//=-- SampleProf.cpp - Sample profiling format support --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains common definitions used in the reading and writing of // sample profile data. // //===----------------------------------------------------------------------===// #include "llvm/ProfileData/SampleProf.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/PseudoProbe.h" #include "llvm/ProfileData/SampleProfReader.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; using namespace sampleprof; static cl::opt ProfileSymbolListCutOff( "profile-symbol-list-cutoff", cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::desc("Cutoff value about how many symbols in profile symbol list " "will be used. This is very useful for performance debugging")); cl::opt GenerateMergedBaseProfiles( "generate-merged-base-profiles", cl::init(true), cl::ZeroOrMore, cl::desc("When generating nested context-sensitive profiles, always " "generate extra base profile for function with all its context " "profiles merged into it.")); namespace llvm { namespace sampleprof { SampleProfileFormat FunctionSamples::Format; bool FunctionSamples::ProfileIsProbeBased = false; bool FunctionSamples::ProfileIsCSFlat = false; bool FunctionSamples::ProfileIsCSNested = false; bool FunctionSamples::UseMD5 = false; bool FunctionSamples::HasUniqSuffix = true; bool FunctionSamples::ProfileIsFS = false; } // namespace sampleprof } // namespace llvm namespace { // FIXME: This class is only here to support the transition to llvm::Error. It // will be removed once this transition is complete. Clients should prefer to // deal with the Error value directly, rather than converting to error_code. class SampleProfErrorCategoryType : public std::error_category { const char *name() const noexcept override { return "llvm.sampleprof"; } std::string message(int IE) const override { sampleprof_error E = static_cast(IE); switch (E) { case sampleprof_error::success: return "Success"; case sampleprof_error::bad_magic: return "Invalid sample profile data (bad magic)"; case sampleprof_error::unsupported_version: return "Unsupported sample profile format version"; case sampleprof_error::too_large: return "Too much profile data"; case sampleprof_error::truncated: return "Truncated profile data"; case sampleprof_error::malformed: return "Malformed sample profile data"; case sampleprof_error::unrecognized_format: return "Unrecognized sample profile encoding format"; case sampleprof_error::unsupported_writing_format: return "Profile encoding format unsupported for writing operations"; case sampleprof_error::truncated_name_table: return "Truncated function name table"; case sampleprof_error::not_implemented: return "Unimplemented feature"; case sampleprof_error::counter_overflow: return "Counter overflow"; case sampleprof_error::ostream_seek_unsupported: return "Ostream does not support seek"; case sampleprof_error::compress_failed: return "Compress failure"; case sampleprof_error::uncompress_failed: return "Uncompress failure"; case sampleprof_error::zlib_unavailable: return "Zlib is unavailable"; case sampleprof_error::hash_mismatch: return "Function hash mismatch"; } llvm_unreachable("A value of sampleprof_error has no message."); } }; } // end anonymous namespace static ManagedStatic ErrorCategory; const std::error_category &llvm::sampleprof_category() { return *ErrorCategory; } void LineLocation::print(raw_ostream &OS) const { OS << LineOffset; if (Discriminator > 0) OS << "." << Discriminator; } raw_ostream &llvm::sampleprof::operator<<(raw_ostream &OS, const LineLocation &Loc) { Loc.print(OS); return OS; } /// Merge the samples in \p Other into this record. /// Optionally scale sample counts by \p Weight. sampleprof_error SampleRecord::merge(const SampleRecord &Other, uint64_t Weight) { sampleprof_error Result; Result = addSamples(Other.getSamples(), Weight); for (const auto &I : Other.getCallTargets()) { MergeResult(Result, addCalledTarget(I.first(), I.second, Weight)); } return Result; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void LineLocation::dump() const { print(dbgs()); } #endif /// Print the sample record to the stream \p OS indented by \p Indent. void SampleRecord::print(raw_ostream &OS, unsigned Indent) const { OS << NumSamples; if (hasCalls()) { OS << ", calls:"; for (const auto &I : getSortedCallTargets()) OS << " " << I.first << ":" << I.second; } OS << "\n"; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void SampleRecord::dump() const { print(dbgs(), 0); } #endif raw_ostream &llvm::sampleprof::operator<<(raw_ostream &OS, const SampleRecord &Sample) { Sample.print(OS, 0); return OS; } /// Print the samples collected for a function on stream \p OS. void FunctionSamples::print(raw_ostream &OS, unsigned Indent) const { if (getFunctionHash()) OS << "CFG checksum " << getFunctionHash() << "\n"; OS << TotalSamples << ", " << TotalHeadSamples << ", " << BodySamples.size() << " sampled lines\n"; OS.indent(Indent); if (!BodySamples.empty()) { OS << "Samples collected in the function's body {\n"; SampleSorter SortedBodySamples(BodySamples); for (const auto &SI : SortedBodySamples.get()) { OS.indent(Indent + 2); OS << SI->first << ": " << SI->second; } OS.indent(Indent); OS << "}\n"; } else { OS << "No samples collected in the function's body\n"; } OS.indent(Indent); if (!CallsiteSamples.empty()) { OS << "Samples collected in inlined callsites {\n"; SampleSorter SortedCallsiteSamples( CallsiteSamples); for (const auto &CS : SortedCallsiteSamples.get()) { for (const auto &FS : CS->second) { OS.indent(Indent + 2); OS << CS->first << ": inlined callee: " << FS.second.getName() << ": "; FS.second.print(OS, Indent + 4); } } OS.indent(Indent); OS << "}\n"; } else { OS << "No inlined callsites in this function\n"; } } raw_ostream &llvm::sampleprof::operator<<(raw_ostream &OS, const FunctionSamples &FS) { FS.print(OS); return OS; } void sampleprof::sortFuncProfiles( const SampleProfileMap &ProfileMap, std::vector &SortedProfiles) { for (const auto &I : ProfileMap) { assert(I.first == I.second.getContext() && "Inconsistent profile map"); SortedProfiles.push_back(std::make_pair(I.second.getContext(), &I.second)); } llvm::stable_sort(SortedProfiles, [](const NameFunctionSamples &A, const NameFunctionSamples &B) { if (A.second->getTotalSamples() == B.second->getTotalSamples()) return A.first < B.first; return A.second->getTotalSamples() > B.second->getTotalSamples(); }); } unsigned FunctionSamples::getOffset(const DILocation *DIL) { return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) & 0xffff; } LineLocation FunctionSamples::getCallSiteIdentifier(const DILocation *DIL, bool ProfileIsFS) { if (FunctionSamples::ProfileIsProbeBased) { // In a pseudo-probe based profile, a callsite is simply represented by the // ID of the probe associated with the call instruction. The probe ID is // encoded in the Discriminator field of the call instruction's debug // metadata. return LineLocation(PseudoProbeDwarfDiscriminator::extractProbeIndex( DIL->getDiscriminator()), 0); } else { unsigned Discriminator = ProfileIsFS ? DIL->getDiscriminator() : DIL->getBaseDiscriminator(); return LineLocation(FunctionSamples::getOffset(DIL), Discriminator); } } uint64_t FunctionSamples::getCallSiteHash(StringRef CalleeName, const LineLocation &Callsite) { uint64_t NameHash = std::hash{}(CalleeName.str()); uint64_t LocId = (((uint64_t)Callsite.LineOffset) << 32) | Callsite.Discriminator; return NameHash + (LocId << 5) + LocId; } const FunctionSamples *FunctionSamples::findFunctionSamples( const DILocation *DIL, SampleProfileReaderItaniumRemapper *Remapper) const { assert(DIL); SmallVector, 10> S; const DILocation *PrevDIL = DIL; for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) { // Use C++ linkage name if possible. StringRef Name = PrevDIL->getScope()->getSubprogram()->getLinkageName(); if (Name.empty()) Name = PrevDIL->getScope()->getSubprogram()->getName(); S.emplace_back(FunctionSamples::getCallSiteIdentifier( DIL, FunctionSamples::ProfileIsFS), Name); PrevDIL = DIL; } if (S.size() == 0) return this; const FunctionSamples *FS = this; for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { FS = FS->findFunctionSamplesAt(S[i].first, S[i].second, Remapper); } return FS; } void FunctionSamples::findAllNames(DenseSet &NameSet) const { NameSet.insert(getName()); for (const auto &BS : BodySamples) for (const auto &TS : BS.second.getCallTargets()) NameSet.insert(TS.getKey()); for (const auto &CS : CallsiteSamples) { for (const auto &NameFS : CS.second) { NameSet.insert(NameFS.first); NameFS.second.findAllNames(NameSet); } } } const FunctionSamples *FunctionSamples::findFunctionSamplesAt( const LineLocation &Loc, StringRef CalleeName, SampleProfileReaderItaniumRemapper *Remapper) const { CalleeName = getCanonicalFnName(CalleeName); std::string CalleeGUID; CalleeName = getRepInFormat(CalleeName, UseMD5, CalleeGUID); auto iter = CallsiteSamples.find(Loc); if (iter == CallsiteSamples.end()) return nullptr; auto FS = iter->second.find(CalleeName); if (FS != iter->second.end()) return &FS->second; if (Remapper) { if (auto NameInProfile = Remapper->lookUpNameInProfile(CalleeName)) { auto FS = iter->second.find(*NameInProfile); if (FS != iter->second.end()) return &FS->second; } } // If we cannot find exact match of the callee name, return the FS with // the max total count. Only do this when CalleeName is not provided, // i.e., only for indirect calls. if (!CalleeName.empty()) return nullptr; uint64_t MaxTotalSamples = 0; const FunctionSamples *R = nullptr; for (const auto &NameFS : iter->second) if (NameFS.second.getTotalSamples() >= MaxTotalSamples) { MaxTotalSamples = NameFS.second.getTotalSamples(); R = &NameFS.second; } return R; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void FunctionSamples::dump() const { print(dbgs(), 0); } #endif std::error_code ProfileSymbolList::read(const uint8_t *Data, uint64_t ListSize) { const char *ListStart = reinterpret_cast(Data); uint64_t Size = 0; uint64_t StrNum = 0; while (Size < ListSize && StrNum < ProfileSymbolListCutOff) { StringRef Str(ListStart + Size); add(Str); Size += Str.size() + 1; StrNum++; } if (Size != ListSize && StrNum != ProfileSymbolListCutOff) return sampleprof_error::malformed; return sampleprof_error::success; } void SampleContextTrimmer::trimAndMergeColdContextProfiles( uint64_t ColdCountThreshold, bool TrimColdContext, bool MergeColdContext, uint32_t ColdContextFrameLength, bool TrimBaseProfileOnly) { if (!TrimColdContext && !MergeColdContext) return; // Nothing to merge if sample threshold is zero if (ColdCountThreshold == 0) return; // Trimming base profiles only is mainly to honor the preinliner decsion. When // MergeColdContext is true preinliner decsion is not honored anyway so turn // off TrimBaseProfileOnly. if (MergeColdContext) TrimBaseProfileOnly = false; // Filter the cold profiles from ProfileMap and move them into a tmp // container std::vector> ColdProfiles; for (const auto &I : ProfileMap) { const SampleContext &Context = I.first; const FunctionSamples &FunctionProfile = I.second; if (FunctionProfile.getTotalSamples() < ColdCountThreshold && (!TrimBaseProfileOnly || Context.isBaseContext())) ColdProfiles.emplace_back(Context, &I.second); } // Remove the cold profile from ProfileMap and merge them into // MergedProfileMap by the last K frames of context SampleProfileMap MergedProfileMap; for (const auto &I : ColdProfiles) { if (MergeColdContext) { auto MergedContext = I.second->getContext().getContextFrames(); if (ColdContextFrameLength < MergedContext.size()) MergedContext = MergedContext.take_back(ColdContextFrameLength); auto Ret = MergedProfileMap.emplace(MergedContext, FunctionSamples()); FunctionSamples &MergedProfile = Ret.first->second; MergedProfile.merge(*I.second); } ProfileMap.erase(I.first); } // Move the merged profiles into ProfileMap; for (const auto &I : MergedProfileMap) { // Filter the cold merged profile if (TrimColdContext && I.second.getTotalSamples() < ColdCountThreshold && ProfileMap.find(I.first) == ProfileMap.end()) continue; // Merge the profile if the original profile exists, otherwise just insert // as a new profile auto Ret = ProfileMap.emplace(I.first, FunctionSamples()); if (Ret.second) { SampleContext FContext(Ret.first->first, RawContext); FunctionSamples &FProfile = Ret.first->second; FProfile.setContext(FContext); } FunctionSamples &OrigProfile = Ret.first->second; OrigProfile.merge(I.second); } } void SampleContextTrimmer::canonicalizeContextProfiles() { std::vector ProfilesToBeRemoved; SampleProfileMap ProfilesToBeAdded; for (auto &I : ProfileMap) { FunctionSamples &FProfile = I.second; SampleContext &Context = FProfile.getContext(); if (I.first == Context) continue; // Use the context string from FunctionSamples to update the keys of // ProfileMap. They can get out of sync after context profile promotion // through pre-inliner. // Duplicate the function profile for later insertion to avoid a conflict // caused by a context both to be add and to be removed. This could happen // when a context is promoted to another context which is also promoted to // the