#include "systime.h" #include #include #ifdef _win_ namespace { // Number of 100 nanosecond units from 1/1/1601 to 1/1/1970 constexpr ui64 NUMBER_OF_100_NANO_BETWEEN_1601_1970 = ULL(116444736000000000); constexpr ui64 NUMBER_OF_100_NANO_IN_SECOND = ULL(10000000); union TFTUnion { ui64 FTScalar; FILETIME FTStruct; }; } // namespace void FileTimeToTimeval(const FILETIME* ft, timeval* tv) { Y_ASSERT(ft); Y_ASSERT(tv); TFTUnion ntTime; ntTime.FTStruct = *ft; ntTime.FTScalar -= NUMBER_OF_100_NANO_BETWEEN_1601_1970; tv->tv_sec = static_cast(ntTime.FTScalar / NUMBER_OF_100_NANO_IN_SECOND); tv->tv_usec = static_cast( (ntTime.FTScalar % NUMBER_OF_100_NANO_IN_SECOND) / LL(10)); } void FileTimeToTimespec(const FILETIME& ft, struct timespec* ts) { Y_ASSERT(ts); TFTUnion ntTime; ntTime.FTStruct = ft; ntTime.FTScalar -= NUMBER_OF_100_NANO_BETWEEN_1601_1970; ts->tv_sec = static_cast(ntTime.FTScalar / NUMBER_OF_100_NANO_IN_SECOND); ts->tv_nsec = static_cast( (ntTime.FTScalar % NUMBER_OF_100_NANO_IN_SECOND) * LL(100)); } int gettimeofday(timeval* tp, void*) { FILETIME ft; GetSystemTimeAsFileTime(&ft); FileTimeToTimeval(&ft, tp); return 0; } tm* localtime_r(const time_t* clock, tm* result) { tzset(); tm* res = localtime(clock); if (res) { memcpy(result, res, sizeof(tm)); return result; } return 0; } tm* gmtime_r(const time_t* clock, tm* result) { return gmtime_s(result, clock) == 0 ? result : 0; } char* ctime_r(const time_t* clock, char* buf) { char* res = ctime(clock); if (res) { memcpy(buf, res, 26); return buf; } return 0; } #endif /* _win_ */ namespace { constexpr int STRUCT_TM_BASE_YEAR = 1900; constexpr int UNIX_TIME_BASE_YEAR = 1970; constexpr ui64 SECONDS_PER_DAY = (24L * 60L * 60L); constexpr bool IsLeapYear(int year) { if (year % 4 != 0) { return false; } if (year % 100 != 0) { return true; } return year % 400 == 0; } constexpr ui16 DAYS_IN_YEAR = 365; constexpr ui16 DAYS_IN_LEAP_YEAR = 366; constexpr ui16 YearSize(int year) { return IsLeapYear(year) ? DAYS_IN_LEAP_YEAR : DAYS_IN_YEAR; } constexpr ui32 FOUR_CENTURY_YEARS = 400; constexpr ui32 LeapYearCount(ui32 years) { return years / 4 - years / 100 + years / 400; } constexpr ui32 FOUR_CENTURY_DAYS = FOUR_CENTURY_YEARS * DAYS_IN_YEAR + LeapYearCount(FOUR_CENTURY_YEARS); constexpr int FindYearWithin4Centuries(ui32& dayno) { Y_ASSERT(dayno < FOUR_CENTURY_DAYS); ui32 years = dayno / DAYS_IN_YEAR; const ui32 diff = years * DAYS_IN_YEAR + LeapYearCount(years); if (diff <= dayno) { dayno -= diff; } else { dayno -= diff - YearSize(static_cast(years)); --years; } return static_cast(years); } constexpr ui16 MONTH_TO_DAYS[12] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}; constexpr ui16 MONTH_TO_DAYS_LEAP[12] = { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335}; struct TMonth32LUT { ui8 LastMonthDay32[12]; ui8 FirstMonthDay32[12]; }; constexpr TMonth32LUT COMMON_YEAR = { .LastMonthDay32 = {31, 27, 26, 24, 23, 21, 20, 19, 17, 16, 14, 13}, .FirstMonthDay32 = {0, 1, 5, 6, 8, 9, 11, 12, 13, 15, 16, 18}, }; constexpr int DayOfYearToMonth(ui32& yearDay, const bool leapYear) { Y_ASSERT(yearDay < DAYS_IN_YEAR + leapYear); if (leapYear) { if (yearDay > 59) { --yearDay; } else if (yearDay == 59) { // February, 29th yearDay = 28; return 1; } } const int approxMonth = static_cast(yearDay / 32); const int approxMDay = static_cast(yearDay % 32); const int dayThreshold = COMMON_YEAR.LastMonthDay32[approxMonth]; const int currentMonthMDayOffset = COMMON_YEAR.FirstMonthDay32[approxMonth]; const bool nextMonth = (approxMDay >= dayThreshold); const int dayCorrection = nextMonth ? -dayThreshold : currentMonthMDayOffset; yearDay = approxMDay + dayCorrection; const int month = approxMonth + nextMonth; return month; } class TDayNoToYearLookupTable { static constexpr int TableSize = 128; // lookup table for years in [StartYear, StartYear + TableSize] range ui16 DaysSinceEpoch[TableSize] = {}; public: static constexpr int StartYear = 1970; static constexpr int StartDays = (StartYear - UNIX_TIME_BASE_YEAR) * DAYS_IN_YEAR + LeapYearCount(StartYear - 1) - LeapYearCount(UNIX_TIME_BASE_YEAR - 1); static constexpr i64 MinTimestamp = StartDays * static_cast(SECONDS_PER_DAY); static