/* * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). * You may not use this file except in compliance with the License. * A copy of the License is located at * * http://aws.amazon.com/apache2.0 * * or in the "license" file accompanying this file. This file is distributed * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either * express or implied. See the License for the specific language governing * permissions and limitations under the License. */ #include #include #include "crypto/s2n_cipher.h" #include "crypto/s2n_ktls_crypto.h" #include "tls/s2n_crypto.h" #include "utils/s2n_blob.h" #include "utils/s2n_safety.h" #if defined(OPENSSL_IS_BORINGSSL) || defined(OPENSSL_IS_AWSLC) #define S2N_AEAD_AES_GCM_AVAILABLE #endif static uint8_t s2n_aead_cipher_aes128_gcm_available() { #if defined(S2N_AEAD_AES_GCM_AVAILABLE) return (EVP_aead_aes_128_gcm() ? 1 : 0); #else return (EVP_aes_128_gcm() ? 1 : 0); #endif } static uint8_t s2n_aead_cipher_aes256_gcm_available() { #if defined(S2N_AEAD_AES_GCM_AVAILABLE) return (EVP_aead_aes_256_gcm() ? 1 : 0); #else return (EVP_aes_256_gcm() ? 1 : 0); #endif } #if defined(S2N_AEAD_AES_GCM_AVAILABLE) /* BoringSSL and AWS-LC AEAD API implementation */ static int s2n_aead_cipher_aes_gcm_encrypt(struct s2n_session_key *key, struct s2n_blob *iv, struct s2n_blob *aad, struct s2n_blob *in, struct s2n_blob *out) { POSIX_ENSURE_REF(in); POSIX_ENSURE_REF(out); POSIX_ENSURE_REF(iv); POSIX_ENSURE_REF(key); POSIX_ENSURE_REF(aad); /* The size of the |in| blob includes the size of the data and the size of the AES-GCM tag */ POSIX_ENSURE_GTE(in->size, S2N_TLS_GCM_TAG_LEN); POSIX_ENSURE_GTE(out->size, in->size); POSIX_ENSURE_EQ(iv->size, S2N_TLS_GCM_IV_LEN); /* Adjust input length to account for the Tag length */ size_t in_len = in->size - S2N_TLS_GCM_TAG_LEN; /* out_len is set by EVP_AEAD_CTX_seal and checked post operation */ size_t out_len = 0; POSIX_GUARD_OSSL(EVP_AEAD_CTX_seal(key->evp_aead_ctx, out->data, &out_len, out->size, iv->data, iv->size, in->data, in_len, aad->data, aad->size), S2N_ERR_ENCRYPT); S2N_ERROR_IF((in_len + S2N_TLS_GCM_TAG_LEN) != out_len, S2N_ERR_ENCRYPT); return S2N_SUCCESS; } static int s2n_aead_cipher_aes_gcm_decrypt(struct s2n_session_key *key, struct s2n_blob *iv, struct s2n_blob *aad, struct s2n_blob *in, struct s2n_blob *out) { POSIX_ENSURE_REF(in); POSIX_ENSURE_REF(out); POSIX_ENSURE_REF(iv); POSIX_ENSURE_REF(key); POSIX_ENSURE_REF(aad); POSIX_ENSURE_GTE(in->size, S2N_TLS_GCM_TAG_LEN); POSIX_ENSURE_GTE(out->size, in->size - S2N_TLS_GCM_TAG_LEN); POSIX_ENSURE_EQ(iv->size, S2N_TLS_GCM_IV_LEN); /* out_len is set by EVP_AEAD_CTX_open and checked post operation */ size_t out_len = 0; POSIX_GUARD_OSSL(EVP_AEAD_CTX_open(key->evp_aead_ctx, out->data, &out_len, out->size, iv->data, iv->size, in->data, in->size, aad->data, aad->size), S2N_ERR_DECRYPT); S2N_ERROR_IF((in->size - S2N_TLS_GCM_TAG_LEN) != out_len, S2N_ERR_ENCRYPT); return S2N_SUCCESS; } static int s2n_aead_cipher_aes128_gcm_set_encryption_key(struct s2n_session_key *key, struct s2n_blob *in) { POSIX_ENSURE_REF(key); POSIX_ENSURE_REF(in); POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_128_GCM_KEY_LEN); POSIX_GUARD_OSSL(EVP_AEAD_CTX_init(key->evp_aead_ctx, EVP_aead_aes_128_gcm_tls12(), in->data, in->size, S2N_TLS_GCM_TAG_LEN, NULL), S2N_ERR_KEY_INIT); return S2N_SUCCESS; } static int s2n_aead_cipher_aes256_gcm_set_encryption_key(struct s2n_session_key *key, struct s2n_blob *in) { POSIX_ENSURE_REF(key); POSIX_ENSURE_REF(in); POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_256_GCM_KEY_LEN); POSIX_GUARD_OSSL(EVP_AEAD_CTX_init(key->evp_aead_ctx, EVP_aead_aes_256_gcm_tls12(), in->data, in->size, S2N_TLS_GCM_TAG_LEN, NULL), S2N_ERR_KEY_INIT); return S2N_SUCCESS; } static int s2n_aead_cipher_aes128_gcm_set_decryption_key(struct s2n_session_key *key, struct s2n_blob *in) { POSIX_ENSURE_REF(key); POSIX_ENSURE_REF(in); POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_128_GCM_KEY_LEN); POSIX_GUARD_OSSL(EVP_AEAD_CTX_init(key->evp_aead_ctx, EVP_aead_aes_128_gcm_tls12(), in->data, in->size, S2N_TLS_GCM_TAG_LEN, NULL), S2N_ERR_KEY_INIT); return S2N_SUCCESS; } static int s2n_aead_cipher_aes256_gcm_set_decryption_key(struct s2n_session_key *key, struct s2n_blob *in) { POSIX_ENSURE_REF(key); POSIX_ENSURE_REF(in); POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_256_GCM_KEY_LEN); POSIX_GUARD_OSSL(EVP_AEAD_CTX_init(key->evp_aead_ctx, EVP_aead_aes_256_gcm_tls12(), in->data, in->size, S2N_TLS_GCM_TAG_LEN, NULL), S2N_ERR_KEY_INIT); return S2N_SUCCESS; } static int s2n_aead_cipher_aes128_gcm_set_encryption_key_tls13(struct s2n_session_key *key, struct s2n_blob *in) { POSIX_ENSURE_REF(key); POSIX_ENSURE_REF(in); POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_128_GCM_KEY_LEN); POSIX_GUARD_OSSL(EVP_AEAD_CTX_init(key->evp_aead_ctx, EVP_aead_aes_128_gcm_tls13(), in->data, in->size, S2N_TLS_GCM_TAG_LEN, NULL), S2N_ERR_KEY_INIT); return S2N_SUCCESS; } static int s2n_aead_cipher_aes256_gcm_set_encryption_key_tls13(struct s2n_session_key *key, struct s2n_blob *in) { POSIX_ENSURE_REF(key); POSIX_ENSURE_REF(in); POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_256_GCM_KEY_LEN); POSIX_GUARD_OSSL(EVP_AEAD_CTX_init(key->evp_aead_ctx, EVP_aead_aes_256_gcm_tls13(), in->data, in->size, S2N_TLS_GCM_TAG_LEN, NULL), S2N_ERR_KEY_INIT); return S2N_SUCCESS; } static int s2n_aead_cipher_aes128_gcm_set_decryption_key_tls13(struct s2n_session_key *key, struct s2n_blob *in) { POSIX_ENSURE_REF(key); POSIX_ENSURE_REF(in); POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_128_GCM_KEY_LEN); POSIX_GUARD_OSSL(EVP_AEAD_CTX_init(key->evp_aead_ctx, EVP_aead_aes_128_gcm_tls13(), in->data, in->size, S2N_TLS_GCM_TAG_LEN, NULL), S2N_ERR_KEY_INIT); return S2N_SUCCESS; } static int s2n_aead_cipher_aes256_gcm_set_decryption_key_tls13(struct s2n_session_key *key, struct s2n_blob *in) { POSIX_ENSURE_REF(key); POSIX_ENSURE_REF(in); POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_256_GCM_KEY_LEN); POSIX_GUARD_OSSL(EVP_AEAD_CTX_init(key->evp_aead_ctx, EVP_aead_aes_256_gcm_tls13(), in->data, in->size, S2N_TLS_GCM_TAG_LEN, NULL), S2N_ERR_KEY_INIT); return