third context. For example, given an original context A @ B @ C that // is promoted to B @ C and the original context B @ C which is promoted to // just C, adding B @ C to the profile map while removing same context (but // with different profiles) from the map can cause a conflict if they are // not handled in a right order. This can be solved by just caching the // profiles to be added. auto Ret = ProfilesToBeAdded.emplace(Context, FProfile); (void)Ret; assert(Ret.second && "Context conflict during canonicalization"); ProfilesToBeRemoved.push_back(I.first); } for (auto &I : ProfilesToBeRemoved) { ProfileMap.erase(I); } for (auto &I : ProfilesToBeAdded) { ProfileMap.emplace(I.first, I.second); } } std::error_code ProfileSymbolList::write(raw_ostream &OS) { // Sort the symbols before output. If doing compression. // It will make the compression much more effective. std::vector SortedList(Syms.begin(), Syms.end()); llvm::sort(SortedList); std::string OutputString; for (auto &Sym : SortedList) { OutputString.append(Sym.str()); OutputString.append(1, '\0'); } OS << OutputString; return sampleprof_error::success; } void ProfileSymbolList::dump(raw_ostream &OS) const { OS << "======== Dump profile symbol list ========\n"; std::vector SortedList(Syms.begin(), Syms.end()); llvm::sort(SortedList); for (auto &Sym : SortedList) OS << Sym << "\n"; } CSProfileConverter::FrameNode * CSProfileConverter::FrameNode::getOrCreateChildFrame( const LineLocation &CallSite, StringRef CalleeName) { uint64_t Hash = FunctionSamples::getCallSiteHash(CalleeName, CallSite); auto It = AllChildFrames.find(Hash); if (It != AllChildFrames.end()) { assert(It->second.FuncName == CalleeName && "Hash collision for child context node"); return &It->second; } AllChildFrames[Hash] = FrameNode(CalleeName, nullptr, CallSite); return &AllChildFrames[Hash]; } CSProfileConverter::CSProfileConverter(SampleProfileMap &Profiles) : ProfileMap(Profiles) { for (auto &FuncSample : Profiles) { FunctionSamples *FSamples = &FuncSample.second; auto *NewNode = getOrCreateContextPath(FSamples->getContext()); assert(!NewNode->FuncSamples && "New node cannot have sample profile"); NewNode->FuncSamples = FSamples; } } CSProfileConverter::FrameNode * CSProfileConverter::getOrCreateContextPath(const SampleContext &Context) { auto Node = &RootFrame; LineLocation CallSiteLoc(0, 0); for (auto &Callsite : Context.getContextFrames()) { Node = Node->getOrCreateChildFrame(CallSiteLoc, Callsite.FuncName); CallSiteLoc = Callsite.Location; } return Node; } void CSProfileConverter::convertProfiles(CSProfileConverter::FrameNode &Node) { // Process each child profile. Add each child profile to callsite profile map // of the current node `Node` if `Node` comes with a profile. Otherwise // promote the child profile to a standalone profile. auto *NodeProfile = Node.FuncSamples; for (auto &It : Node.AllChildFrames) { auto &ChildNode = It.second; convertProfiles(ChildNode); auto *ChildProfile = ChildNode.FuncSamples; if (!ChildProfile) continue; SampleContext OrigChildContext = ChildProfile->getContext(); // Reset the child context to be contextless. ChildProfile->getContext().setName(OrigChildContext.getName()); if (NodeProfile) { // Add child profile to the callsite profile map. auto &SamplesMap = NodeProfile->functionSamplesAt(ChildNode.CallSiteLoc); SamplesMap.emplace(OrigChildContext.getName().str(), *ChildProfile); NodeProfile->addTotalSamples(ChildProfile->getTotalSamples()); } // Separate child profile to be a standalone profile, if the current parent // profile doesn't exist. This is a duplicating operation when the child // profile is already incorporated into the parent which is still useful and // thus done optionally. It is seen that duplicating context profiles into // base profiles improves the code quality for thinlto build by allowing a // profile in the prelink phase for to-be-fully-inlined functions. if (!NodeProfile || GenerateMergedBaseProfiles) ProfileMap[ChildProfile->getContext()].merge(*ChildProfile); // Contexts coming with a `ContextShouldBeInlined` attribute indicate this // is a preinliner-computed profile. if (OrigChildContext.hasAttribute(ContextShouldBeInlined)) FunctionSamples::ProfileIsCSNested = true; // Remove the original child profile. ProfileMap.erase(OrigChildContext); } } void CSProfileConverter::convertProfiles() { convertProfiles(RootFrame); }