//===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Run a basic correctness check on the IR to ensure that Safepoints - if // they've been inserted - were inserted correctly. In particular, look for use // of non-relocated values after a safepoint. It's primary use is to check the // correctness of safepoint insertion immediately after insertion, but it can // also be used to verify that later transforms have not found a way to break // safepoint semenatics. // // In its current form, this verify checks a property which is sufficient, but // not neccessary for correctness. There are some cases where an unrelocated // pointer can be used after the safepoint. Consider this example: // // a = ... // b = ... // (a',b') = safepoint(a,b) // c = cmp eq a b // br c, ..., .... // // Because it is valid to reorder 'c' above the safepoint, this is legal. In // practice, this is a somewhat uncommon transform, but CodeGenPrep does create // idioms like this. The verifier knows about these cases and avoids reporting // false positives. // //===----------------------------------------------------------------------===// #include "llvm/IR/SafepointIRVerifier.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SetOperations.h" #include "llvm/ADT/SetVector.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Statepoint.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "safepoint-ir-verifier" using namespace llvm; /// This option is used for writing test cases. Instead of crashing the program /// when verification fails, report a message to the console (for FileCheck /// usage) and continue execution as if nothing happened. static cl::opt PrintOnly("safepoint-ir-verifier-print-only", cl::init(false)); namespace { /// This CFG Deadness finds dead blocks and edges. Algorithm starts with a set /// of blocks unreachable from entry then propagates deadness using foldable /// conditional branches without modifying CFG. So GVN does but it changes CFG /// by splitting critical edges. In most cases passes rely on SimplifyCFG to /// clean up dead blocks, but in some cases, like verification or loop passes /// it's not possible. class CFGDeadness { const DominatorTree *DT = nullptr; SetVector DeadBlocks; SetVector DeadEdges; // Contains all dead edges from live blocks. public: /// Return the edge that coresponds to the predecessor. static const Use& getEdge(const_pred_iterator &PredIt) { auto &PU = PredIt.getUse(); return PU.getUser()->getOperandUse(PU.getOperandNo()); } /// Return true if there is at least one live edge that corresponds to the /// basic block InBB listed in the phi node. bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const { assert(!isDeadBlock(InBB) && "block must be live"); const BasicBlock* BB = PN->getParent(); bool Listed = false; for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) { if (InBB == *PredIt) { if (!isDeadEdge(&getEdge(PredIt))) return true; Listed = true; } } (void)Listed; assert(Listed && "basic block is not found among incoming blocks"); return false; } bool isDeadBlock(const BasicBlock *BB) const { return DeadBlocks.count(BB); } bool isDeadEdge(const Use *U) const { assert(cast(U->getUser())->isTerminator() && "edge must be operand of terminator"); assert(cast_or_null(U->get()) && "edge must refer to basic block"); assert(!isDeadBlock(cast(U->getUser())->getParent()) && "isDeadEdge() must be applied to edge from live block"); return DeadEdges.count(U); } bool hasLiveIncomingEdges(const BasicBlock *BB) const { // Check if all incoming edges are dead. for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) { auto &PU = PredIt.getUse(); const Use &U = PU.getUser()->getOperandUse(PU.getOperandNo()); if (!isDeadBlock(*PredIt) && !isDeadEdge(&U)) return true; // Found a live edge. } return false; } void processFunction(const Function &F, const DominatorTree &DT) { this->DT = &DT; // Start with all blocks unreachable from entry. for (const BasicBlock &BB : F) if (!DT.isReachableFromEntry(&BB)) DeadBlocks.insert(&BB); // Top-down walk of the dominator tree ReversePostOrderTraversal RPOT(&F); for (const BasicBlock *BB : RPOT) { const Instruction *TI = BB->getTerminator(); assert(TI && "blocks must be well formed"); // For conditional branches, we can perform simple conditional propagation on // the condition value itself. const BranchInst *BI = dyn_cast(TI); if (!BI || !BI->isConditional() || !isa(BI->getCondition())) continue; // If a branch has two identical successors, we cannot declare either dead. if (BI->getSuccessor(0) == BI->getSuccessor(1)) continue; ConstantInt *Cond = dyn_cast(BI->getCondition()); if (!Cond) continue; addDeadEdge(BI->getOperandUse(Cond->getZExtValue() ? 