S2N_SUCCESS; } static int s2n_aead_cipher_aes_gcm_init(struct s2n_session_key *key) { POSIX_ENSURE_REF(key); EVP_AEAD_CTX_zero(key->evp_aead_ctx); return S2N_SUCCESS; } static int s2n_aead_cipher_aes_gcm_destroy_key(struct s2n_session_key *key) { POSIX_ENSURE_REF(key); EVP_AEAD_CTX_cleanup(key->evp_aead_ctx); return S2N_SUCCESS; } #else /* Standard AES-GCM implementation */ static int s2n_aead_cipher_aes_gcm_encrypt(struct s2n_session_key *key, struct s2n_blob *iv, struct s2n_blob *aad, struct s2n_blob *in, struct s2n_blob *out) { /* The size of the |in| blob includes the size of the data and the size of the AES-GCM tag */ POSIX_ENSURE_GTE(in->size, S2N_TLS_GCM_TAG_LEN); POSIX_ENSURE_GTE(out->size, in->size); POSIX_ENSURE_EQ(iv->size, S2N_TLS_GCM_IV_LEN); /* Initialize the IV */ POSIX_GUARD_OSSL(EVP_EncryptInit_ex(key->evp_cipher_ctx, NULL, NULL, NULL, iv->data), S2N_ERR_KEY_INIT); /* Adjust input length and buffer pointer to account for the Tag length */ int in_len = in->size - S2N_TLS_GCM_TAG_LEN; uint8_t *tag_data = out->data + out->size - S2N_TLS_GCM_TAG_LEN; /* out_len is set by EVP_EncryptUpdate and checked post operation */ int out_len = 0; /* Specify the AAD */ POSIX_GUARD_OSSL(EVP_EncryptUpdate(key->evp_cipher_ctx, NULL, &out_len, aad->data, aad->size), S2N_ERR_ENCRYPT); /* Encrypt the data */ POSIX_GUARD_OSSL(EVP_EncryptUpdate(key->evp_cipher_ctx, out->data, &out_len, in->data, in_len), S2N_ERR_ENCRYPT); /* When using AES-GCM, *out_len is the number of bytes written by EVP_EncryptUpdate. Since the tag is not written during this call, we do not take S2N_TLS_GCM_TAG_LEN into account */ S2N_ERROR_IF(in_len != out_len, S2N_ERR_ENCRYPT); /* Finalize */ POSIX_GUARD_OSSL(EVP_EncryptFinal_ex(key->evp_cipher_ctx, out->data, &out_len), S2N_ERR_ENCRYPT); /* write the tag */ POSIX_GUARD_OSSL(EVP_CIPHER_CTX_ctrl(key->evp_cipher_ctx, EVP_CTRL_GCM_GET_TAG, S2N_TLS_GCM_TAG_LEN, tag_data), S2N_ERR_ENCRYPT); /* When using AES-GCM, EVP_EncryptFinal_ex does not write any bytes. So, we should expect *out_len = 0. */ S2N_ERROR_IF(0 != out_len, S2N_ERR_ENCRYPT); return S2N_SUCCESS; } static int s2n_aead_cipher_aes_gcm_decrypt(struct s2n_session_key *key, struct s2n_blob *iv, struct s2n_blob *aad, struct s2n_blob *in, struct s2n_blob *out) { POSIX_ENSURE_GTE(in->size, S2N_TLS_GCM_TAG_LEN); POSIX_ENSURE_GTE(out->size, in->size); POSIX_ENSURE_EQ(iv->size, S2N_TLS_GCM_IV_LEN); /* Initialize the IV */ POSIX_GUARD_OSSL(EVP_DecryptInit_ex(key->evp_cipher_ctx, NULL, NULL, NULL, iv->data), S2N_ERR_KEY_INIT); /* Adjust input length and buffer pointer to account for the Tag length */ int in_len = in->size - S2N_TLS_GCM_TAG_LEN; uint8_t *tag_data = in->data + in->size - S2N_TLS_GCM_TAG_LEN; /* Set the TAG */ POSIX_GUARD_OSSL(EVP_CIPHER_CTX_ctrl(key->evp_cipher_ctx, EVP_CTRL_GCM_SET_TAG, S2N_TLS_GCM_TAG_LEN, tag_data), S2N_ERR_DECRYPT); /* out_len is set by EVP_DecryptUpdate. While we verify the content of out_len in * s2n_aead_chacha20_poly1305_encrypt, we refrain from