#include "systime.h" #include #include #ifdef _win_ namespace { // Number of 100 nanosecond units from 1/1/1601 to 1/1/1970 constexpr ui64 NUMBER_OF_100_NANO_BETWEEN_1601_1970 = ULL(116444736000000000); constexpr ui64 NUMBER_OF_100_NANO_IN_SECOND = ULL(10000000); union TFTUnion { ui64 FTScalar; FILETIME FTStruct; }; } // namespace void FileTimeToTimeval(const FILETIME* ft, timeval* tv) { Y_ASSERT(ft); Y_ASSERT(tv); TFTUnion ntTime; ntTime.FTStruct = *ft; ntTime.FTScalar -= NUMBER_OF_100_NANO_BETWEEN_1601_1970; tv->tv_sec = static_cast(ntTime.FTScalar / NUMBER_OF_100_NANO_IN_SECOND); tv->tv_usec = static_cast( (ntTime.FTScalar % NUMBER_OF_100_NANO_IN_SECOND) / LL(10)); } void FileTimeToTimespec(const FILETIME& ft, struct timespec* ts) { Y_ASSERT(ts); TFTUnion ntTime; ntTime.FTStruct = ft; ntTime.FTScalar -= NUMBER_OF_100_NANO_BETWEEN_1601_1970; ts->tv_sec = static_cast(ntTime.FTScalar / NUMBER_OF_100_NANO_IN_SECOND); ts->tv_nsec = static_cast( (ntTime.FTScalar % NUMBER_OF_100_NANO_IN_SECOND) * LL(100)); } int gettimeofday(timeval* tp, void*) { FILETIME ft; GetSystemTimeAsFileTime(&ft); FileTimeToTimeval(&ft, tp); return 0; } tm* localtime_r(const time_t* clock, tm* result) { tzset(); tm* res = localtime(clock); if (res) { memcpy(result, res, sizeof(tm)); return result; } return 0; } tm* gmtime_r(const time_t* clock, tm* result) { return gmtime_s(result, clock) == 0 ? result : 0; } char* ctime_r(const time_t* clock, char* buf) { char* res = ctime(clock); if (res) { memcpy(buf, res, 26); return buf; } return 0; } #endif /* _win_ */ namespace { constexpr int STRUCT_TM_BASE_YEAR = 1900; constexpr int UNIX_TIME_BASE_YEAR = 1970; constexpr long SECONDS_PER_DAY = (24L * 60L * 60L); constexpr bool IsLeapYear(int year) { if (year % 4 != 0) { return false; } if (year % 100 != 0) { return true; } return year % 400 == 0; } constexpr ui16 DAYS_IN_YEAR = 365; constexpr ui16 DAYS_IN_LEAP_YEAR = 366; constexpr ui16 YearSize(int year) { return IsLeapYear(year) ? DAYS_IN_LEAP_YEAR : DAYS_IN_YEAR; } constexpr ui64 FOUR_CENTURIES = (400 * 365 + 100 - 3); constexpr ui16 MONTH_TO_DAYS[12] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}; constexpr ui16 MONTH_TO_DAYS_LEAP[12] = { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335}; struct TMonth32LUT { char LastMonthDay32[12]; char FirstMonthDay32[12]; }; constexpr TMonth32LUT MONTH_32_LUT[2] = { { // common year .LastMonthDay32 = {31, 27, 26, 24, 23, 21, 20, 19, 17, 16, 14, 13}, .FirstMonthDay32 = {0, 1, 5, 6, 8, 9, 11, 12, 13, 15, 16, 18}, }, { // leap year .LastMonthDay32 = {31, 28, 27, 25, 24, 22, 21, 20, 18, 17, 15, 14}, .FirstMonthDay32 = {0, 1, 4, 5, 7, 8, 10, 11, 12, 14, 15, 17}, }, }; constexpr int DayOfYearToMonth(ui64& yearDay, bool leapYear) { Y_ASSERT(yearDay < 366); int approxMonth = yearDay / 32; int approxMDay = yearDay % 32; int dayThreshold = MONTH_32_LUT[leapYear].LastMonthDay32[approxMonth]; int currentMonthMDayOffset = MONTH_32_LUT[leapYear].FirstMonthDay32[approxMonth]; bool nextMonth = (approxMDay >= dayThreshold); int dayCorrection = nextMonth ? -dayThreshold : currentMonthMDayOffset; int day = approxMDay + dayCorrection; int month = approxMonth + nextMonth; yearDay = day; return month; } class TDayNoToYearLookupTable { static constexpr int TableSize = 128; // lookup table for years in [1970, 1970 + 128 = 2098] range ui16 DaysSinceEpoch[TableSize] = {}; public: constexpr TDayNoToYearLookupTable() { ui16 daysAccumulated = 0; for (int year = UNIX_TIME_BASE_YEAR; year < UNIX_TIME_BASE_YEAR + TableSize; ++year) { daysAccumulated += YearSize(year); DaysSinceEpoch[year - UNIX_TIME_BASE_YEAR] = daysAccumulated; } } // lookup year by days since epoch, decrement day counter to the corresponding amount of days. // The method returns the last year in the table, if year is too big int FindYear(ui64& days) const { if (days >= DaysSinceEpoch[TableSize - 1]) { days -= DaysSinceEpoch[TableSize - 1]; return TableSize + UNIX_TIME_BASE_YEAR; } const ui64 yearIndex = days / DAYS_IN_LEAP_YEAR; // we can miss by at most 1 year Y_ASSERT(yearIndex < TableSize); if (const auto diff = DaysSinceEpoch[yearIndex]; diff <= days) { days -= diff; return static_cast(yearIndex + UNIX_TIME_BASE_YEAR + 1); } if (yearIndex > 0) { days -= DaysSinceEpoch[yearIndex - 1]; } return static_cast(yearIndex + UNIX_TIME_BASE_YEAR); } }; constexpr TDayNoToYearLookupTable DAYS_TO_YEAR_LOOKUP; } // namespace //! Inverse of gmtime: converts struct tm to time_t, assuming the data //! in tm is UTC rather than local timezone. This implementation //! returns the number of seconds since 1970-01-01, converted to time_t. //! @note this code adopted from //! http://osdir.com/ml/web.wget.patches/2005-07/msg00010.html //! Subject: A more robust timegm - msg#00010 time_t TimeGM(const struct tm* t) { // Only handles years after 1970 if (Y_UNLIKELY(t->tm_year < 70)) { return (time_t)-1; } int days = 365 * (t->tm_year - 70); // Take into account the leap days between 1970 and YEAR-1 days += (t->tm_year - 1 - 68) / 4 - ((t->tm_year - 1) / 100) + ((t->tm_year - 1 + 300) / 400); if (Y_UNLIKELY(t->tm_mon < 0 || t->tm_mon >= 12)) { return (time_t)-1; } if (IsLeapYear(1900 + t->tm_year)) { days += MONTH_TO_DAYS_LEAP[t->tm_mon]; } else { days += MONTH_TO_DAYS[t->tm_mon]; } days += t->tm_mday - 1; unsigned long secs = days * 86400ul + t->tm_hour * 3600 + t->tm_min * 60 + t->tm_sec; return (time_t)secs; } struct tm* GmTimeR(const time_t* timer, struct tm* tmbuf) { i64 time = static_cast(*timer); ui64 dayclock, dayno; int year = UNIX_TIME_BASE_YEAR; if (Y_UNLIKELY(time < 0)) { ui64 shift = (ui64)(-time - 1) / (FOUR_CENTURIES * SECONDS_PER_DAY) + 1; time += shift * (FOUR_CENTURIES * SECONDS_PER_DAY); year -= shift * 400; } dayclock = (ui64)time % SECONDS_PER_DAY; dayno = (ui64)time / SECONDS_PER_DAY; if (Y_UNLIKELY(dayno >= FOUR_CENTURIES)) { year += 400 * (dayno / FOUR_CENTURIES); dayno = dayno % FOUR_CENTURIES; } tmbuf->tm_sec = dayclock % 60; tmbuf->tm_min = (dayclock % 3600) / 60; tmbuf->tm_hour = dayclock / 3600; tmbuf->tm_wday = (dayno + 4) % 7; // Day 0 was a thursday if (Y_LIKELY(year == UNIX_TIME_BASE_YEAR)) { year = DAYS_TO_YEAR_LOOKUP.FindYear(dayno); } bool isLeapYear = IsLeapYear(year); for (;;) { const ui16 yearSize = isLeapYear ? DAYS_IN_LEAP_YEAR : DAYS_IN_YEAR; if (dayno < yearSize) { break; } dayno -= yearSize; ++year; isLeapYear = IsLeapYear(year); } tmbuf->tm_year = year - STRUCT_TM_BASE_YEAR; tmbuf->tm_yday = dayno; tmbuf->tm_mon = DayOfYearToMonth(dayno, isLeapYear); tmbuf->tm_mday = dayno + 1; tmbuf->tm_isdst = 0; #ifndef _win_ tmbuf->tm_gmtoff = 0; tmbuf->tm_zone = (char*)"UTC"; #endif return tmbuf; } TString CTimeR(const time_t* timer) { char sTime[32]; sTime[0] = 0; ctime_r(timer, &sTime[0]); return sTime; }