1 : 2)); } } protected: void addDeadBlock(const BasicBlock *BB) { SmallVector NewDead; SmallSetVector DF; NewDead.push_back(BB); while (!NewDead.empty()) { const BasicBlock *D = NewDead.pop_back_val(); if (isDeadBlock(D)) continue; // All blocks dominated by D are dead. SmallVector Dom; DT->getDescendants(const_cast(D), Dom); // Do not need to mark all in and out edges dead // because BB is marked dead and this is enough // to run further. DeadBlocks.insert(Dom.begin(), Dom.end()); // Figure out the dominance-frontier(D). for (BasicBlock *B : Dom) for (BasicBlock *S : successors(B)) if (!isDeadBlock(S) && !hasLiveIncomingEdges(S)) NewDead.push_back(S); } } void addDeadEdge(const Use &DeadEdge) { if (!DeadEdges.insert(&DeadEdge)) return; BasicBlock *BB = cast_or_null(DeadEdge.get()); if (hasLiveIncomingEdges(BB)) return; addDeadBlock(BB); } }; } // namespace static void Verify(const Function &F, const DominatorTree &DT, const CFGDeadness &CD); namespace llvm { PreservedAnalyses SafepointIRVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { const auto &DT = AM.getResult(F); CFGDeadness CD; CD.processFunction(F, DT); Verify(F, DT, CD); return PreservedAnalyses::all(); } } // namespace llvm namespace { struct SafepointIRVerifier : public FunctionPass { static char ID; // Pass identification, replacement for typeid SafepointIRVerifier() : FunctionPass(ID) { initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { auto &DT = getAnalysis().getDomTree(); CFGDeadness CD; CD.processFunction(F, DT); Verify(F, DT, CD); return false; // no modifications } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequiredID(DominatorTreeWrapperPass::ID); AU.setPreservesAll(); } StringRef getPassName() const override { return "safepoint verifier"; } }; } // namespace void llvm::verifySafepointIR(Function &F) { SafepointIRVerifier pass; pass.runOnFunction(F); } char SafepointIRVerifier::ID = 0; FunctionPass *llvm::createSafepointIRVerifierPass() { return new SafepointIRVerifier(); } INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir", "Safepoint IR Verifier", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir", "Safepoint IR Verifier", false, false) static bool isGCPointerType(Type *T) { if (auto *PT = dyn_cast(T)) // For the sake of this example GC, we arbitrarily pick addrspace(1) as our // GC managed heap. We know that a pointer into this heap needs to be // updated and that no other pointer does. return (1 == PT->getAddressSpace()); return false; } static bool containsGCPtrType(Type *Ty) { if (isGCPointerType(Ty)) return true; if (VectorType *VT = dyn_cast(Ty)) return isGCPointerType(VT->getScalarType()); if (ArrayType *AT = dyn_cast(Ty)) return containsGCPtrType(AT->getElementType()); if (StructType *ST = dyn_cast(Ty)) return llvm::any_of(ST->elements(), containsGCPtrType); return false; } // Debugging aid -- prints a [Begin, End) range of values. template static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) { OS << "[ "; while (Begin != End) { OS << **Begin << " "; ++Begin; } OS << "]"; } /// The verifier algorithm is phrased in terms of availability. The set of /// values "available" at a given point in the control flow graph is the set of /// correctly relocated value at that point, and is a subset of the set of /// definitions dominating that point. using AvailableValueSet = DenseSet; /// State we compute and track per basic block. struct BasicBlockState { // Set of values available coming in, before the phi nodes AvailableValueSet AvailableIn; // Set of values available going out AvailableValueSet AvailableOut; // AvailableOut minus AvailableIn. // All elements are Instructions AvailableValueSet Contribution; // True if this block contains a safepoint and thus