); OptimizationRemarkEmitter &ORE = (*GetORE)(F); AssumptionCache *AC = LookupAC(F); // Find all cold regions. for (BasicBlock *BB : RPOT) { // This block is already part of some outlining region. if (ColdBlocks.count(BB)) continue; bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) || (EnableStaticAnalysis && unlikelyExecuted(*BB)); if (!Cold) continue; LLVM_DEBUG({ dbgs() << "Found a cold block:\n"; BB->dump(); }); if (!DT) DT = std::make_unique(F); if (!PDT) PDT = std::make_unique(F); auto Regions = OutliningRegion::create(*BB, *DT, *PDT); for (OutliningRegion &Region : Regions) { if (Region.empty()) continue; if (Region.isEntireFunctionCold()) { LLVM_DEBUG(dbgs() << "Entire function is cold\n"); return markFunctionCold(F); } // If this outlining region intersects with another, drop the new region. // // TODO: It's theoretically possible to outline more by only keeping the // largest region which contains a block, but the extra bookkeeping to do // this is tricky/expensive. bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) { return !ColdBlocks.insert(Block.first).second; }); if (RegionsOverlap) continue; OutliningWorklist.emplace_back(std::move(Region)); ++NumColdRegionsFound; } } if (OutliningWorklist.empty()) return Changed; // Outline single-entry cold regions, splitting up larger regions as needed. unsigned OutlinedFunctionID = 1; // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time. CodeExtractorAnalysisCache CEAC(F); do { OutliningRegion Region = OutliningWorklist.pop_back_val(); assert(!Region.empty() && "Empty outlining region in worklist"); do { BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT); LLVM_DEBUG({ dbgs() << "Hot/cold splitting attempting to outline these blocks:\n"; for (BasicBlock *BB : SubRegion) BB->dump(); }); Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI, ORE, AC, OutlinedFunctionID); if (Outlined) { ++OutlinedFunctionID; Changed = true; } } while (!Region.empty()); } while (!OutliningWorklist.empty()); return Changed; } bool HotColdSplitting::run(Module &M) { bool Changed = false; bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr); for (Function &F : M) { // Do not touch declarations. if (F.isDeclaration()) continue; // Do not modify `optnone` functions. if (F.hasOptNone()) continue; // Detect inherently cold functions and mark them as such. if (isFunctionCold(F)) { Changed |= markFunctionCold(F); continue; } if (!shouldOutlineFrom(F)) { LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n"); continue; } LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n"); Changed |= outlineColdRegions(F, HasProfileSummary); } return Changed; } bool HotColdSplittingLegacyPass::runOnModule(Module &M) { if (skipModule(M)) return false; ProfileSummaryInfo *PSI = &getAnalysis().getPSI(); auto GTTI = [this](Function &F) -> TargetTransformInfo & { return this->getAnalysis().getTTI(F); }; auto GBFI = [this](Function &F) { return &this->getAnalysis(F).getBFI(); }; std::unique_ptr ORE; std::function GetORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & { ORE.reset(new OptimizationRemarkEmitter(&F)); return *ORE.get(); }; auto LookupAC = [this](Function &F) -> AssumptionCache * { if (auto *ACT = getAnalysisIfAvailable()) return ACT->lookupAssumptionCache(F); return nullptr; }; return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M); } PreservedAnalyses HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) { auto &FAM = AM.getResult(M).getManager(); auto LookupAC = [&FAM](Function &F) -> AssumptionCache * { return FAM.getCachedResult(F); }; auto GBFI = [&FAM](Function &F) { return &FAM.getResult(F); }; std::function GTTI = [&FAM](Function &F) -> TargetTransformInfo & { return FAM.getResult(F); }; std::unique_ptr ORE; std::function GetORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & { ORE.reset(new OptimizationRemarkEmitter(&F)); return *ORE.get(); }; ProfileSummaryInfo *PSI = &AM.getResult(M); if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M)) return PreservedAnalyses::none(); return PreservedAnalyses::all(); } char HotColdSplittingLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit", "Hot Cold Splitting", false, false) INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit", "Hot Cold Splitting", false, false) ModulePass *llvm::createHotColdSplittingPass() { return new HotColdSplittingLegacyPass(); }