#include "mkql_computation_node_ut.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace NKikimr { namespace NMiniKQL { constexpr bool IsVerbose = false; #define CTEST (IsVerbose ? Cerr : Cnull) Y_UNIT_TEST_SUITE(TMiniKQLGraceJoinMemTest) { Y_UNIT_TEST(TestMem1) { const ui64 TupleSize = 1024; const ui64 NBuckets = 128; const ui64 NTuples = 100000; const ui64 BucketSize = (2* NTuples * (TupleSize + 1) ) / NBuckets; ui64 *bigTuple = (ui64 * ) malloc(TupleSize * sizeof(ui64)); ui64 *buckets[NBuckets]; ui64 tuplesPos[NBuckets]; std::mt19937_64 rng; std::uniform_int_distribution dist(0, 10000 - 1); for (ui64 i = 0; i < TupleSize; i++) { bigTuple[i] = dist(rng); } ui64 bucket = 0; ui64 milliseconds = 0; const ui64 BitsForData = 30; char* a = (char * )malloc(1 << BitsForData); char* b = (char *) malloc(1 << BitsForData); UNIT_ASSERT(a); UNIT_ASSERT(b); memset(a, 1, 1 << BitsForData); memset(b, 2, 1 << BitsForData); std::chrono::steady_clock::time_point begin01 = std::chrono::steady_clock::now(); memcpy(b, a, 1 << BitsForData); std::chrono::steady_clock::time_point end01 = std::chrono::steady_clock::now(); UNIT_ASSERT(*a == 1); UNIT_ASSERT(*b == 1); Y_DO_NOT_OPTIMIZE_AWAY(a); Y_DO_NOT_OPTIMIZE_AWAY(b); ui64 microseconds = std::chrono::duration_cast(end01 - begin01).count(); CTEST << "Time for memcpy = " << microseconds << "[microseconds]" << Endl; CTEST << "Data size = " << (1<> vec_buckets; vec_buckets.resize(NBuckets); for (ui64 i = 0; i < NBuckets; i++) { vec_buckets[i].resize(2 * TupleSize * NTuples / (NBuckets - 1), 0); vec_buckets[i].clear(); // vec_buckets[i].reserve( 2 * TupleSize * NTuples / (NBuckets - 1)); } for (ui64 i = 0; i < NBuckets; i++) { buckets[i] = (ui64 * ) malloc( (BucketSize * sizeof(ui64) * 32) / 32); memset( buckets[i], 1, (BucketSize * sizeof(ui64) * 32) / 32); tuplesPos[i] = 0; } std::chrono::steady_clock::time_point begin02 = std::chrono::steady_clock::now(); std::uniform_int_distribution bucketDist(0, NBuckets - 1); for (ui64 i = 0; i < NTuples; i++) { bucket = i % NBuckets; // bucket = bucketDist(rng); std::vector &curr_vec = vec_buckets[bucket]; curr_vec.insert(curr_vec.end(), bigTuple, bigTuple + TupleSize); } std::chrono::steady_clock::time_point end02 = std::chrono::steady_clock::now(); milliseconds = std::chrono::duration_cast(end02 - begin02).count(); CTEST << "Time for std::insert = " << milliseconds << "[ms]" << Endl; CTEST << "Total MB = " << (TupleSize * NTuples * sizeof(ui64) / (1024 * 1024)) << Endl; CTEST << "std::insert speed = " << (TupleSize * NTuples * sizeof(ui64) * 1000) / (milliseconds * 1024 * 1024) << "MB/sec" << Endl; CTEST << Endl; std::chrono::steady_clock::time_point begin03 = std::chrono::steady_clock::now(); for (ui64 i = 0; i < NTuples; i++) { bucket = i % NBuckets; // bucket = bucketDist(rng); ui64 * dst = buckets[bucket] + tuplesPos[bucket]; std::memcpy(dst, bigTuple, TupleSize*sizeof(ui64)); tuplesPos[bucket] += TupleSize; } std::chrono::steady_clock::time_point end03 = std::chrono::steady_clock::now(); milliseconds = std::chrono::duration_cast(end03 - begin03).count(); CTEST << "Time for std::memcpy = " << milliseconds << "[ms]" << Endl; CTEST << "Total MB = " << (TupleSize * NTuples * sizeof(ui64) / (1024 * 1024)) << Endl; CTEST << "std:memcpy speed = " << (TupleSize * NTuples * sizeof(ui64) * 1000) / (milliseconds * 1024 * 1024) << "MB/sec" << Endl; CTEST << Endl; for (ui64 i = 0; i < NBuckets; i++) { tuplesPos[i] = 0; } std::chrono::steady_clock::time_point begin04 = std::chrono::steady_clock::now(); for (ui64 i = 0; i < NTuples; i++) { bucket = bucketDist(rng); ui64 * dst = buckets[bucket] + tuplesPos[bucket]; ui64 *dst1 = dst + 1; ui64 *dst2 = dst + 2; ui64 *dst3 = dst + 3; ui64 *src = bigTuple; ui64 *src1 = bigTuple + 1; ui64 *src2 = bigTuple + 2; ui64 *src3 = bigTuple + 3; for (ui64 i = 0; i < TupleSize; i += 4) { *dst++ = *src++; *dst1++ = *src1++; *dst2++ = *src2++; *dst3++ = *src3++; } tuplesPos[bucket] += TupleSize; } std::chrono::steady_clock::time_point end04 = std::chrono::steady_clock::now(); milliseconds = std::chrono::duration_cast(end04 - begin04).count(); CTEST << "Time for loop copy = " << milliseconds << "[ms]" << Endl; CTEST << "Total MB = " << (TupleSize * NTuples * sizeof(ui64) / (1024 * 1024)) << Endl; CTEST << "Loop copy speed = " << (TupleSize * NTuples * sizeof(ui64) * 1000) / (milliseconds * 1024 * 1024) << "MB/sec" << Endl; CTEST << Endl; for (ui64 i = 0; i < NBuckets; i++) { free(buckets[i]); } free(b); free(a); free(bigTuple); UNIT_ASSERT(true); } } Y_UNIT_TEST_SUITE(TMiniKQLGraceJoinImpTest) { constexpr ui64 BigTableTuples = 600000; constexpr ui64 SmallTableTuples = 150000; constexpr ui64 BigTupleSize = 40; Y_UNIT_TEST_LLVM(TestImp1) { TSetup setup; ui64 tuple[11] = {0,1,2,3,4,5,6,7,8,9,10}; ui32 strSizes[2] = {4, 4}; char * strVals[] = {(char *)"aaaaa", (char *)"bbbb"}; char * bigStrVal[] = {(char *)"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", (char *)"bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"}; ui32 bigStrSize[2] = {151, 151}; NMemInfo::TMemInfo mi = NMemInfo::GetMemInfo(); CTEST << "Mem usage before tables tuples added (MB): " << mi.RSS / (1024 * 1024) << Endl; GraceJoin::TTable bigTable(1,1,1,1); GraceJoin::TTable smallTable(1,1,1,1); GraceJoin::TTable joinTable(1,1,1,1); std::chrono::steady_clock::time_point begin = std::chrono::steady_clock::now(); const ui64 TupleSize = 1024; ui64 bigTuple[TupleSize]; std::mt19937_64 rng; // deterministic PRNG std::uniform_int_distribution dist(0, 10000 - 1); for (ui64 i = 0; i < TupleSize; i++) { bigTuple[i] = dist(rng); } ui64 milliseconds = 0; std::uniform_int_distribution smallDist(0, SmallTableTuples - 1); std::chrono::steady_clock::time_point begin03 = std::chrono::steady_clock::now(); smallTable.AddTuple(tuple, bigStrVal, bigStrSize); for ( ui64 i = 0; i < SmallTableTuples + 1; i++) { tuple[1] = smallDist(rng); tuple[2] = tuple[1]; smallTable.AddTuple(tuple, strVals, strSizes); } for ( ui64 i = 0; i < BigTableTuples; i++) { tuple[1] = smallDist(rng); tuple[2] = tuple[1]; bigTable.AddTuple(tuple, strVals, strSizes); } std::chrono::steady_clock::time_point end03 = std::chrono::steady_clock::now(); milliseconds = std::chrono::duration_cast(end03 - begin03).count(); CTEST << "Time for hash = " << milliseconds << "[ms]" << Endl; CTEST << "Adding tuples speed: " << (BigTupleSize * (BigTableTuples + SmallTableTuples) * 1000) / ( milliseconds * 1024 * 1024) << "MB/sec" << Endl; CTEST << Endl; mi = NMemInfo::GetMemInfo(); CTEST << "Mem usage after tables tuples added (MB): " << mi.RSS / (1024 * 1024) << Endl; bigTable.Clear(); smallTable.Clear(); begin03 = std::chrono::steady_clock::now(); smallTable.AddTuple(tuple, bigStrVal, bigStrSize); for ( ui64 i = 0; i < SmallTableTuples + 1; i++) { tuple[1] = smallDist(rng); tuple[2] = tuple[1]; smallTable.AddTuple(tuple, strVals, strSizes); } for ( ui64 i = 0; i < BigTableTuples; i++) { tuple[1] = smallDist(rng); tuple[2] = tuple[1]; bigTable.AddTuple(tuple, strVals, strSizes); } end03 = std::chrono::steady_clock::now(); milliseconds = std::chrono::duration_cast(end03 - begin03).count(); CTEST << "Time for hash = " << milliseconds << "[ms]" << Endl; CTEST << "Adding tuples speed: " << (BigTupleSize * (BigTableTuples + SmallTableTuples) * 1000) / ( milliseconds * 1024 * 1024) << "MB/sec" << Endl; CTEST << Endl; mi = NMemInfo::GetMemInfo(); CTEST << "Mem usage after tables tuples added (MB): " << mi.RSS / (1024 * 1024) << Endl; std::vector vals1, vals2; std::vector strVals1, strVals2; std::vector strSizes1, strSizes2; GraceJoin::TupleData td1, td2; vals1.resize(100); vals2.resize(100); strVals1.resize(100); strVals2.resize(100); strSizes1.resize(100); strSizes2.resize(100); td1.IntColumns = vals1.data(); td1.StrColumns = strVals1.data(); td1.StrSizes = strSizes1.data(); td2.IntColumns = vals2.data(); td2.StrColumns = strVals2.data(); td2.StrSizes = strSizes2.data(); ui64 numBigTuples = 0; bigTable.ResetIterator(); std::chrono::steady_clock::time_point begin04 = std::chrono::steady_clock::now(); while(bigTable.NextTuple(td1)) { numBigTuples++; } CTEST << "Num of big tuples 1: " << numBigTuples << Endl; std::chrono::steady_clock::time_point end04 = std::chrono::steady_clock::now(); CTEST << "Time for get 1 = " << std::chrono::duration_cast(end04 - begin04).count() << "[ms]" << Endl; CTEST << Endl; numBigTuples = 0; bigTable.ResetIterator(); std::chrono::steady_clock::time_point begin041 = std::chrono::steady_clock::now(); while(bigTable.NextTuple(td2)) { numBigTuples++; } CTEST << "Num of big tuples 2: " << numBigTuples << Endl; std::chrono::steady_clock::time_point end041 = std::chrono::steady_clock::now(); CTEST << "Time for get 2 = " << std::chrono::duration_cast(end041 - begin041).count() << "[ms]" << Endl; CTEST << Endl; std::chrono::steady_clock::time_point begin05 = std::chrono::steady_clock::now(); joinTable.Join(smallTable,bigTable); std::chrono::steady_clock::time_point end05 = std::chrono::steady_clock::now(); CTEST << "Time for join = " << std::chrono::duration_cast(end05 - begin05).count() << "[ms]" << Endl; CTEST << Endl; mi = NMemInfo::GetMemInfo(); CTEST << "Mem usage after tables join (MB): " << mi.RSS / (1024 * 1024) << Endl; joinTable.ResetIterator(); ui64 numJoinedTuples = 0; std::chrono::steady_clock::time_point begin042 = std::chrono::steady_clock::now(); while(joinTable.NextJoinedData(td1, td2)) { numJoinedTuples++; } CTEST << "Num of joined tuples : " << numJoinedTuples << Endl; std::chrono::steady_clock::time_point end042 = std::chrono::steady_clock::now(); CTEST << "Time for get joined tuples: = " << std::chrono::duration_cast(end042 - begin042).count() << "[ms]" << Endl; CTEST << Endl; std::chrono::steady_clock::time_point end = std::chrono::steady_clock::now(); CTEST << "Time difference = " << std::chrono::duration_cast(end - begin).count() << "[ms]" << Endl; CTEST << Endl; } Y_UNIT_TEST_LLVM(TestImp1Batch) { TSetup setup; ui64 tuple[11] = {0,1,2,3,4,5,6,7,8,9,10}; ui32 strSizes[2] = {4, 4}; char * strVals[] = {(char *)"aaaaa", (char *)"bbbb"}; char * bigStrVal[] = {(char *)"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", (char *)"bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"}; ui32 bigStrSize[2] = {151, 151}; NMemInfo::TMemInfo mi = NMemInfo::GetMemInfo(); CTEST << "Mem usage before tables tuples added (MB): " << mi.RSS / (1024 * 1024) << Endl; GraceJoin::TTable bigTable(1,1,1,1); GraceJoin::TTable smallTable(1,1,1,1); GraceJoin::TTable joinTable(1,1,1,1); std::chrono::steady_clock::time_point begin = std::chrono::steady_clock::now(); const ui64 TupleSize = 1024; ui64 bigTuple[TupleSize]; std::mt19937_64 rng; // deterministic PRNG std::uniform_int_distribution dist(0, 10000 - 1); for (ui64 i = 0; i < TupleSize; i++) { bigTuple[i] = dist(rng); } ui64 millisecondsAdd = 0; ui64 millisecondsJoin = 0; ui64 millisecondsNextJoinTuple = 0; ui64 millisecondsNextTuple = 0; const ui64 BatchTuples = 100000; std::uniform_int_distribution smallDist(0, SmallTableTuples - 1); { std::chrono::steady_clock::time_point begin03 = std::chrono::steady_clock::now(); smallTable.AddTuple(tuple, bigStrVal, bigStrSize); for ( ui64 i = 0; i < SmallTableTuples + 1; i++) { tuple[1] = smallDist(rng); tuple[2] = tuple[1]; smallTable.AddTuple(tuple, strVals, strSizes); } std::chrono::steady_clock::time_point end03 = std::chrono::steady_clock::now(); millisecondsAdd += std::chrono::duration_cast(end03 - begin03).count(); } for ( ui64 pos = 0; pos < BigTableTuples; ) { std::chrono::steady_clock::time_point begin03 = std::chrono::steady_clock::now(); ui64 limit = std::min(pos + BatchTuples, BigTableTuples); for (; pos < limit; ++pos) { tuple[1] = smallDist(rng); tuple[2] = tuple[1]; bigTable.AddTuple(tuple, strVals, strSizes); } bigTable.Clear(); std::chrono::steady_clock::time_point end03 = std::chrono::steady_clock::now(); millisecondsAdd += std::chrono::duration_cast(end03 - begin03).count(); } CTEST << "Time for hash = " << millisecondsAdd << "[ms]" << Endl; CTEST << "Adding tuples speed: " << (BigTupleSize * (BigTableTuples + SmallTableTuples) * 1000) / ( millisecondsAdd * 1024 * 1024) << "MB/sec" << Endl; CTEST << Endl; mi = NMemInfo::GetMemInfo(); CTEST << "Mem usage after tables tuples added (MB): " << mi.RSS / (1024 * 1024) << Endl; millisecondsAdd = 0; smallTable.Clear(); { auto begin03 = std::chrono::steady_clock::now(); smallTable.AddTuple(tuple, bigStrVal, bigStrSize); for ( ui64 i = 0; i < SmallTableTuples + 1; i++) { tuple[1] = smallDist(rng); tuple[2] = tuple[1]; smallTable.AddTuple(tuple, strVals, strSizes); } auto end03 = std::chrono::steady_clock::now(); millisecondsAdd += std::chrono::duration_cast(end03 - begin03).count(); } std::vector vals1, vals2; std::vector strVals1, strVals2; std::vector strSizes1, strSizes2; GraceJoin::TupleData td1, td2; vals1.resize(100); vals2.resize(100); strVals1.resize(100); strVals2.resize(100); strSizes1.resize(100); strSizes2.resize(100); td1.IntColumns = vals1.data(); td1.StrColumns = strVals1.data(); td1.StrSizes = strSizes1.data(); td2.IntColumns = vals2.data(); td2.StrColumns = strVals2.data(); td2.StrSizes = strSizes2.data(); ui64 numJoinedTuples = 0; ui64 numBigTuples = 0; for ( ui64 pos = 0; pos < BigTableTuples; ) { std::chrono::steady_clock::time_point begin03 = std::chrono::steady_clock::now(); bigTable.Clear(); ui64 limit = std::min(pos + BatchTuples, BigTableTuples); for (; pos < limit; ++pos) { tuple[1] = smallDist(rng); tuple[2] = tuple[1]; bigTable.AddTuple(tuple, strVals, strSizes); } auto