AvailableIn does not // contribute to AvailableOut. bool Cleared = false; }; /// A given derived pointer can have multiple base pointers through phi/selects. /// This type indicates when the base pointer is exclusively constant /// (ExclusivelySomeConstant), and if that constant is proven to be exclusively /// null, we record that as ExclusivelyNull. In all other cases, the BaseType is /// NonConstant. enum BaseType { NonConstant = 1, // Base pointers is not exclusively constant. ExclusivelyNull, ExclusivelySomeConstant // Base pointers for a given derived pointer is from a // set of constants, but they are not exclusively // null. }; /// Return the baseType for Val which states whether Val is exclusively /// derived from constant/null, or not exclusively derived from constant. /// Val is exclusively derived off a constant base when all operands of phi and /// selects are derived off a constant base. static enum BaseType getBaseType(const Value *Val) { SmallVector Worklist; DenseSet Visited; bool isExclusivelyDerivedFromNull = true; Worklist.push_back(Val); // Strip through all the bitcasts and geps to get base pointer. Also check for // the exclusive value when there can be multiple base pointers (through phis // or selects). while(!Worklist.empty()) { const Value *V = Worklist.pop_back_val(); if (!Visited.insert(V).second) continue; if (const auto *CI = dyn_cast(V)) { Worklist.push_back(CI->stripPointerCasts()); continue; } if (const auto *GEP = dyn_cast(V)) { Worklist.push_back(GEP->getPointerOperand()); continue; } // Push all the incoming values of phi node into the worklist for // processing. if (const auto *PN = dyn_cast(V)) { append_range(Worklist, PN->incoming_values()); continue; } if (const auto *SI = dyn_cast(V)) { // Push in the true and false values Worklist.push_back(SI->getTrueValue()); Worklist.push_back(SI->getFalseValue()); continue; } if (isa(V)) { // We found at least one base pointer which is non-null, so this derived // pointer is not exclusively derived from null. if (V != Constant::getNullValue(V->getType())) isExclusivelyDerivedFromNull = false; // Continue processing the remaining values to make sure it's exclusively // constant. continue; } // At this point, we know that the base pointer is not exclusively // constant. return BaseType::NonConstant; } // Now, we know that the base pointer is exclusively constant, but we need to // differentiate between exclusive null constant and non-null constant. return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull : BaseType::ExclusivelySomeConstant; } static bool isNotExclusivelyConstantDerived(const Value *V) { return getBaseType(V) == BaseType::NonConstant; } namespace { class InstructionVerifier; /// Builds BasicBlockState for each BB of the function. /// It can traverse function for verification and provides all required /// information. /// /// GC pointer may be in one of three states: relocated, unrelocated and /// poisoned. /// Relocated pointer may be used without any restrictions. /// Unrelocated pointer cannot be dereferenced, passed as argument to any call /// or returned. Unrelocated pointer may be safely compared against another /// unrelocated pointer or against a pointer exclusively derived from null. /// Poisoned pointers are produced when we somehow derive pointer from relocated /// and unrelocated pointers (e.g. phi, select). This pointers may be safely /// used in a very limited number of situations. Currently the only way to use /// it is comparison against constant exclusively derived from null. All /// limitations arise due to their undefined state: this pointers should be /// treated as relocated and unrelocated simultaneously. /// Rules of deriving: /// R + U = P - that's where the poisoned pointers come from /// P + X = P /// U + U = U /// R + R = R /// X + C = X /// Where "+" - any operation that somehow derive pointer, U - unrelocated, /// R - relocated and P - poisoned, C - constant, X - U or R or P or C or /// nothing (in case when "+" is unary operation). /// Deriving of pointers by itself is always safe. /// NOTE: when we are making decision on the status of instruction's result: /// a) for phi we need to check status of each input *at