this here. This is to avoid * doing any branching before the ciphertext is verified. */ int out_len = 0; /* Specify the AAD */ POSIX_GUARD_OSSL(EVP_DecryptUpdate(key->evp_cipher_ctx, NULL, &out_len, aad->data, aad->size), S2N_ERR_DECRYPT); int evp_decrypt_rc = 1; /* Decrypt the data, but don't short circuit tag verification. EVP_Decrypt* return 0 on failure, 1 for success. */ evp_decrypt_rc &= EVP_DecryptUpdate(key->evp_cipher_ctx, out->data, &out_len, in->data, in_len); /* Verify the tag */ evp_decrypt_rc &= EVP_DecryptFinal_ex(key->evp_cipher_ctx, out->data, &out_len); S2N_ERROR_IF(evp_decrypt_rc != 1, S2N_ERR_DECRYPT); return S2N_SUCCESS; } static int s2n_aead_cipher_aes128_gcm_set_encryption_key(struct s2n_session_key *key, struct s2n_blob *in) { POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_128_GCM_KEY_LEN); POSIX_GUARD_OSSL(EVP_EncryptInit_ex(key->evp_cipher_ctx, EVP_aes_128_gcm(), NULL, NULL, NULL), S2N_ERR_KEY_INIT); EVP_CIPHER_CTX_ctrl(key->evp_cipher_ctx, EVP_CTRL_GCM_SET_IVLEN, S2N_TLS_GCM_IV_LEN, NULL); POSIX_GUARD_OSSL(EVP_EncryptInit_ex(key->evp_cipher_ctx, NULL, NULL, in->data, NULL), S2N_ERR_KEY_INIT); return S2N_SUCCESS; } static int s2n_aead_cipher_aes256_gcm_set_encryption_key(struct s2n_session_key *key, struct s2n_blob *in) { POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_256_GCM_KEY_LEN); POSIX_GUARD_OSSL(EVP_EncryptInit_ex(key->evp_cipher_ctx, EVP_aes_256_gcm(), NULL, NULL, NULL), S2N_ERR_KEY_INIT); EVP_CIPHER_CTX_ctrl(key->evp_cipher_ctx, EVP_CTRL_GCM_SET_IVLEN, S2N_TLS_GCM_IV_LEN, NULL); POSIX_GUARD_OSSL(EVP_EncryptInit_ex(key->evp_cipher_ctx, NULL, NULL, in->data, NULL), S2N_ERR_KEY_INIT); return S2N_SUCCESS; } static int s2n_aead_cipher_aes128_gcm_set_decryption_key(struct s2n_session_key *key, struct s2n_blob *in) { POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_128_GCM_KEY_LEN); POSIX_GUARD_OSSL(EVP_DecryptInit_ex(key->evp_cipher_ctx, EVP_aes_128_gcm(), NULL, NULL, NULL), S2N_ERR_KEY_INIT); EVP_CIPHER_CTX_ctrl(key->evp_cipher_ctx, EVP_CTRL_GCM_SET_IVLEN, S2N_TLS_GCM_IV_LEN, NULL); POSIX_GUARD_OSSL(EVP_DecryptInit_ex(key->evp_cipher_ctx, NULL, NULL, in->data, NULL), S2N_ERR_KEY_INIT); return S2N_SUCCESS; } static int s2n_aead_cipher_aes256_gcm_set_decryption_key(struct s2n_session_key *key, struct s2n_blob *in) { POSIX_ENSURE_EQ(in->size, S2N_TLS_AES_256_GCM_KEY_LEN); POSIX_GUARD_OSSL(EVP_DecryptInit_ex(key->evp_cipher_ctx, EVP_aes_256_gcm(), NULL, NULL, NULL), S2N_ERR_KEY_INIT); EVP_CIPHER_CTX_ctrl(key->evp_cipher_ctx, EVP_CTRL_GCM_SET_IVLEN, S2N_TLS_GCM_IV_LEN, NULL); POSIX_GUARD_OSSL(EVP_DecryptInit_ex(key->evp_cipher_ctx, NULL, NULL, in->data, NULL), S2N_ERR_KEY_INIT); return S2N_SUCCESS; } static int s2n_aead_cipher_aes128_gcm_set_encryption_key_tls13(struct s2n_session_key *key, struct s2n_blob *in) { POSIX_GUARD(s2n_aead_cipher_aes128_gcm_set_encryption_key(key, in)); return S2N_SUCCESS; } static int s2n_aead_cipher_aes256_gcm_set_encryption_key_tls13(struct s2n_session_key *key, struct s2n_blob *in) { POSIX_GUARD(s2n_aead_cipher_aes256_gcm_set_encryption_key(key, in)); return