//===-- sanitizer_posix.cpp -----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is shared between AddressSanitizer and ThreadSanitizer // run-time libraries and implements POSIX-specific functions from // sanitizer_posix.h. //===----------------------------------------------------------------------===// #include "sanitizer_platform.h" #if SANITIZER_POSIX #include "sanitizer_common.h" #include "sanitizer_file.h" #include "sanitizer_flags.h" #include "sanitizer_libc.h" #include "sanitizer_posix.h" #include "sanitizer_procmaps.h" #include #include #include #include #if SANITIZER_FREEBSD // The MAP_NORESERVE define has been removed in FreeBSD 11.x, and even before // that, it was never implemented. So just define it to zero. #undef MAP_NORESERVE #define MAP_NORESERVE 0 #endif namespace __sanitizer { // ------------- sanitizer_common.h uptr GetMmapGranularity() { return GetPageSize(); } bool ErrorIsOOM(error_t err) { return err == ENOMEM; } void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) { size = RoundUpTo(size, GetPageSizeCached()); uptr res = MmapNamed(nullptr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, mem_type); int reserrno; if (UNLIKELY(internal_iserror(res, &reserrno))) ReportMmapFailureAndDie(size, mem_type, "allocate", reserrno, raw_report); IncreaseTotalMmap(size); return (void *)res; } void UnmapOrDie(void *addr, uptr size) { if (!addr || !size) return; uptr res = internal_munmap(addr, size); if (UNLIKELY(internal_iserror(res))) { Report("ERROR: %s failed to deallocate 0x%zx (%zd) bytes at address %p\n", SanitizerToolName, size, size, addr); CHECK("unable to unmap" && 0); } DecreaseTotalMmap(size); } void *MmapOrDieOnFatalError(uptr size, const char *mem_type) { size = RoundUpTo(size, GetPageSizeCached()); uptr res = MmapNamed(nullptr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, mem_type); int reserrno; if (UNLIKELY(internal_iserror(res, &reserrno))) { if (reserrno == ENOMEM) return nullptr; ReportMmapFailureAndDie(size, mem_type, "allocate", reserrno); } IncreaseTotalMmap(size); return (void *)res; } // We want to map a chunk of address space aligned to 'alignment'. // We do it by mapping a bit more and then unmapping redundant pieces. // We probably can do it with fewer syscalls in some OS-dependent way. void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment, const char *mem_type) { CHECK(IsPowerOfTwo(size)); CHECK(IsPowerOfTwo(alignment)); uptr map_size = size + alignment; // mmap maps entire pages and rounds up map_size needs to be a an integral // number of pages. // We need to be aware of this size for calculating end and for unmapping // fragments before and after the alignment region. map_size = RoundUpTo(map_size, GetPageSizeCached()); uptr map_res = (uptr)MmapOrDieOnFatalError(map_size, mem_type); if (UNLIKELY(!map_res)) return nullptr; uptr res = map_res; if (!IsAligned(res, alignment)) { res = (map_res + alignment - 1) & ~(alignment - 1); UnmapOrDie((void*)map_res, res - map_res); } uptr map_end = map_res + map_size; uptr end = res + size; end = RoundUpTo(end, GetPageSizeCached()); if (end != map_end) { CHECK_LT(end, map_end); UnmapOrDie((void*)end, map_end - end); } return (void*)res; } void *MmapNoReserveOrDie(uptr size, const char *mem_type) { size = RoundUpTo(size, GetPageSizeCached()); uptr p = MmapNamed(nullptr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, mem_type); int reserrno; if (UNLIKELY(internal_iserror(p, &reserrno))) ReportMmapFailureAndDie(size, mem_type, "allocate noreserve", reserrno); IncreaseTotalMmap(size); return (void *)p; } static void *MmapFixedImpl(uptr fixed_addr, uptr size, bool tolerate_enomem, const char *name) { size = RoundUpTo(size, GetPageSizeCached()); fixed_addr = RoundDownTo(fixed_addr, GetPageSizeCached()); uptr p = MmapNamed((void *)fixed_addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON | MAP_FIXED, name); int reserrno; if (UNLIKELY(internal_iserror(p, &reserrno))) { if (tolerate_enomem && reserrno == ENOMEM) return nullptr; char mem_type[40]; internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx", fixed_addr); ReportMmapFailureAndDie(size, mem_type, "allocate", reserrno); } IncreaseTotalMmap(size); return (void *)p; } void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name) { return MmapFixedImpl(fixed_addr, size, false /*tolerate_enomem*/, name); } void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, const char *name) { return MmapFixedImpl(fixed_addr, size, true /*tolerate_enomem*/, name); } bool MprotectNoAccess(uptr addr, uptr size) { return 0 == internal_mprotect((void*)addr, size, PROT_NONE); } bool MprotectReadOnly(uptr addr, uptr size) { return 0 == internal_mprotect((void *)addr, size, PROT_READ); } #if !SANITIZER_APPLE void MprotectMallocZones(void *addr, int prot) {} #endif fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *errno_p) { if (ShouldMockFailureToOpen(filename)) return kInvalidFd; int flags; switch (mode) { case RdOnly: flags = O_RDONLY; break; case WrOnly: flags = O_WRONLY | O_CREAT | O_TRUNC; break; case RdWr: flags = O_RDWR | O_CREAT; break; } fd_t res = internal_open(filename, flags, 0660); if (internal_iserror(res, errno_p)) return kInvalidFd; return ReserveStandardFds(res); } void CloseFile(fd_t fd) { internal_close(fd); } bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read, error_t *error_p) { uptr res = internal_read(fd, buff, buff_size); if (internal_iserror(res, error_p)) return false; if (bytes_read) *bytes_read = res; return true; } bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written, error_t *error_p) { uptr res = internal_write(fd, buff, buff_size); if (internal_iserror(res, error_p)) return false; if (bytes_written) *bytes_written = res; return true; } void *MapFileToMemory(const char *file_name, uptr *buff_size) { fd_t fd = OpenFile(file_name, RdOnly); CHECK(fd != kInvalidFd); uptr fsize = internal_filesize(fd); CHECK_NE(fsize, (uptr)-1); CHECK_GT(fsize, 0); *buff_size = RoundUpTo(fsize, GetPageSizeCached()); uptr map = internal_mmap(nullptr, *buff_size, PROT_READ, MAP_PRIVATE, fd, 0); return internal_iserror(map) ? nullptr : (void *)map; } void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) { uptr flags = MAP_SHARED; if (addr) flags |= MAP_FIXED; uptr p = internal_mmap(addr, size, PROT_READ | PROT_WRITE, flags, fd, offset); int mmap_errno = 0; if (internal_iserror(p, &mmap_errno)) { Printf("could not map writable file (%d, %lld, %zu): %zd, errno: %d\n", fd, (long long)offset, size, p, mmap_errno); return nullptr; } return (void *)p; } static inline bool IntervalsAreSeparate(uptr start1, uptr end1, uptr start2, uptr end2) { CHECK(start1 <= end1); CHECK(start2 <= end2); return (end1 < start2) || (end2 < start1); } // FIXME: this is thread-unsafe, but should not cause problems most of the time. // When the shadow is mapped only a single thread usually exists (plus maybe // several worker threads on Mac, which aren't expected to map big chunks of // memory). bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) { MemoryMappingLayout proc_maps(/*cache_enabled*/true); if (proc_maps.Error()) return true; // and hope for the best MemoryMappedSegment segment; while (proc_maps.Next(&segment)) { if (segment.start == segment.end) continue; // Empty range. CHECK_NE(0, segment.end); if (!IntervalsAreSeparate(segment.start, segment.end - 1, range_start, range_end)) return false; } return true; } #if !SANITIZER_APPLE void DumpProcessMap() { MemoryMappingLayout proc_maps(/*cache_enabled*/true); const sptr kBufSize = 4095; char *filename = (char*)MmapOrDie(kBufSize, __func__); MemoryMappedSegment segment(filename, kBufSize); Report("Process memory map follows:\n"); while (proc_maps.Next(&segment)) { Printf("\t%p-%p\t%s\n", (void *)segment.start, (void *)segment.end, segment.filename); } Report("End of process memory map.