the end of /// corresponding predecessor BB*. /// b) for other instructions we need to check status of each input *at the /// current point*. /// /// FIXME: This works fairly well except one case /// bb1: /// p = *some GC-ptr def* /// p1 = gep p, offset /// / | /// / | /// bb2: | /// safepoint | /// \ | /// \ | /// bb3: /// p2 = phi [p, bb2] [p1, bb1] /// p3 = phi [p, bb2] [p, bb1] /// here p and p1 is unrelocated /// p2 and p3 is poisoned (though they shouldn't be) /// /// This leads to some weird results: /// cmp eq p, p2 - illegal instruction (false-positive) /// cmp eq p1, p2 - illegal instruction (false-positive) /// cmp eq p, p3 - illegal instruction (false-positive) /// cmp eq p, p1 - ok /// To fix this we need to introduce conception of generations and be able to /// check if two values belong to one generation or not. This way p2 will be /// considered to be unrelocated and no false alarm will happen. class GCPtrTracker { const Function &F; const CFGDeadness &CD; SpecificBumpPtrAllocator BSAllocator; DenseMap BlockMap; // This set contains defs of unrelocated pointers that are proved to be legal // and don't need verification. DenseSet ValidUnrelocatedDefs; // This set contains poisoned defs. They can be safely ignored during // verification too. DenseSet PoisonedDefs; public: GCPtrTracker(const Function &F, const DominatorTree &DT, const CFGDeadness &CD); bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const { return CD.hasLiveIncomingEdge(PN, InBB); } BasicBlockState *getBasicBlockState(const BasicBlock *BB); const BasicBlockState *getBasicBlockState(const BasicBlock *BB) const; bool isValuePoisoned(const Value *V) const { return PoisonedDefs.count(V); } /// Traverse each BB of the function and call /// InstructionVerifier::verifyInstruction for each possibly invalid /// instruction. /// It destructively modifies GCPtrTracker so it's passed via rvalue reference /// in order to prohibit further usages of GCPtrTracker as it'll be in /// inconsistent state. static void verifyFunction(GCPtrTracker &&Tracker, InstructionVerifier &Verifier); /// Returns true for reachable and live blocks. bool isMapped(const BasicBlock *BB) const { return BlockMap.find(BB) != BlockMap.end(); } private: /// Returns true if the instruction may be safely skipped during verification. bool instructionMayBeSkipped(const Instruction *I) const; /// Iterates over all BBs from BlockMap and recalculates AvailableIn/Out for /// each of them until it converges. void recalculateBBsStates(); /// Remove from Contribution all defs that legally produce unrelocated /// pointers and saves them to ValidUnrelocatedDefs. /// Though Contribution should belong to BBS it is passed separately with /// different const-modifier in order to emphasize (and guarantee) that only /// Contribution will be changed. /// Returns true if Contribution was changed otherwise false. bool removeValidUnrelocatedDefs(const BasicBlock *BB, const BasicBlockState *BBS, AvailableValueSet &Contribution); /// Gather all the definitions dominating the start of BB into Result. This is /// simply the defs introduced by every dominating basic block and the /// function arguments. void gatherDominatingDefs(const BasicBlock *BB, AvailableValueSet &Result, const DominatorTree &DT); /// Compute the AvailableOut set for BB, based on the BasicBlockState BBS, /// which is the BasicBlockState for BB. /// ContributionChanged is set when the verifier runs for the first time /// (in this case Contribution was changed from 'empty' to its initial state) /// or when Contribution of this BB was changed since last computation. static void transferBlock(const BasicBlock *BB, BasicBlockState &BBS, bool ContributionChanged); /// Model the effect of an instruction on the set of available values. static void transferInstruction(const Instruction &I, bool &Cleared, AvailableValueSet &Available); }; /// It is a visitor for GCPtrTracker::verifyFunction. It decides if the /// instruction (which uses heap reference) is legal or not, given our safepoint /// semantics. class InstructionVerifier { bool AnyInvalidUses = false; public: void verifyInstruction(const GCPtrTracker *Tracker, const Instruction &I, const AvailableValueSet &AvailableSet); bool hasAnyInvalidUses() const { return AnyInvalidUses; } private: void reportInvalidUse(const Value &V, const Instruction &I); }; } // end anonymous namespace GCPtrTracker::GCPtrTracker(const Function &F, const DominatorTree &DT, const CFGDeadness &CD) : F(F), CD(CD) { // Calculate Contribution of each live BB. // Allocate BB states for live blocks. for (const BasicBlock &BB : F) if (!CD.isDeadBlock(&BB)) { BasicBlockState *BBS = new (BSAllocator.Allocate()) BasicBlockState; for (const auto &I : BB) transferInstruction(I, BBS->Cleared, BBS->Contribution); BlockMap[&BB] = BBS; } // Initialize AvailableIn/Out sets of each BB using only information about // dominating BBs. for (auto &BBI : BlockMap) { gatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT); transferBlock(BBI.first, *BBI.second, true); } // Simulate the flow of defs through the CFG and recalculate AvailableIn/Out // sets of each BB until it converges. If any def is proved to be an // unrelocated pointer, it will be removed from all BBSs. recalculateBBsStates(); } BasicBlockState *GCPtrTracker::getBasicBlockState(const BasicBlock *BB) { return BlockMap.lookup(BB); } const BasicBlockState *GCPtrTracker::getBasicBlockState( const BasicBlock *BB) const { return const_cast(this)->getBasicBlockState(BB); } bool GCPtrTracker::instructionMayBeSkipped(const Instruction *I) const { // Poisoned defs are skipped since they are always safe by itself by // definition (for details see comment to this class). return ValidUnrelocatedDefs.count(I) || PoisonedDefs.count(I); } void GCPtrTracker::verifyFunction(GCPtrTracker &&Tracker, InstructionVerifier &Verifier) { // We need RPO here to a) report always the first error b) report errors in // same order from run to run. ReversePostOrderTraversal RPOT(&Tracker.F); for (const BasicBlock *BB : RPOT) { BasicBlockState *BBS = Tracker.getBasicBlockState(BB); if (!BBS) continue; // We destructively modify AvailableIn as we traverse the block instruction // by instruction. AvailableValueSet &AvailableSet = BBS->AvailableIn; for (const Instruction &I : *BB) { if (Tracker.instructionMayBeSkipped(&I)) continue; // This instruction shouldn't be added to AvailableSet. Verifier.verifyInstruction(&Tracker, I, AvailableSet); // Model the effect of current instruction on AvailableSet to keep the set // relevant at each point of BB. bool Cleared = false; transferInstruction(I, Cleared, AvailableSet); (void)Cleared; } } } void GCPtrTracker::recalculateBBsStates() { SetVector Worklist; // TODO: This order is suboptimal, it's better to replace it with priority // queue where priority is RPO number of BB. for (auto &BBI : BlockMap) Worklist.insert(BBI.first); // This loop iterates the AvailableIn/Out sets until it converges. // The AvailableIn and AvailableOut sets decrease as we iterate. while (!Worklist.empty()) { const BasicBlock *BB = Worklist.pop_back_val(); BasicBlockState *BBS = getBasicBlockState(BB); if (!BBS) continue; // Ignore dead successors. size_t OldInCount = BBS->AvailableIn.size(); for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) { const BasicBlock *PBB = *PredIt; BasicBlockState *PBBS = getBasicBlockState(PBB); if (PBBS && !CD.isDeadEdge(&CFGDeadness::getEdge(PredIt))) set_intersect(BBS->AvailableIn, PBBS->AvailableOut); } assert(OldInCount >= BBS->AvailableIn.size() && "invariant!"); bool InputsChanged = OldInCount != BBS->AvailableIn.size(); bool ContributionChanged = removeValidUnrelocatedDefs(BB, BBS, BBS->Contribution); if (!InputsChanged && !ContributionChanged) continue; size_t OldOutCount = BBS->AvailableOut.size(); transferBlock(BB, *BBS, ContributionChanged); if (OldOutCount != BBS->AvailableOut.size()) { assert(OldOutCount > BBS->AvailableOut.size() && "invariant!"); Worklist.insert(succ_begin(BB), succ_end(BB)); } } } bool GCPtrTracker::removeValidUnrelocatedDefs(const BasicBlock *BB, const BasicBlockState *BBS, AvailableValueSet &Contribution) { assert(&BBS->Contribution == &Contribution && "Passed Contribution should be from the passed BasicBlockState!"); AvailableValueSet AvailableSet = BBS->AvailableIn; bool ContributionChanged = false; // For explanation why instructions are processed this way see // "Rules