S2N_SUCCESS; } static int s2n_aead_cipher_aes128_gcm_set_decryption_key_tls13(struct s2n_session_key *key, struct s2n_blob *in) { POSIX_GUARD(s2n_aead_cipher_aes128_gcm_set_decryption_key(key, in)); return S2N_SUCCESS; } static int s2n_aead_cipher_aes256_gcm_set_decryption_key_tls13(struct s2n_session_key *key, struct s2n_blob *in) { POSIX_GUARD(s2n_aead_cipher_aes256_gcm_set_decryption_key(key, in)); return S2N_SUCCESS; } static int s2n_aead_cipher_aes_gcm_init(struct s2n_session_key *key) { s2n_evp_ctx_init(key->evp_cipher_ctx); return S2N_SUCCESS; } static int s2n_aead_cipher_aes_gcm_destroy_key(struct s2n_session_key *key) { EVP_CIPHER_CTX_cleanup(key->evp_cipher_ctx); return S2N_SUCCESS; } #endif static S2N_RESULT s2n_aead_cipher_aes128_gcm_set_ktls_info(struct s2n_ktls_crypto_info_inputs *in, struct s2n_ktls_crypto_info *out) { RESULT_ENSURE_REF(in); RESULT_ENSURE_REF(out); s2n_ktls_crypto_info_tls12_aes_gcm_128 *crypto_info = &out->ciphers.aes_gcm_128; crypto_info->info.version = TLS_1_2_VERSION; crypto_info->info.cipher_type = TLS_CIPHER_AES_GCM_128; RESULT_ENSURE_LTE(sizeof(crypto_info->key), in->key.size); RESULT_CHECKED_MEMCPY(crypto_info->key, in->key.data, sizeof(crypto_info->key)); RESULT_ENSURE_LTE(sizeof(crypto_info->iv), in->iv.size); RESULT_CHECKED_MEMCPY(crypto_info->iv, in->iv.data, sizeof(crypto_info->iv)); RESULT_ENSURE_LTE(sizeof(crypto_info->rec_seq), in->seq.size); RESULT_CHECKED_MEMCPY(crypto_info->rec_seq, in->seq.data, sizeof(crypto_info->rec_seq)); /* The salt is a prefix of the IV * *= https://www.rfc-editor.org/rfc/rfc4106#section-4 *# The salt field is a four-octet value that is assigned at the *# beginning of the security association, and then remains constant *# for the life of the security association. */ RESULT_ENSURE_LTE(sizeof(crypto_info->salt), in->iv.size); RESULT_CHECKED_MEMCPY(crypto_info->salt, in->iv.data, sizeof(crypto_info->salt)); RESULT_GUARD_POSIX(s2n_blob_init(&out->value, (uint8_t *) (void *) crypto_info, sizeof(s2n_ktls_crypto_info_tls12_aes_gcm_128))); return S2N_RESULT_OK; } static S2N_RESULT s2n_aead_cipher_aes256_gcm_set_ktls_info( struct s2n_ktls_crypto_info_inputs *in, struct s2n_ktls_crypto_info *out) { RESULT_ENSURE_REF(in); RESULT_ENSURE_REF(out); s2n_ktls_crypto_info_tls12_aes_gcm_256 *crypto_info = &out->ciphers.aes_gcm_256; crypto_info->info.version = TLS_1_2_VERSION; crypto_info->info.cipher_type = TLS_CIPHER_AES_GCM_256; RESULT_ENSURE_LTE(sizeof(crypto_info->key), in->key.size); RESULT_CHECKED_MEMCPY(crypto_info->key, in->key.data, sizeof(crypto_info->key)); RESULT_ENSURE_LTE(sizeof(crypto_info->iv), in->iv.size); RESULT_CHECKED_MEMCPY(crypto_info->iv, in->iv.data, sizeof(crypto_info->iv)); RESULT_ENSURE_LTE(sizeof(crypto_info->rec_seq), in->seq.size); RESULT_CHECKED_MEMCPY(crypto_info->rec_seq, in->seq.data, sizeof(crypto_info->rec_seq)); /* The salt is a prefix of the IV * *= https://www.rfc-editor.org/rfc/rfc4106#section-4 *# The salt field is a four-octet value that is assigned at the *# beginning