// Copyright 2019 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #ifndef Y_ABSL_RANDOM_INTERNAL_UNIFORM_HELPER_H_ #define Y_ABSL_RANDOM_INTERNAL_UNIFORM_HELPER_H_ #include #include #include #include "y_absl/base/config.h" #include "y_absl/meta/type_traits.h" #include "y_absl/random/internal/traits.h" namespace y_absl { Y_ABSL_NAMESPACE_BEGIN template class uniform_int_distribution; template class uniform_real_distribution; // Interval tag types which specify whether the interval is open or closed // on either boundary. namespace random_internal { template struct TagTypeCompare {}; template constexpr bool operator==(TagTypeCompare, TagTypeCompare) { // Tags are mono-states. They always compare equal. return true; } template constexpr bool operator!=(TagTypeCompare, TagTypeCompare) { return false; } } // namespace random_internal struct IntervalClosedClosedTag : public random_internal::TagTypeCompare {}; struct IntervalClosedOpenTag : public random_internal::TagTypeCompare {}; struct IntervalOpenClosedTag : public random_internal::TagTypeCompare {}; struct IntervalOpenOpenTag : public random_internal::TagTypeCompare {}; namespace random_internal { // In the absence of an explicitly provided return-type, the template // "uniform_inferred_return_t" is used to derive a suitable type, based on // the data-types of the endpoint-arguments {A lo, B hi}. // // Given endpoints {A lo, B hi}, one of {A, B} will be chosen as the // return-type, if one type can be implicitly converted into the other, in a // lossless way. The template "is_widening_convertible" implements the // compile-time logic for deciding if such a conversion is possible. // // If no such conversion between {A, B} exists, then the overload for // y_absl::Uniform() will be discarded, and the call will be ill-formed. // Return-type for y_absl::Uniform() when the return-type is inferred. template using uniform_inferred_return_t = y_absl::enable_if_t, is_widening_convertible>::value, typename std::conditional< is_widening_convertible::value, B, A>::type>; // The functions // uniform_lower_bound(tag, a, b) // and // uniform_upper_bound(tag, a, b) // are used as implementation-details for y_absl::Uniform(). // // Conceptually, // [a, b] == [uniform_lower_bound(IntervalClosedClosed, a, b), // uniform_upper_bound(IntervalClosedClosed, a, b)] // (a, b) == [uniform_lower_bound(IntervalOpenOpen, a, b), // uniform_upper_bound(IntervalOpenOpen, a, b)] // [a, b) == [uniform_lower_bound(IntervalClosedOpen, a, b), // uniform_upper_bound(IntervalClosedOpen, a, b)] // (a, b] == [uniform_lower_bound(IntervalOpenClosed, a, b), // uniform_upper_bound(IntervalOpenClosed, a, b)] // template typename y_absl::enable_if_t< y_absl::conjunction< IsIntegral, y_absl::disjunction, std::is_same>>::value, IntType> uniform_lower_bound(Tag, IntType a, IntType) { return a < (std::numeric_limits::max)() ? (a + 1) : a; } template typename y_absl::enable_if_t< y_absl::conjunction< std::is_floating_point, y_absl::disjunction, std::is_same>>::value, FloatType> uniform_lower_bound(Tag, FloatType a, FloatType b) { return std::nextafter(a, b); } template typename y_absl::enable_if_t< y_absl::disjunction, std::is_same>::value, NumType> uniform_lower_bound(Tag, NumType a, NumType) { return a; } template typename y_absl::enable_if_t< y_absl::conjunction< IsIntegral, y_absl::disjunction, std::is_same>>::value, IntType> uniform_upper_bound(Tag, IntType, IntType b) { return b > (std::numeric_limits::min)() ? (b - 1) : b; } template typename y_absl::enable_if_t< y_absl::conjunction< std::is_floating_point, y_absl::disjunction, std::is_same>>::value, FloatType> uniform_upper_bound(Tag, FloatType, FloatType b) { return b; } template typename y_absl::enable_if_t< y_absl::conjunction< IsIntegral, y_absl::disjunction, std::is_same>>::value, IntType> uniform_upper_bound(Tag, IntType, IntType b) { return b; } template typename y_absl::enable_if_t< y_absl::conjunction< std::is_floating_point, y_absl::disjunction, std::is_same>>::value, FloatType> uniform_upper_bound(Tag, FloatType, FloatType b) { return std::nextafter(b, (std::numeric_limits::max)()); } // Returns whether the bounds are valid for the underlying distribution. // Inputs must have already been resolved via uniform_*_bound calls. // // The c++ standard constraints in [rand.dist.uni.int] are listed as: // requires: lo <= hi. // // In the uniform_int_distrubtion, {lo, hi} are closed, closed. Thus: // [0, 0] is legal. // [0, 0) is not legal, but [0, 1) is, which translates to [0, 0]. // (0, 1) is not legal, but (0, 2) is, which translates to [1, 1]. // (0, 0] is not legal, but (0, 1] is, which translates to [1, 1]. // // The c++ standard constraints in [rand.dist.uni.real] are listed as: // requires: lo <= hi. // requires: (hi - lo) <= numeric_limits::max() // // In the uniform_real_distribution, {lo, hi} are closed, open, Thus: // [0, 0] is legal, which is [0, 0+epsilon). // [0, 0) is legal. // (0, 0) is not legal, but (0-epsilon, 0+epsilon) is. // (0, 0] is not legal, but (0, 0+epsilon] is. // template y_absl::enable_if_t::value, bool> is_uniform_range_valid(FloatType a, FloatType b) { return a <= b && std::isfinite(b - a); } template y_absl::enable_if_t::value, bool> is_uniform_range_valid(IntType a, IntType b) { return a <= b; } // UniformDistribution selects either y_absl::uniform_int_distribution // or y_absl::uniform_real_distribution depending on the NumType parameter. template using UniformDistribution = typename std::conditional::value, y_absl::uniform_int_distribution, y_absl::uniform_real_distribution>::type; // UniformDistributionWrapper is used as the underlying distribution type // by the y_absl::Uniform template function. It selects the proper Abseil // uniform distribution and provides constructor overloads that match the // expected parameter order as well as adjusting distribution bounds based // on the tag. template struct UniformDistributionWrapper : public UniformDistribution { template explicit UniformDistributionWrapper(TagType, NumType lo, NumType hi) : UniformDistribution( uniform_lower_bound(TagType{}, lo, hi), uniform_upper_bound(TagType{}, lo, hi)) {} explicit UniformDistributionWrapper(NumType lo, NumType hi) : UniformDistribution( uniform_lower_bound(IntervalClosedOpenTag(), lo, hi), uniform_upper_bound(IntervalClosedOpenTag(), lo, hi)) {} explicit UniformDistributionWrapper() : UniformDistribution(std::numeric_limits::lowest(), (std::numeric_limits::max)()) {} }; } // namespace random_internal Y_ABSL_NAMESPACE_END } // namespace y_absl #endif // Y_ABSL_RANDOM_INTERNAL_UNIFORM_HELPER_H_