//===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file implements a set of utility VPlan to VPlan transformations. /// //===----------------------------------------------------------------------===// #include "VPlanTransforms.h" #include "llvm/ADT/PostOrderIterator.h" using namespace llvm; void VPlanTransforms::VPInstructionsToVPRecipes( Loop *OrigLoop, VPlanPtr &Plan, function_ref GetIntOrFpInductionDescriptor, SmallPtrSetImpl &DeadInstructions, ScalarEvolution &SE) { auto *TopRegion = cast(Plan->getEntry()); ReversePostOrderTraversal RPOT(TopRegion->getEntry()); for (VPBlockBase *Base : RPOT) { // Do not widen instructions in pre-header and exit blocks. if (Base->getNumPredecessors() == 0 || Base->getNumSuccessors() == 0) continue; VPBasicBlock *VPBB = Base->getEntryBasicBlock(); // Introduce each ingredient into VPlan. for (VPRecipeBase &Ingredient : llvm::make_early_inc_range(*VPBB)) { VPValue *VPV = Ingredient.getVPSingleValue(); Instruction *Inst = cast(VPV->getUnderlyingValue()); if (DeadInstructions.count(Inst)) { VPValue DummyValue; VPV->replaceAllUsesWith(&DummyValue); Ingredient.eraseFromParent(); continue; } VPRecipeBase *NewRecipe = nullptr; if (auto *VPPhi = dyn_cast(&Ingredient)) { auto *Phi = cast(VPPhi->getUnderlyingValue()); if (const auto *II = GetIntOrFpInductionDescriptor(Phi)) { VPValue *Start = Plan->getOrAddVPValue(II->getStartValue()); NewRecipe = new VPWidenIntOrFpInductionRecipe(Phi, Start, *II, false, true); } else { Plan->addVPValue(Phi, VPPhi); continue; } } else { assert(isa(&Ingredient) && "only VPInstructions expected here"); assert(!isa(Inst) && "phis should be handled above"); // Create VPWidenMemoryInstructionRecipe for loads and stores. if (LoadInst *Load = dyn_cast(Inst)) { NewRecipe = new VPWidenMemoryInstructionRecipe( *Load, Plan->getOrAddVPValue(getLoadStorePointerOperand(Inst)), nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/); } else if (StoreInst *Store = dyn_cast(Inst)) { NewRecipe = new VPWidenMemoryInstructionRecipe( *Store, Plan->getOrAddVPValue(getLoadStorePointerOperand(Inst)), Plan->getOrAddVPValue(Store->getValueOperand()), nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/); } else if (GetElementPtrInst *GEP = dyn_cast(Inst)) { NewRecipe = new VPWidenGEPRecipe( GEP, Plan->mapToVPValues(GEP->operands()), OrigLoop); } else if (CallInst *CI = dyn_cast(Inst)) { NewRecipe = new VPWidenCallRecipe(*CI, Plan->mapToVPValues(CI->args())); } else if (SelectInst *SI = dyn_cast(Inst)) { bool InvariantCond = SE.isLoopInvariant(SE.getSCEV(SI->getOperand(0)), OrigLoop); NewRecipe = new VPWidenSelectRecipe( *SI, Plan->mapToVPValues(SI->operands()), InvariantCond); } else { NewRecipe = new VPWidenRecipe(*Inst, Plan->mapToVPValues(Inst->operands())); } } NewRecipe->insertBefore(&Ingredient); if (NewRecipe->getNumDefinedValues() == 1) VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue()); else assert(NewRecipe->getNumDefinedValues() == 0 && "Only recpies with zero or one defined values expected"); Ingredient.eraseFromParent(); Plan->removeVPValueFor(Inst); for (auto *Def : NewRecipe->definedValues()) { Plan->addVPValue(Inst, Def); } } } } bool VPlanTransforms::sinkScalarOperands(VPlan &Plan) { auto Iter = depth_first( VPBlockRecursiveTraversalWrapper(Plan.getEntry())); bool Changed = false; // First, collect the operands of all predicated replicate recipes as seeds // for sinking. SetVector> WorkList; for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly(Iter)) { for (auto &Recipe : *VPBB) { auto *RepR = dyn_cast(&Recipe); if (!RepR || !RepR->isPredicated()) continue; for (VPValue *Op : RepR->operands()) WorkList.insert(std::make_pair(RepR->getParent(), Op)); } } // Try