of the security association, and then remains constant *# for the life of the security association. */ RESULT_ENSURE_LTE(sizeof(crypto_info->salt), in->iv.size); RESULT_CHECKED_MEMCPY(crypto_info->salt, in->iv.data, sizeof(crypto_info->salt)); RESULT_GUARD_POSIX(s2n_blob_init(&out->value, (uint8_t *) (void *) crypto_info, sizeof(s2n_ktls_crypto_info_tls12_aes_gcm_256))); return S2N_RESULT_OK; } const struct s2n_cipher s2n_aes128_gcm = { .key_material_size = S2N_TLS_AES_128_GCM_KEY_LEN, .type = S2N_AEAD, .io.aead = { .record_iv_size = S2N_TLS_GCM_EXPLICIT_IV_LEN, .fixed_iv_size = S2N_TLS_GCM_FIXED_IV_LEN, .tag_size = S2N_TLS_GCM_TAG_LEN, .decrypt = s2n_aead_cipher_aes_gcm_decrypt, .encrypt = s2n_aead_cipher_aes_gcm_encrypt }, .is_available = s2n_aead_cipher_aes128_gcm_available, .init = s2n_aead_cipher_aes_gcm_init, .set_encryption_key = s2n_aead_cipher_aes128_gcm_set_encryption_key, .set_decryption_key = s2n_aead_cipher_aes128_gcm_set_decryption_key, .destroy_key = s2n_aead_cipher_aes_gcm_destroy_key, .set_ktls_info = s2n_aead_cipher_aes128_gcm_set_ktls_info, }; const struct s2n_cipher s2n_aes256_gcm = { .key_material_size = S2N_TLS_AES_256_GCM_KEY_LEN, .type = S2N_AEAD, .io.aead = { .record_iv_size = S2N_TLS_GCM_EXPLICIT_IV_LEN, .fixed_iv_size = S2N_TLS_GCM_FIXED_IV_LEN, .tag_size = S2N_TLS_GCM_TAG_LEN, .decrypt = s2n_aead_cipher_aes_gcm_decrypt, .encrypt = s2n_aead_cipher_aes_gcm_encrypt }, .is_available = s2n_aead_cipher_aes256_gcm_available, .init = s2n_aead_cipher_aes_gcm_init, .set_encryption_key = s2n_aead_cipher_aes256_gcm_set_encryption_key, .set_decryption_key = s2n_aead_cipher_aes256_gcm_set_decryption_key, .destroy_key = s2n_aead_cipher_aes_gcm_destroy_key, .set_ktls_info = s2n_aead_cipher_aes256_gcm_set_ktls_info, }; /* TLS 1.3 GCM ciphers */ const struct s2n_cipher s2n_tls13_aes128_gcm = { .key_material_size = S2N_TLS_AES_128_GCM_KEY_LEN, .type = S2N_AEAD, .io.aead = { .record_iv_size = S2N_TLS13_RECORD_IV_LEN, .fixed_iv_size = S2N_TLS13_FIXED_IV_LEN, .tag_size = S2N_TLS_GCM_TAG_LEN, .decrypt = s2n_aead_cipher_aes_gcm_decrypt, .encrypt = s2n_aead_cipher_aes_gcm_encrypt }, .is_available = s2n_aead_cipher_aes128_gcm_available, .init = s2n_aead_cipher_aes_gcm_init, .set_encryption_key = s2n_aead_cipher_aes128_gcm_set_encryption_key_tls13, .set_decryption_key = s2n_aead_cipher_aes128_gcm_set_decryption_key_tls13, .destroy_key = s2n_aead_cipher_aes_gcm_destroy_key, }; const struct s2n_cipher s2n_tls13_aes256_gcm = { .key_material_size = S2N_TLS_AES_256_GCM_KEY_LEN, .type = S2N_AEAD, .io.aead = { .record_iv_size = S2N_TLS13_RECORD_IV_LEN, .fixed_iv_size = S2N_TLS13_FIXED_IV_LEN, .tag_size = S2N_TLS_GCM_TAG_LEN, .decrypt = s2n_aead_cipher_aes_gcm_decrypt, .encrypt = s2n_aead_cipher_aes_gcm_encrypt }, .is_available = s2n_aead_cipher_aes256_gcm_available, .init = s2n_aead_cipher_aes_gcm_init, .set_encryption_key = s2n_aead_cipher_aes256_gcm_set_encryption_key_tls13, .set_decryption_key = s2n_aead_cipher_aes256_gcm_set_decryption_key_tls13, .destroy_key = s2n_aead_cipher_aes_gcm_destroy_key, };