of deriving" in the comment to this class. for (const Instruction &I : *BB) { bool ValidUnrelocatedPointerDef = false; bool PoisonedPointerDef = false; // TODO: `select` instructions should be handled here too. if (const PHINode *PN = dyn_cast(&I)) { if (containsGCPtrType(PN->getType())) { // If both is true, output is poisoned. bool HasRelocatedInputs = false; bool HasUnrelocatedInputs = false; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { const BasicBlock *InBB = PN->getIncomingBlock(i); if (!isMapped(InBB) || !CD.hasLiveIncomingEdge(PN, InBB)) continue; // Skip dead block or dead edge. const Value *InValue = PN->getIncomingValue(i); if (isNotExclusivelyConstantDerived(InValue)) { if (isValuePoisoned(InValue)) { // If any of inputs is poisoned, output is always poisoned too. HasRelocatedInputs = true; HasUnrelocatedInputs = true; break; } if (BlockMap[InBB]->AvailableOut.count(InValue)) HasRelocatedInputs = true; else HasUnrelocatedInputs = true; } } if (HasUnrelocatedInputs) { if (HasRelocatedInputs) PoisonedPointerDef = true; else ValidUnrelocatedPointerDef = true; } } } else if ((isa(I) || isa(I)) && containsGCPtrType(I.getType())) { // GEP/bitcast of unrelocated pointer is legal by itself but this def // shouldn't appear in any AvailableSet. for (const Value *V : I.operands()) if (containsGCPtrType(V->getType()) && isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) { if (isValuePoisoned(V)) PoisonedPointerDef = true; else ValidUnrelocatedPointerDef = true; break; } } assert(!(ValidUnrelocatedPointerDef && PoisonedPointerDef) && "Value cannot be both unrelocated and poisoned!"); if (ValidUnrelocatedPointerDef) { // Remove def of unrelocated pointer from Contribution of this BB and // trigger update of all its successors. Contribution.erase(&I); PoisonedDefs.erase(&I); ValidUnrelocatedDefs.insert(&I); LLVM_DEBUG(dbgs() << "Removing urelocated " << I << " from Contribution of " << BB->getName() << "\n"); ContributionChanged = true; } else if (PoisonedPointerDef) { // Mark pointer as poisoned, remove its def from Contribution and trigger // update of all successors. Contribution.erase(&I); PoisonedDefs.insert(&I); LLVM_DEBUG(dbgs() << "Removing poisoned " << I << " from Contribution of " << BB->getName() << "\n"); ContributionChanged = true; } else { bool Cleared = false; transferInstruction(I, Cleared, AvailableSet); (void)Cleared; } } return ContributionChanged; } void GCPtrTracker::gatherDominatingDefs(const BasicBlock *BB, AvailableValueSet &Result, const DominatorTree &DT) { DomTreeNode *DTN = DT[const_cast(BB)]; assert(DTN && "Unreachable blocks are ignored"); while (DTN->getIDom()) { DTN = DTN->getIDom(); auto BBS = getBasicBlockState(DTN->getBlock()); assert(BBS && "immediate dominator cannot be dead for a live block"); const auto &Defs = BBS->Contribution; Result.insert(Defs.begin(), Defs.end()); // If this block is 'Cleared', then nothing LiveIn to this block can be // available after this block completes. Note: This turns out to be // really important for reducing memory consuption of the initial available // sets and thus peak memory usage by this verifier. if (BBS->Cleared) return; } for (const Argument &A : BB->getParent()->args()) if (containsGCPtrType(A.getType())) Result.insert(&A); } void GCPtrTracker::transferBlock(const BasicBlock *BB, BasicBlockState &BBS, bool ContributionChanged) { const AvailableValueSet &AvailableIn = BBS.AvailableIn; AvailableValueSet &AvailableOut = BBS.AvailableOut; if (BBS.Cleared) { // AvailableOut will change only when Contribution changed. if (ContributionChanged) AvailableOut = BBS.Contribution; } else { // Otherwise, we need to reduce the AvailableOut set by things which are no // longer in our AvailableIn AvailableValueSet Temp = BBS.Contribution; set_union(Temp, AvailableIn); AvailableOut = std::move(Temp); } LLVM_DEBUG(dbgs() << "Transfered block " << BB->getName() << " from "; PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end()); dbgs() << " to "; PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end()); dbgs() << "\n";); } void GCPtrTracker::transferInstruction(const Instruction &I, bool &Cleared, AvailableValueSet &Available) { if (isa(I)) { Cleared = true; Available.clear(); } else if (containsGCPtrType(I.getType())) Available.insert(&I); } void InstructionVerifier::verifyInstruction( const GCPtrTracker *Tracker, const Instruction &I, const AvailableValueSet &AvailableSet) { if (const PHINode *PN = dyn_cast(&I)) { if (containsGCPtrType(PN->getType())) for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { const BasicBlock *InBB = PN->getIncomingBlock(i); const BasicBlockState *InBBS = Tracker->getBasicBlockState(InBB); if (!InBBS || !Tracker->hasLiveIncomingEdge(PN, InBB)) continue; // Skip dead block or dead edge. const Value *InValue = PN->getIncomingValue(i); if (isNotExclusivelyConstantDerived(InValue) && !InBBS->AvailableOut.count(InValue)) reportInvalidUse(*InValue, *PN); } } else if (isa(I) && containsGCPtrType(I.getOperand(0)->getType())) { Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); enum BaseType baseTyLHS = getBaseType(LHS), baseTyRHS = getBaseType(RHS); // Returns true if LHS and RHS are unrelocated pointers and they are // valid unrelocated uses. auto hasValidUnrelocatedUse = [&AvailableSet, Tracker, baseTyLHS, baseTyRHS, &LHS, &RHS] () { // A cmp instruction has valid unrelocated pointer operands only if // both operands are unrelocated pointers. // In the comparison between two pointers, if one is an unrelocated // use, the other *should be* an unrelocated use, for this // instruction to contain valid unrelocated uses. This unrelocated // use can be a null constant as well, or another unrelocated // pointer. if (AvailableSet.count(LHS) || AvailableSet.count(RHS)) return false; // Constant pointers (that are not exclusively null) may have // meaning in different VMs, so we cannot reorder the compare // against constant pointers before the safepoint. In other words, // comparison of an unrelocated use against a non-null constant // maybe invalid. if ((baseTyLHS == BaseType::ExclusivelySomeConstant && baseTyRHS == BaseType::NonConstant) || (baseTyLHS == BaseType::NonConstant && baseTyRHS == BaseType::ExclusivelySomeConstant)) return false; // If one of pointers is poisoned and other is not exclusively derived // from null it is an invalid expression: it produces poisoned result // and unless we want to track all defs (not only gc pointers) the only // option is to prohibit such instructions. if ((Tracker->isValuePoisoned(LHS) && baseTyRHS != ExclusivelyNull) || (Tracker->isValuePoisoned(RHS) && baseTyLHS != ExclusivelyNull)) return false; // All other cases are valid cases enumerated below: // 1. Comparison between an exclusively derived null pointer and a // constant base pointer. // 2. Comparison between an exclusively derived null pointer and a // non-constant unrelocated base pointer. // 3. Comparison between 2 unrelocated pointers. // 4. Comparison between a pointer exclusively derived from null and a // non-constant poisoned pointer. return true; }; if (!hasValidUnrelocatedUse()) { // Print out all non-constant derived pointers that are unrelocated // uses, which are invalid. if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS)) reportInvalidUse(*LHS, I); if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS)) reportInvalidUse(*RHS, I); } } else { for (const Value *V : I.operands()) if (containsGCPtrType(V->getType()) && isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) reportInvalidUse(*V, I); } } void InstructionVerifier::reportInvalidUse(const Value &V, const Instruction &I) { errs() << "Illegal use of unrelocated value found!\n"; errs() << "Def: " << V << "\n"; errs() << "Use: " << I << "\n"; if (!PrintOnly) abort(); AnyInvalidUses = true; } static void Verify(const Function &F, const DominatorTree &DT, const CFGDeadness &CD) { LLVM_DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n"); if (PrintOnly) dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n"; GCPtrTracker Tracker(F, DT, CD); // We now have all the information we need to decide if the use of a heap // reference is legal or not, given our safepoint semantics. InstructionVerifier Verifier; GCPtrTracker::verifyFunction(std::move(Tracker), Verifier); if (PrintOnly && !Verifier.hasAnyInvalidUses()) { dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName() << "\n"; } }