constexpr i64 MaxTimestamp = MinTimestamp + static_cast(TableSize) * DAYS_IN_LEAP_YEAR * SECONDS_PER_DAY - 1; constexpr TDayNoToYearLookupTable() { ui16 daysAccumulated = 0; for (int year = StartYear; year < StartYear + TableSize; ++year) { daysAccumulated += YearSize(year); DaysSinceEpoch[year - StartYear] = daysAccumulated; } } // lookup year by days since epoch, decrement day counter to the corresponding amount of days. // The method returns the last year in the table, if year is too big int FindYear(ui32& days) const { const ui32 yearIndex = days / DAYS_IN_LEAP_YEAR; // we can miss by at most 1 year Y_ASSERT(yearIndex < TableSize); if (const auto diff = DaysSinceEpoch[yearIndex]; diff <= days) { days -= diff; return static_cast(yearIndex + StartYear + 1); } if (yearIndex > 0) { days -= DaysSinceEpoch[yearIndex - 1]; } return static_cast(yearIndex + StartYear); } }; constexpr TDayNoToYearLookupTable DAYS_TO_YEAR_LOOKUP; } // namespace //! Inverse of gmtime: converts struct tm to time_t, assuming the data //! in tm is UTC rather than local timezone. This implementation //! returns the number of seconds since 1970-01-01, converted to time_t. //! @note this code adopted from //! http://osdir.com/ml/web.wget.patches/2005-07/msg00010.html //! Subject: A more robust timegm - msg#00010 time_t TimeGM(const struct tm* t) { // Only handles years after 1970 if (Y_UNLIKELY(t->tm_year < 70)) { return (time_t)-1; } int days = 365 * (t->tm_year - 70); // Take into account the leap days between 1970 and YEAR-1 days += (t->tm_year - 1 - 68) / 4 - ((t->tm_year - 1) / 100) + ((t->tm_year - 1 + 300) / 400); if (Y_UNLIKELY(t->tm_mon < 0 || t->tm_mon >= 12)) { return (time_t)-1; } if (IsLeapYear(1900 + t->tm_year)) { days += MONTH_TO_DAYS_LEAP[t->tm_mon]; } else { days += MONTH_TO_DAYS[t->tm_mon]; } days += t->tm_mday - 1; unsigned long secs = days * 86400ul + t->tm_hour * 3600 + t->tm_min * 60 + t->tm_sec; return (time_t)secs; } struct tm* GmTimeR(const time_t* timer, struct tm* tmbuf) { i64 time = static_cast(*timer); tm* resut = tmbuf; int dayClock; ui32 daysRemaining; bool isLeapYear; if (time >= TDayNoToYearLookupTable::MinTimestamp && time <= TDayNoToYearLookupTable::MaxTimestamp) { dayClock = static_cast(time % SECONDS_PER_DAY); daysRemaining = time / SECONDS_PER_DAY; tmbuf->tm_wday = static_cast((daysRemaining + 4) % 7); // Day 0 was a thursday daysRemaining -= TDayNoToYearLookupTable::StartDays; const int year = DAYS_TO_YEAR_LOOKUP.FindYear(daysRemaining); isLeapYear = IsLeapYear(year); tmbuf->tm_year = year - STRUCT_TM_BASE_YEAR; } else { i64 year = UNIX_TIME_BASE_YEAR; if (Y_UNLIKELY(time < 0)) { const ui64 shift = (ui64)(-time - 1) / (static_cast(FOUR_CENTURY_DAYS) * SECONDS_PER_DAY) + 1; time += static_cast(shift * FOUR_CENTURY_DAYS * SECONDS_PER_DAY); year -= static_cast(shift * FOUR_CENTURY_YEARS); } dayClock = static_cast(time % SECONDS_PER_DAY); ui64 dayNo = (ui64)time / SECONDS_PER_DAY; tmbuf->tm_wday = (dayNo + 4) % 7; // Day 0 was a thursday if (int shiftYears = (year - 1) % FOUR_CENTURY_YEARS; shiftYears != 0) { if (shiftYears < 0) { shiftYears += FOUR_CENTURY_YEARS; } year -= shiftYears; dayNo += shiftYears * DAYS_IN_YEAR + LeapYearCount(shiftYears); } if (Y_UNLIKELY(dayNo >= FOUR_CENTURY_DAYS)) { year += FOUR_CENTURY_YEARS * (dayNo / FOUR_CENTURY_DAYS); dayNo = dayNo % FOUR_CENTURY_DAYS; } daysRemaining = dayNo; const int yearDiff = FindYearWithin4Centuries(daysRemaining); year += yearDiff; isLeapYear = IsLeapYear(yearDiff + 1); tmbuf->tm_year = static_cast(year - STRUCT_TM_BASE_YEAR); // check year overflow if (Y_UNLIKELY(year - STRUCT_TM_BASE_YEAR != tmbuf->tm_year)) { resut = nullptr; } } tmbuf->tm_sec = dayClock % 60; tmbuf->tm_min = (dayClock % 3600) / 60; tmbuf->tm_hour = dayClock / 3600; tmbuf->tm_yday = static_cast(daysRemaining); tmbuf->tm_mon = DayOfYearToMonth(daysRemaining, isLeapYear); tmbuf->tm_mday = static_cast(daysRemaining + 1); tmbuf->tm_isdst = 0; #ifndef _win_ tmbuf->tm_gmtoff = 0; tmbuf->tm_zone = (char*)"UTC"; #endif return resut; } TString CTimeR(const time_t* timer) { char sTime[32]; sTime[0] = 0; ctime_r(timer, &sTime[0]); return sTime; }