to sink each replicate recipe in the worklist. while (!WorkList.empty()) { VPBasicBlock *SinkTo; VPValue *C; std::tie(SinkTo, C) = WorkList.pop_back_val(); auto *SinkCandidate = dyn_cast_or_null(C->Def); if (!SinkCandidate || SinkCandidate->isUniform() || SinkCandidate->getParent() == SinkTo || SinkCandidate->mayHaveSideEffects() || SinkCandidate->mayReadOrWriteMemory()) continue; bool NeedsDuplicating = false; // All recipe users of the sink candidate must be in the same block SinkTo // or all users outside of SinkTo must be uniform-after-vectorization ( // i.e., only first lane is used) . In the latter case, we need to duplicate // SinkCandidate. At the moment, we identify such UAV's by looking for the // address operands of widened memory recipes. auto CanSinkWithUser = [SinkTo, &NeedsDuplicating, SinkCandidate](VPUser *U) { auto *UI = dyn_cast(U); if (!UI) return false; if (UI->getParent() == SinkTo) return true; auto *WidenI = dyn_cast(UI); if (WidenI && WidenI->getAddr() == SinkCandidate) { NeedsDuplicating = true; return true; } return false; }; if (!all_of(SinkCandidate->users(), CanSinkWithUser)) continue; if (NeedsDuplicating) { Instruction *I = cast(SinkCandidate->getUnderlyingValue()); auto *Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true, false); // TODO: add ".cloned" suffix to name of Clone's VPValue. Clone->insertBefore(SinkCandidate); SmallVector Users(SinkCandidate->users()); for (auto *U : Users) { auto *UI = cast(U); if (UI->getParent() == SinkTo) continue; for (unsigned Idx = 0; Idx != UI->getNumOperands(); Idx++) { if (UI->getOperand(Idx) != SinkCandidate) continue; UI->setOperand(Idx, Clone); } } } SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi()); for (VPValue *Op : SinkCandidate->operands()) WorkList.insert(std::make_pair(SinkTo, Op)); Changed = true; } return Changed; } /// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return /// the mask. VPValue *getPredicatedMask(VPRegionBlock *R) { auto *EntryBB = dyn_cast(R->getEntry()); if (!EntryBB || EntryBB->size() != 1 || !isa(EntryBB->begin())) return nullptr; return cast(&*EntryBB->begin())->getOperand(0); } /// If \p R is a triangle region, return the 'then' block of the triangle. static VPBasicBlock *getPredicatedThenBlock(VPRegionBlock *R) { auto *EntryBB = cast(R->getEntry()); if (EntryBB->getNumSuccessors() != 2) return nullptr; auto *Succ0 = dyn_cast(EntryBB->getSuccessors()[0]); auto *Succ1 = dyn_cast(EntryBB->getSuccessors()[1]); if (!Succ0 || !Succ1) return nullptr; if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1) return nullptr; if (Succ0->getSingleSuccessor() == Succ1) return Succ0; if (Succ1->getSingleSuccessor() == Succ0) return Succ1; return nullptr; } bool VPlanTransforms::mergeReplicateRegions(VPlan &Plan) { SetVector DeletedRegions; bool Changed = false; // Collect region blocks to process up-front, to avoid iterator invalidation // issues while merging regions. SmallVector CandidateRegions( VPBlockUtils::blocksOnly(depth_first( VPBlockRecursiveTraversalWrapper(Plan.getEntry())))); // Check if Base is a predicated triangle, followed by an empty block, // followed by another predicate triangle. If that's the case, move the // recipes from the first to the second triangle. for (VPRegionBlock *Region1 : CandidateRegions) { if (DeletedRegions.contains(Region1)) continue; auto *MiddleBasicBlock = dyn_cast_or_null(Region1->getSingleSuccessor()); if (!MiddleBasicBlock || !MiddleBasicBlock->empty()) continue; auto *Region2 = dyn_cast_or_null(MiddleBasicBlock->getSingleSuccessor()); if (!Region2) continue; VPValue *Mask1 = getPredicatedMask(Region1); VPValue *Mask2 = getPredicatedMask(Region2); if (!Mask1 || Mask1 != Mask2) continue; VPBasicBlock *Then1 = getPredicatedThenBlock(Region1); VPBasicBlock *Then2 = getPredicatedThenBlock(Region2); if (!Then1 || !Then2) continue; assert(Mask1 && Mask2 && "both region must have conditions"); // Note: No fusion-preventing memory dependencies are expected in either // region. Such dependencies should be rejected during earlier dependence // checks, which guarantee accesses can be re-ordered for vectorization. // // Move recipes to the successor region. for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1))) ToMove.moveBefore(*Then2, Then2->getFirstNonPhi()); auto *Merge1 = cast(Then1->getSingleSuccessor()); auto *Merge2 = cast(Then2->getSingleSuccessor()); // Move VPPredInstPHIRecipes from the merge block to the successor region's // merge block. Update all users inside the successor region to use the // original values. for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) { VPValue *PredInst1 = cast(&Phi1ToMove)->getOperand(0); VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue(); SmallVector Users(Phi1ToMoveV->users()); for (VPUser *U : Users) { auto *UI = dyn_cast(U); if (!UI || UI->getParent() != Then2) continue; for (unsigned I = 0, E = U->getNumOperands(); I != E; ++I) { if (Phi1ToMoveV != U->getOperand(I)) continue; U->setOperand(I, PredInst1); } } Phi1ToMove.moveBefore(*Merge2, Merge2->begin()); } // Finally, remove the first region. for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) { VPBlockUtils::disconnectBlocks(Pred, Region1); VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock); } VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock); DeletedRegions.insert(Region1); } for (VPRegionBlock *ToDelete : DeletedRegions) delete ToDelete; return Changed; } void VPlanTransforms::removeRedundantInductionCasts(VPlan &Plan) { SmallVector> CastsToRemove; for (auto &Phi : Plan.getEntry()->getEntryBasicBlock()->phis()) { auto *IV = dyn_cast(&Phi); if (!IV || IV->getTruncInst()) continue; // Visit all casts connected to IV and in Casts. Collect them. // remember them for removal. auto &Casts = IV->getInductionDescriptor().getCastInsts(); VPValue *FindMyCast = IV; for (Instruction *IRCast : reverse(Casts)) { VPRecipeBase *FoundUserCast = nullptr; for (auto *U : FindMyCast->users()) { auto *UserCast = cast(U); if (UserCast->getNumDefinedValues() == 1 && UserCast->getVPSingleValue()->getUnderlyingValue() == IRCast) { FoundUserCast = UserCast; break; } } assert(FoundUserCast && "Missing a cast to remove"); CastsToRemove.emplace_back(FoundUserCast, IV); FindMyCast = FoundUserCast->getVPSingleValue(); } } for (auto &E : CastsToRemove) { E.first->getVPSingleValue()->replaceAllUsesWith(E.second); E.first->eraseFromParent(); } } void VPlanTransforms::removeRedundantCanonicalIVs(VPlan &Plan) { VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV(); VPWidenCanonicalIVRecipe *WidenNewIV = nullptr; for (VPUser *U : CanonicalIV->users()) { WidenNewIV = dyn_cast(U); if (WidenNewIV) break; } if (!WidenNewIV) return; VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); for (VPRecipeBase &Phi : HeaderVPBB->phis()) { auto *WidenOriginalIV = dyn_cast(&Phi); if (!WidenOriginalIV || !WidenOriginalIV->isCanonical() || WidenOriginalIV->getScalarType() != WidenNewIV->getScalarType()) continue; // Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides // everything WidenNewIV's users need. That is, WidenOriginalIV will // generate a vector phi or all users of WidenNewIV demand the first lane // only. if (WidenOriginalIV->needsVectorIV() || vputils::onlyFirstLaneUsed(WidenNewIV)) { WidenNewIV->replaceAllUsesWith(WidenOriginalIV); WidenNewIV->eraseFromParent(); return; } } }