\n"); UnmapOrDie(filename, kBufSize); } #endif const char *GetPwd() { return GetEnv("PWD"); } bool IsPathSeparator(const char c) { return c == '/'; } bool IsAbsolutePath(const char *path) { return path != nullptr && IsPathSeparator(path[0]); } void ReportFile::Write(const char *buffer, uptr length) { SpinMutexLock l(mu); ReopenIfNecessary(); internal_write(fd, buffer, length); } bool GetCodeRangeForFile(const char *module, uptr *start, uptr *end) { MemoryMappingLayout proc_maps(/*cache_enabled*/false); InternalMmapVector buff(kMaxPathLength); MemoryMappedSegment segment(buff.data(), buff.size()); while (proc_maps.Next(&segment)) { if (segment.IsExecutable() && internal_strcmp(module, segment.filename) == 0) { *start = segment.start; *end = segment.end; return true; } } return false; } uptr SignalContext::GetAddress() const { auto si = static_cast(siginfo); return (uptr)si->si_addr; } bool SignalContext::IsMemoryAccess() const { auto si = static_cast(siginfo); return si->si_signo == SIGSEGV || si->si_signo == SIGBUS; } int SignalContext::GetType() const { return static_cast(siginfo)->si_signo; } const char *SignalContext::Describe() const { switch (GetType()) { case SIGFPE: return "FPE"; case SIGILL: return "ILL"; case SIGABRT: return "ABRT"; case SIGSEGV: return "SEGV"; case SIGBUS: return "BUS"; case SIGTRAP: return "TRAP"; } return "UNKNOWN SIGNAL"; } fd_t ReserveStandardFds(fd_t fd) { CHECK_GE(fd, 0); if (fd > 2) return fd; bool used[3]; internal_memset(used, 0, sizeof(used)); while (fd <= 2) { used[fd] = true; fd = internal_dup(fd); } for (int i = 0; i <= 2; ++i) if (used[i]) internal_close(i); return fd; } bool ShouldMockFailureToOpen(const char *path) { return common_flags()->test_only_emulate_no_memorymap && internal_strncmp(path, "/proc/", 6) == 0; } #if SANITIZER_LINUX && !SANITIZER_ANDROID && !SANITIZER_GO int GetNamedMappingFd(const char *name, uptr size, int *flags) { if (!common_flags()->decorate_proc_maps || !name) return -1; char shmname[200]; CHECK(internal_strlen(name) < sizeof(shmname) - 10); internal_snprintf(shmname, sizeof(shmname), "/dev/shm/%zu [%s]", internal_getpid(), name); int o_cloexec = 0; #if defined(O_CLOEXEC) o_cloexec = O_CLOEXEC; #endif int fd = ReserveStandardFds( internal_open(shmname, O_RDWR | O_CREAT | O_TRUNC | o_cloexec, S_IRWXU)); CHECK_GE(fd, 0); int res = internal_ftruncate(fd, size); #if !defined(O_CLOEXEC) res = fcntl(fd, F_SETFD, FD_CLOEXEC); CHECK_EQ(0, res); #endif CHECK_EQ(0, res); res = internal_unlink(shmname); CHECK_EQ(0, res); *flags &= ~(MAP_ANON | MAP_ANONYMOUS); return fd; } #else int GetNamedMappingFd(const char *name, uptr size, int *flags) { return -1; } #endif #if SANITIZER_ANDROID #define PR_SET_VMA 0x53564d41 #define PR_SET_VMA_ANON_NAME 0 void DecorateMapping(uptr addr, uptr size, const char *name) { if (!common_flags()->decorate_proc_maps || !name) return; internal_prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, addr, size, (uptr)name); } #else void DecorateMapping(uptr addr, uptr size, const char *name) { } #endif uptr MmapNamed(void *addr, uptr length, int prot, int flags, const char *name) { int fd = GetNamedMappingFd(name, length, &flags); uptr res = internal_mmap(addr, length, prot, flags, fd, 0); if (!internal_iserror(res)) DecorateMapping(res, length, name); return res; } } // namespace __sanitizer #endif // SANITIZER_POSIX