// Copyright ©2015 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package lapack import "gonum.org/v1/gonum/blas" // Complex128 defines the public complex128 LAPACK API supported by gonum/lapack. type Complex128 interface{} // Float64 defines the public float64 LAPACK API supported by gonum/lapack. type Float64 interface { Dgecon(norm MatrixNorm, n int, a []float64, lda int, anorm float64, work []float64, iwork []int) float64 Dgeev(jobvl LeftEVJob, jobvr RightEVJob, n int, a []float64, lda int, wr, wi []float64, vl []float64, ldvl int, vr []float64, ldvr int, work []float64, lwork int) (first int) Dgels(trans blas.Transpose, m, n, nrhs int, a []float64, lda int, b []float64, ldb int, work []float64, lwork int) bool Dgelqf(m, n int, a []float64, lda int, tau, work []float64, lwork int) Dgeqrf(m, n int, a []float64, lda int, tau, work []float64, lwork int) Dgesvd(jobU, jobVT SVDJob, m, n int, a []float64, lda int, s, u []float64, ldu int, vt []float64, ldvt int, work []float64, lwork int) (ok bool) Dgetrf(m, n int, a []float64, lda int, ipiv []int) (ok bool) Dgetri(n int, a []float64, lda int, ipiv []int, work []float64, lwork int) (ok bool) Dgetrs(trans blas.Transpose, n, nrhs int, a []float64, lda int, ipiv []int, b []float64, ldb int) Dggsvd3(jobU, jobV, jobQ GSVDJob, m, n, p int, a []float64, lda int, b []float64, ldb int, alpha, beta, u []float64, ldu int, v []float64, ldv int, q []float64, ldq int, work []float64, lwork int, iwork []int) (k, l int, ok bool) Dlantr(norm MatrixNorm, uplo blas.Uplo, diag blas.Diag, m, n int, a []float64, lda int, work []float64) float64 Dlange(norm MatrixNorm, m, n int, a []float64, lda int, work []float64) float64 Dlansy(norm MatrixNorm, uplo blas.Uplo, n int, a []float64, lda int, work []float64) float64 Dlapmr(forward bool, m, n int, x []float64, ldx int, k []int) Dlapmt(forward bool, m, n int, x []float64, ldx int, k []int) Dormqr(side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64, lwork int) Dormlq(side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64, lwork int) Dpbcon(uplo blas.Uplo, n, kd int, ab []float64, ldab int, anorm float64, work []float64, iwork []int) float64 Dpbtrf(uplo blas.Uplo, n, kd int, ab []float64, ldab int) (ok bool) Dpbtrs(uplo blas.Uplo, n, kd, nrhs int, ab []float64, ldab int, b []float64, ldb int) Dpocon(uplo blas.Uplo, n int, a []float64, lda int, anorm float64, work []float64, iwork []int) float64 Dpotrf(ul blas.Uplo, n int, a []float64, lda int) (ok bool) Dpotri(ul blas.Uplo, n int, a []float64, lda int) (ok bool) Dpotrs(ul blas.Uplo, n, nrhs int, a []float64, lda int, b []float64, ldb int) Dpstrf(uplo blas.Uplo, n int, a []float64, lda int, piv []int, tol float64, work []float64) (rank int, ok bool) Dsyev(jobz EVJob, uplo blas.Uplo, n int, a []float64, lda int, w, work []float64, lwork int) (ok bool) Dtbtrs(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, n, kd, nrhs int, a []float64, lda int, b []float64, ldb int) (ok bool) Dtrcon(norm MatrixNorm, uplo blas.Uplo, diag blas.Diag, n int, a []float64, lda int, work []float64, iwork []int) float64 Dtrtri(uplo blas.Uplo, diag blas.Diag, n int, a []float64, lda int) (ok bool) Dtrtrs(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, n, nrhs int, a []float64, lda int, b []float64, ldb int) (ok bool) } // Direct specifies the direction of the multiplication for the Householder matrix. type Direct byte const ( Forward Direct = 'F' // Reflectors are right-multiplied, H_0 * H_1 * ... * H_{k-1}. Backward Direct = 'B' // Reflectors are left-multiplied, H_{k-1} * ... * H_1 * H_0. ) // Sort is the sorting order. type Sort byte const ( SortIncreasing Sort = 'I' SortDecreasing Sort = 'D' ) // StoreV indicates the storage direction of elementary reflectors. type StoreV byte const ( ColumnWise StoreV = 'C' // Reflector stored in a column of the matrix. RowWise StoreV = 'R' // Reflector stored in a row of the matrix. ) // MatrixNorm represents the kind of matrix norm to compute. type MatrixNorm byte const ( MaxAbs MatrixNorm = 'M' // max(abs(A(i,j))) MaxColumnSum MatrixNorm = 'O' // Maximum absolute column sum (one norm) MaxRowSum MatrixNorm = 'I' // Maximum absolute row sum (infinity norm) Frobenius MatrixNorm = 'F' // Frobenius norm (sqrt of sum of squares) ) // MatrixType represents the kind of matrix represented in the data. type MatrixType byte const ( General MatrixType = 'G' // A general dense matrix. UpperTri MatrixType = 'U' // An upper triangular matrix. LowerTri MatrixType = 'L' // A lower triangular matrix. ) // Pivot specifies the pivot type for plane rotations. type Pivot byte const ( Variable Pivot = 'V' Top Pivot = 'T' Bottom Pivot = 'B' ) // ApplyOrtho specifies which orthogonal matrix is applied in Dormbr. type ApplyOrtho byte const ( ApplyP ApplyOrtho = 'P' // Apply P or Pᵀ. ApplyQ ApplyOrtho = 'Q' // Apply Q or Qᵀ. ) // GenOrtho specifies which orthogonal matrix is generated in Dorgbr. type GenOrtho byte const ( GeneratePT GenOrtho = 'P' // Generate Pᵀ. GenerateQ GenOrtho = 'Q' // Generate Q. ) // SVDJob specifies the singular vector computation type for SVD. type SVDJob byte const ( SVDAll SVDJob = 'A' // Compute all columns of the orthogonal matrix U or V. SVDStore SVDJob = 'S' // Compute the singular vectors and store them in the orthogonal matrix U or V. SVDOverwrite SVDJob = 'O' // Compute the singular vectors and overwrite them on the input matrix A. SVDNone SVDJob = 'N' // Do not compute singular vectors. ) // GSVDJob specifies the singular vector computation type for Generalized SVD. type GSVDJob byte const ( GSVDU GSVDJob = 'U' // Compute orthogonal matrix U. GSVDV GSVDJob = 'V' // Compute orthogonal matrix V. GSVDQ GSVDJob = 'Q' // Compute orthogonal matrix Q. GSVDUnit GSVDJob = 'I' // Use unit-initialized matrix. GSVDNone GSVDJob = 'N' // Do not compute orthogonal matrix. ) // EVComp specifies how eigenvectors are computed in Dsteqr. type EVComp byte const ( EVOrig EVComp = 'V' // Compute eigenvectors of the original symmetric matrix. EVTridiag EVComp = 'I' // Compute eigenvectors of the tridiagonal matrix. EVCompNone EVComp = 'N' // Do not compute eigenvectors. ) // EVJob specifies whether eigenvectors are computed in Dsyev. type EVJob byte const ( EVCompute EVJob = 'V' // Compute eigenvectors. EVNone EVJob = 'N' // Do not compute eigenvectors. ) // LeftEVJob specifies whether left eigenvectors are computed in Dgeev. type LeftEVJob byte const ( LeftEVCompute LeftEVJob = 'V' // Compute left eigenvectors. LeftEVNone LeftEVJob = 'N' // Do not compute left eigenvectors. ) // RightEVJob specifies whether right eigenvectors are computed in Dgeev. type RightEVJob byte const ( RightEVCompute RightEVJob = 'V' // Compute right eigenvectors. RightEVNone RightEVJob = 'N' // Do not compute right eigenvectors. ) // BalanceJob specifies matrix balancing operation. type BalanceJob byte const ( Permute BalanceJob = 'P' Scale BalanceJob = 'S' PermuteScale BalanceJob = 'B' BalanceNone BalanceJob = 'N' ) // SchurJob specifies whether the Schur form is computed in Dhseqr. type SchurJob byte const ( EigenvaluesOnly SchurJob = 'E' EigenvaluesAndSchur SchurJob = 'S' ) // SchurComp specifies whether and how the Schur vectors are computed in Dhseqr. type SchurComp byte const ( SchurOrig SchurComp = 'V' // Compute Schur vectors of the original matrix. SchurHess SchurComp = 'I' // Compute Schur vectors of the upper Hessenberg matrix. SchurNone SchurComp = 'N' // Do not compute Schur vectors. ) // UpdateSchurComp specifies whether the matrix of Schur vectors is updated in Dtrexc. type UpdateSchurComp byte const ( UpdateSchur UpdateSchurComp = 'V' // Update the matrix of Schur vectors. UpdateSchurNone UpdateSchurComp = 'N' // Do not update the matrix of Schur vectors. ) // EVSide specifies what eigenvectors are computed in Dtrevc3. type EVSide byte const ( EVRight EVSide = 'R' // Compute only right eigenvectors. EVLeft EVSide = 'L' // Compute only left eigenvectors. EVBoth EVSide = 'B' // Compute both right and left eigenvectors. ) // EVHowMany specifies which eigenvectors are computed in Dtrevc3 and how. type EVHowMany byte const ( EVAll EVHowMany = 'A' // Compute all right and/or left eigenvectors. EVAllMulQ EVHowMany = 'B' // Compute all right and/or left eigenvectors multiplied by an input matrix. EVSelected EVHowMany = 'S' // Compute selected right and/or left eigenvectors. ) // MaximizeNormX specifies the heuristic method for computing a contribution to // the reciprocal Dif-estimate in Dlatdf. type MaximizeNormXJob byte const ( LocalLookAhead MaximizeNormXJob = 0 // Solve Z*x=h-f where h is a vector of ±1. NormalizedNullVector MaximizeNormXJob = 2 // Compute an approximate null-vector e of Z, normalize e and solve Z*x=±e-f. )