end03 = std::chrono::steady_clock::now(); millisecondsAdd += std::chrono::duration_cast(end03 - begin03).count(); bigTable.ResetIterator(); std::chrono::steady_clock::time_point begin04 = std::chrono::steady_clock::now(); while(bigTable.NextTuple(td1)) { numBigTuples++; } std::chrono::steady_clock::time_point end04 = std::chrono::steady_clock::now(); millisecondsNextTuple += std::chrono::duration_cast(end04 - begin04).count(); std::chrono::steady_clock::time_point begin05 = std::chrono::steady_clock::now(); joinTable.Join(smallTable, bigTable, EJoinKind::Inner, false, pos < BigTableTuples); std::chrono::steady_clock::time_point end05 = std::chrono::steady_clock::now(); millisecondsJoin += std::chrono::duration_cast(end05 - begin05).count(); joinTable.ResetIterator(); std::chrono::steady_clock::time_point begin042 = std::chrono::steady_clock::now(); while(joinTable.NextJoinedData(td1, td2)) { numJoinedTuples++; } std::chrono::steady_clock::time_point end042 = std::chrono::steady_clock::now(); millisecondsNextJoinTuple += std::chrono::duration_cast(end042 - begin042).count(); } std::chrono::steady_clock::time_point end = std::chrono::steady_clock::now(); CTEST << "Num of big tuples 1: " << numBigTuples << Endl; CTEST << "Time for get 1 = " << millisecondsNextTuple << "[ms]" << Endl; CTEST << Endl; CTEST << "Time for join = " << millisecondsJoin << "[ms]" << Endl; CTEST << Endl; CTEST << "Time for get joined tuples: = " << millisecondsNextJoinTuple << "[ms]" << Endl; CTEST << Endl; mi = NMemInfo::GetMemInfo(); CTEST << "Mem usage after tables add and join (MB): " << mi.RSS / (1024 * 1024) << Endl; CTEST << "Time for hash = " << millisecondsAdd << "[ms]" << Endl; CTEST << "Adding tuples speed: " << (BigTupleSize * (BigTableTuples + SmallTableTuples) * 1000) / ( millisecondsAdd * 1024 * 1024) << "MB/sec" << Endl; CTEST << Endl; CTEST << "Num of joined tuples : " << numJoinedTuples << Endl; CTEST << "Time difference = " << std::chrono::duration_cast(end - begin).count() << "[ms]" << Endl; CTEST << Endl; } } Y_UNIT_TEST_SUITE(TMiniKQLGraceJoinAnyTest) { Y_UNIT_TEST_LLVM(TestImp2) { TSetup setup; ui64 tuple[11] = {0,1,2,3,4,5,6,7,8,9,10}; ui32 strSizes[2] = {4, 4}; char * strVals[] = {(char *)"aaaaa", (char *)"bbbb"}; char * bigStrVal[] = {(char *)"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", (char *)"bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"}; ui32 bigStrSize[2] = {151, 151}; GraceJoin::TTable bigTable (1,1,1,1,0,0,1, nullptr, true); GraceJoin::TTable smallTable(1,1,1,1,0,0,1, nullptr, true); GraceJoin::TTable joinTable (1,1,1,1,0,0,1, nullptr, true); std::mt19937_64 rng; std::uniform_int_distribution dist(0, 10000 - 1); std::chrono::steady_clock::time_point begin = std::chrono::steady_clock::now(); const ui64 TupleSize = 1024; ui64 bigTuple[TupleSize]; for (ui64 i = 0; i < TupleSize; i++) { bigTuple[i] = dist(rng); } ui64 milliseconds = 0; const ui64 BigTableTuples = 600000; const ui64 SmallTableTuples = 150000; const ui64 BigTupleSize = 40; std::uniform_int_distribution smallDist(0, SmallTableTuples - 1); std::chrono::steady_clock::time_point begin03 = std::chrono::steady_clock::now(); smallTable.AddTuple(tuple, bigStrVal, bigStrSize); for ( ui64 i = 0; i < SmallTableTuples + 1; i++) { tuple[1] = i; tuple[2] = tuple[1]; smallTable.AddTuple(tuple, strVals, strSizes); } for ( ui64 i = 0; i < BigTableTuples; i++) { tuple[1] = i % SmallTableTuples; tuple[2] = tuple[1]; bigTable.AddTuple(tuple, strVals, strSizes); } std::chrono::steady_clock::time_point end03 = std::chrono::steady_clock::now(); milliseconds = std::chrono::duration_cast(end03 - begin03).count(); CTEST << "Time for hash = " << milliseconds << "[ms]" << Endl; CTEST << "Adding tuples speed: " << (BigTupleSize * (BigTableTuples + SmallTableTuples) * 1000) / ( milliseconds * 1024 * 1024) << "MB/sec" << Endl; CTEST << Endl; std::vector vals1, vals2; std::vector strVals1, strVals2; std::vector strSizes1, strSizes2; GraceJoin::TupleData td1, td2; vals1.resize(100); vals2.resize(100); strVals1.resize(100); strVals2.resize(100); strSizes1.resize(100); strSizes2.resize(100); td1.IntColumns = vals1.data(); td1.StrColumns = strVals1.data(); td1.StrSizes = strSizes1.data(); td2.IntColumns = vals2.data(); td2.StrColumns = strVals2.data(); td2.StrSizes = strSizes2.data(); ui64 numBigTuples = 0; bigTable.ResetIterator(); std::chrono::steady_clock::time_point begin04 = std::chrono::steady_clock::now(); while(bigTable.NextTuple(td1)) { numBigTuples++; } CTEST << "Num of big tuples 1: " << numBigTuples << Endl; std::chrono::steady_clock::time_point end04 = std::chrono::steady_clock::now(); CTEST << "Time for get 1 = " << std::chrono::duration_cast(end04 - begin04).count() << "[ms]" << Endl; CTEST << Endl; numBigTuples = 0; bigTable.ResetIterator(); std::chrono::steady_clock::time_point begin041 = std::chrono::steady_clock::now(); while(bigTable.NextTuple(td2)) { numBigTuples++; } CTEST << "Num of big tuples 2: " << numBigTuples << Endl; std::chrono::steady_clock::time_point end041 = std::chrono::steady_clock::now(); CTEST << "Time for get 2 = " << std::chrono::duration_cast(end041 - begin041).count() << "[ms]" << Endl; CTEST << Endl; std::chrono::steady_clock::time_point begin05 = std::chrono::steady_clock::now(); joinTable.Join(smallTable,bigTable); std::chrono::steady_clock::time_point end05 = std::chrono::steady_clock::now(); CTEST << "Time for join = " << std::chrono::duration_cast(end05 - begin05).count() << "[ms]" << Endl; CTEST << Endl; joinTable.ResetIterator(); ui64 numJoinedTuples = 0; std::chrono::steady_clock::time_point begin042 = std::chrono::steady_clock::now(); while(joinTable.NextJoinedData(td1, td2)) { numJoinedTuples++; } CTEST << "Num of joined tuples : " << numJoinedTuples << Endl; std::chrono::steady_clock::time_point end042 = std::chrono::steady_clock::now(); CTEST << "Time for get joined tuples: = " << std::chrono::duration_cast(end042 - begin042).count() << "[ms]" << Endl; CTEST << Endl; std::chrono::steady_clock::time_point end = std::chrono::steady_clock::now(); CTEST << "Time difference = " << std::chrono::duration_cast(end - begin).count() << "[ms]" << Endl; CTEST << Endl; } } Y_UNIT_TEST_SUITE(TMiniKQLGraceSelfJoinTest) { Y_UNIT_TEST_LLVM(TestImp3) { TSetup setup; ui64 tuple[11] = {0,1,2,3,4,5,6,7,8,9,10}; ui32 strSizes[2] = {4, 4}; char * strVals[] = {(char *)"aaaaa", (char *)"bbbb"}; char * bigStrVal[] = {(char *)"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", (char *)"bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"}; ui32 bigStrSize[2] = {151, 151}; GraceJoin::TTable bigTable (1,1,1,1,0,0,1, nullptr, false); GraceJoin::TTable smallTable(1,1,1,1,0,0,1, nullptr, false); GraceJoin::TTable joinTable (1,1,1,1,0,0,1, nullptr, false); std::chrono::steady_clock::time_point begin = std::chrono::steady_clock::now(); const ui64 TupleSize = 1024; ui64 bigTuple[TupleSize]; std::mt19937_64 rng; std::uniform_int_distribution dist(0, 10000 - 1); for (ui64 i = 0; i < TupleSize; i++) { bigTuple[i] = dist(rng); } ui64 milliseconds = 0; const ui64 BigTableTuples = 600000; const ui64 SmallTableTuples = 150000; const ui64 BigTupleSize = 40; std::chrono::steady_clock::time_point begin03 = std::chrono::steady_clock::now(); smallTable.AddTuple(tuple, bigStrVal, bigStrSize); for ( ui64 i = 0; i < SmallTableTuples + 1; i++) { tuple[1] = i; tuple[2] = tuple[1]; smallTable.AddTuple(tuple, strVals, strSizes); } for ( ui64 i = 0; i < BigTableTuples; i++) { tuple[1] = i % SmallTableTuples; tuple[2] = tuple[1]; bigTable.AddTuple(tuple, strVals, strSizes); } std::chrono::steady_clock::time_point end03 = std::chrono::steady_clock::now(); milliseconds = std::chrono::duration_cast(end03 - begin03).count(); CTEST << "Time for hash = " << milliseconds << "[ms]" << Endl; CTEST << "Adding tuples speed: " << (BigTupleSize * (BigTableTuples + SmallTableTuples) * 1000) / ( milliseconds * 1024 * 1024) << "MB/sec" << Endl; CTEST << Endl; std::vector vals1, vals2; std::vector strVals1, strVals2; std::vector strSizes1, strSizes2; GraceJoin::TupleData td1, td2; vals1.resize(100); vals2.resize(100); strVals1.resize(100); strVals2.resize(100); strSizes1.resize(100); strSizes2.resize(100); td1.IntColumns = vals1.data(); td1.StrColumns = strVals1.data(); td1.StrSizes = strSizes1.data(); td2.IntColumns = vals2.data(); td2.StrColumns = strVals2.data(); td2.StrSizes = strSizes2.data(); ui64 numBigTuples = 0; bigTable.ResetIterator(); std::chrono::steady_clock::time_point begin04 = std::chrono::steady_clock::now(); while(bigTable.NextTuple(td1)) { numBigTuples++; } CTEST << "Num of big tuples 1: " << numBigTuples << Endl; std::chrono::steady_clock::time_point end04 = std::chrono::steady_clock::now(); CTEST << "Time for get 1 = " << std::chrono::duration_cast(end04 - begin04).count() << "[ms]" << Endl; CTEST << Endl; numBigTuples = 0; bigTable.ResetIterator(); std::chrono::steady_clock::time_point begin041 = std::chrono::steady_clock::now(); while(bigTable.NextTuple(td2)) { numBigTuples++; } CTEST << "Num of big tuples 2: " << numBigTuples << Endl; std::chrono::steady_clock::time_point end041 = std::chrono::steady_clock::now(); CTEST << "Time for get 2 = " << std::chrono::duration_cast(end041 - begin041).count() << "[ms]" << Endl; CTEST << Endl; std::chrono::steady_clock::time_point begin05 = std::chrono::steady_clock::now(); joinTable.Join(bigTable,bigTable); std::chrono::steady_clock::time_point end05 = std::chrono::steady_clock::now(); CTEST << "Time for join = " << std::chrono::duration_cast(end05 - begin05).count() << "[ms]" << Endl; CTEST << Endl; joinTable.ResetIterator(); ui64 numJoinedTuples = 0; std::chrono::steady_clock::time_point begin042 = std::chrono::steady_clock::now(); while(joinTable.NextJoinedData(td1, td2)) { numJoinedTuples++; } CTEST << "Num of joined tuples : " << numJoinedTuples << Endl; std::chrono::steady_clock::time_point end042 = std::chrono::steady_clock::now(); CTEST << "Time for get joined tuples: = " << std::chrono::duration_cast(end042 - begin042).count() << "[ms]" << Endl; CTEST << Endl; std::chrono::steady_clock::time_point end = std::chrono::steady_clock::now(); CTEST << "Time difference = " << std::chrono::duration_cast(end - begin).count() << "[ms]" << Endl; CTEST << Endl; } } #if !defined(MKQL_RUNTIME_VERSION) || MKQL_RUNTIME_VERSION >= 40u Y_UNIT_TEST_SUITE(TMiniKQLSelfJoinTest) { Y_UNIT_TEST_LLVM_SPILLING(TestInner1) { if (SPILLING && RuntimeVersion < 50) return; for (ui32 pass = 0; pass < 1; ++pass) { TSetup setup; TProgramBuilder& pb = *setup.PgmBuilder; const auto key1 = pb.NewDataLiteral(1); const auto key2 = pb.NewDataLiteral(2); const auto key3 = pb.NewDataLiteral(4); const auto key4 = pb.NewDataLiteral(4); const auto payload1 = pb.NewDataLiteral("A"); const auto payload2 = pb.NewDataLiteral("B"); const auto payload3 = pb.NewDataLiteral("C"); const auto payload4 = pb.NewDataLiteral("X"); const auto payload5 = pb.NewDataLiteral("Y"); const auto payload6 = pb.NewDataLiteral("Z"); const auto tupleType = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) }); const auto list1 = pb.NewList(tupleType, { pb.NewTuple({key1, payload1}), pb.NewTuple({key2, payload2}), pb.NewTuple({key3, payload3}), pb.NewTuple({key4, payload4}) }); const auto resultType = pb.NewFlowType(pb.NewMultiType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) })); const auto pgmReturn = pb.Collect(pb.NarrowMap(pb.GraceSelfJoin( pb.ExpandMap(pb.ToFlow(list1), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), EJoinKind::Inner, {0U}, {0U}, {1U, 0U}, {1U, 1U}, resultType), [&](TRuntimeNode::TList items) -> TRuntimeNode { return pb.NewTuple(items); }) ); if (SPILLING) { setup.RenameCallable(pgmReturn, "GraceSelfJoin", "GraceSelfJoinWithSpilling"); } const auto graph = setup.BuildGraph(pgmReturn); if (SPILLING) { graph->GetContext().SpillerFactory = std::make_shared(); } const auto iterator = graph->GetValue().GetListIterator(); NUdf::TUnboxedValue tuple; std::map, ui32> u; while (iterator.Next(tuple)) { auto t0 = tuple.GetElement(0); auto t1 = tuple.GetElement(1); ++u[std::make_pair(TString(t0.AsStringRef()), TString(t1.AsStringRef()) )]; } UNIT_ASSERT(!iterator.Next(tuple)); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("C"), TString("C"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("C"), TString("X"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("X"), TString("C"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("X"), TString("X"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("B"), TString("B"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("A"), TString("A"))], 1); UNIT_ASSERT_EQUAL(u.size(), 6); } } Y_UNIT_TEST_LLVM_SPILLING(TestDiffKeys) { if (SPILLING && RuntimeVersion < 50) return; for (ui32 pass = 0; pass < 1; ++pass) { TSetup setup; TProgramBuilder& pb = *setup.PgmBuilder; const auto key1 = pb.NewDataLiteral(1); const auto key2 = pb.NewDataLiteral(2); const auto key3 = pb.NewDataLiteral(4); const auto key4 = pb.NewDataLiteral(4); const auto key11 = pb.NewDataLiteral(1); const auto key21 = pb.NewDataLiteral(1); const auto key31 = pb.NewDataLiteral(2); const auto key41 = pb.NewDataLiteral(3); const auto payload1 = pb.NewDataLiteral("A"); const auto payload2 = pb.NewDataLiteral("B"); const auto payload3 = pb.NewDataLiteral("C"); const auto payload4 = pb.NewDataLiteral("X"); const auto payload5 = pb.NewDataLiteral("Y"); const auto payload6 = pb.NewDataLiteral("Z"); const auto tupleType = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) }); const auto list1 = pb.NewList(tupleType, { pb.NewTuple({key1, key11, payload1}), pb.NewTuple({key2, key21, payload2}), pb.NewTuple({key3, key31, payload3}), pb.NewTuple({key4, key41, payload4}) }); const auto resultType = pb.NewFlowType(pb.NewMultiType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) })); const auto pgmReturn = pb.Collect(pb.NarrowMap(pb.GraceSelfJoin( pb.ExpandMap(pb.ToFlow(list1), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U), pb.Nth(item, 2U)}; }), EJoinKind::Inner, {0U}, {1U}, {2U, 0U}, {2U, 1U}, resultType), [&](TRuntimeNode::TList items) -> TRuntimeNode { return pb.NewTuple(items); }) ); if (SPILLING) { setup.RenameCallable(pgmReturn, "GraceSelfJoin", "GraceSelfJoinWithSpilling"); } const auto graph = setup.BuildGraph(pgmReturn); if (SPILLING) { graph->GetContext().SpillerFactory = std::make_shared(); } const auto iterator = graph->GetValue().GetListIterator(); NUdf::TUnboxedValue tuple; std::map, ui32> u; while (iterator.Next(tuple)) { auto t0 = tuple.GetElement(0); auto t1 = tuple.GetElement(1); ++u[std::make_pair(TString(t0.AsStringRef()), TString(t1.AsStringRef()) )]; } UNIT_ASSERT(!iterator.Next(tuple)); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("A"), TString("A"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("A"), TString("B"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("B"), TString("C"))], 1); UNIT_ASSERT_EQUAL(u.size(), 3); } } } #endif Y_UNIT_TEST_SUITE(TMiniKQLGraceJoinTest) { Y_UNIT_TEST_LLVM_SPILLING(TestInner1) { if (SPILLING && RuntimeVersion < 50) return; for (ui32 pass = 0; pass < 1; ++pass) { TSetup setup; TProgramBuilder& pb = *setup.PgmBuilder; const auto key1 = pb.NewDataLiteral(1); const auto key2 = pb.NewDataLiteral(2); const auto key3 = pb.NewDataLiteral(4); const auto key4 = pb.NewDataLiteral(4); const auto payload1 = pb.NewDataLiteral("A"); const auto payload2 = pb.NewDataLiteral("B"); const auto payload3 = pb.NewDataLiteral("C"); const auto payload4 = pb.NewDataLiteral("X"); const auto payload5 = pb.NewDataLiteral("Y"); const auto payload6 = pb.NewDataLiteral("Z"); const auto tupleType = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) }); const auto list1 = pb.NewList(tupleType, { pb.NewTuple({key1, payload1}), pb.NewTuple({key2, payload2}), pb.NewTuple({key3, payload3}) }); const auto list2 = pb.NewList(tupleType, { pb.NewTuple({key2, payload4}), pb.NewTuple({key3, payload5}), pb.NewTuple({key4, payload6}) }); const auto resultType = pb.NewFlowType(pb.NewMultiType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) })); const auto pgmReturn = pb.Collect(pb.NarrowMap(pb.GraceJoin( pb.ExpandMap(pb.ToFlow(list1), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), pb.ExpandMap(pb.ToFlow(list2), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), EJoinKind::Inner, {0U}, {0U}, {1U, 0U}, {1U, 1U}, resultType), [&](TRuntimeNode::TList items) -> TRuntimeNode { return pb.NewTuple(items); }) ); if (SPILLING) { setup.RenameCallable(pgmReturn, "GraceJoin", "GraceJoinWithSpilling"); } const auto graph = setup.BuildGraph(pgmReturn); if (SPILLING) { graph->GetContext().SpillerFactory = std::make_shared(); } const auto iterator = graph->GetValue().GetListIterator(); NUdf::TUnboxedValue tuple; std::map, ui32> u; while (iterator.Next(tuple)) { auto t0 = tuple.GetElement(0); auto t1 = tuple.GetElement(1); ++u[std::make_pair(TString(t0.AsStringRef()), TString(t1.AsStringRef()) )]; } UNIT_ASSERT(!iterator.Next(tuple)); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("C"), TString("Y"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("C"), TString("Z"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("B"), TString("X"))], 1); UNIT_ASSERT_EQUAL(u.size(), 3); } } Y_UNIT_TEST_LLVM_SPILLING(TestInnerDoubleCondition1) { if (SPILLING && RuntimeVersion < 50) return; for (ui32 pass = 0; pass < 1; ++pass) { TSetup setup; TProgramBuilder& pb = *setup.PgmBuilder; const auto key1 = pb.NewDataLiteral(1); const auto key2 = pb.NewDataLiteral(2); const auto key3 = pb.NewDataLiteral(4); const auto key4 = pb.NewDataLiteral(4); const auto payload1 = pb.NewDataLiteral("A"); const auto payload2 = pb.NewDataLiteral("B"); const auto payload3 = pb.NewDataLiteral("C"); const auto payload4 = pb.NewDataLiteral("X"); const auto payload5 = pb.NewDataLiteral("Y"); const auto payload6 = pb.NewDataLiteral("Z"); const auto tupleType1 = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) }); const auto tupleType2 = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) }); const auto list1 = pb.NewList(tupleType1, { pb.NewTuple({key1, payload1}), pb.NewTuple({key2, payload2}), pb.NewTuple({key3, payload3}) }); const auto list2 = pb.NewList(tupleType2, { pb.NewTuple({key2, key2, payload4}), pb.NewTuple({key3, key2, payload5}), pb.NewTuple({key4, key1, payload6}) }); const auto resultType = pb.NewFlowType(pb.NewMultiType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) })); const auto pgmReturn = pb.Collect(pb.NarrowMap(pb.GraceJoin( pb.ExpandMap(pb.ToFlow(list1), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), pb.ExpandMap(pb.ToFlow(list2), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U), pb.Nth(item, 2U)}; }), EJoinKind::Inner, {0U, 0U}, {0U, 1U}, {1U, 0U}, {2U, 1U}, resultType), [&](TRuntimeNode::TList items) -> TRuntimeNode { return pb.NewTuple(items); }) ); if (SPILLING) { setup.RenameCallable(pgmReturn, "GraceJoin", "GraceJoinWithSpilling"); } const auto graph = setup.BuildGraph(pgmReturn); if (SPILLING) { graph->GetContext().SpillerFactory = std::make_shared(); } const auto iterator = graph->GetValue().GetListIterator(); NUdf::TUnboxedValue tuple; std::map, ui32> u; while (iterator.Next(tuple)) { auto t0 = tuple.GetElement(0); auto t1 = tuple.GetElement(1); ++u[std::make_pair(TString(t0.AsStringRef()), TString(t1.AsStringRef()) )]; } UNIT_ASSERT(!iterator.Next(tuple)); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("B"), TString("X"))], 1); UNIT_ASSERT_EQUAL(u.size(), 1); } } Y_UNIT_TEST_LLVM_SPILLING(TestInnerManyKeyStrings) { if (SPILLING && RuntimeVersion < 50) return; for (ui32 pass = 0; pass < 1; ++pass) { TSetup setup; TProgramBuilder& pb = *setup.PgmBuilder; const auto key1 = pb.NewDataLiteral("A1"); const auto key2 = pb.NewDataLiteral("A2"); const auto key3 = pb.NewDataLiteral("A3"); const auto key4 = pb.NewDataLiteral("B1"); const auto key5 = pb.NewDataLiteral("B2"); const auto key6 = pb.NewDataLiteral("B3"); const auto payload1 = pb.NewDataLiteral("A"); const auto payload2 = pb.NewDataLiteral("B"); const auto payload3 = pb.NewDataLiteral("C"); const auto payload4 = pb.NewDataLiteral("X"); const auto payload5 = pb.NewDataLiteral("Y"); const auto payload6 = pb.NewDataLiteral("Z"); const auto tupleType1 = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) }); const auto tupleType2 = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) }); const auto list1 = pb.NewList(tupleType1, { pb.NewTuple({key1, key4, payload1}), pb.NewTuple({key2, key5, payload2}), pb.NewTuple({key3, key6, payload3}) }); const auto list2 = pb.NewList(tupleType2, { pb.NewTuple({key4, key1, payload4}), pb.NewTuple({key5, key2, payload5}), pb.NewTuple({key6, key6, payload6}) }); const auto resultType = pb.NewFlowType(pb.NewMultiType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) })); const auto pgmReturn = pb.Collect(pb.NarrowMap(pb.GraceJoin( pb.ExpandMap(pb.ToFlow(list1), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U), pb.Nth(item, 2U)}; }), pb.ExpandMap(pb.ToFlow(list2), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U), pb.Nth(item, 2U)}; }), EJoinKind::Inner, {0U, 1U}, {1U, 0U}, {1U, 0U}, {2U, 1U}, resultType), [&](TRuntimeNode::TList items) -> TRuntimeNode { return pb.NewTuple(items); }) ); if (SPILLING) { setup.RenameCallable(pgmReturn, "GraceJoin", "GraceJoinWithSpilling"); } const auto graph = setup.BuildGraph(pgmReturn); if (SPILLING) { graph->GetContext().SpillerFactory = std::make_shared(); } const auto iterator = graph->GetValue().GetListIterator(); NUdf::TUnboxedValue tuple; std::map, ui32> u; while (iterator.Next(tuple)) { auto t0 = tuple.GetElement(0); auto t1 = tuple.GetElement(1); ++u[std::make_pair(TString(t0.AsStringRef()), TString(t1.AsStringRef()) )]; } UNIT_ASSERT(!iterator.Next(tuple)); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("B2"), TString("Y"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("B1"), TString("X"))], 1); UNIT_ASSERT_EQUAL(u.size(), 2); } } Y_UNIT_TEST_LLVM_SPILLING(TestInnerManyKeyUuid) { if (SPILLING && RuntimeVersion < 50) return; for (ui32 pass = 0; pass < 1; ++pass) { TSetup setup; TProgramBuilder& pb = *setup.PgmBuilder; const auto key1 = pb.NewDataLiteral("A1A1A1A1A1A1A1A1"); const auto key2 = pb.NewDataLiteral("A2A2A2A2A2A2A2A2"); const auto key3 = pb.NewDataLiteral("A3A3A3A3A3A3A3A3"); const auto key4 = pb.NewDataLiteral("B1B1B1B1B1B1B1B1"); const auto key5 = pb.NewDataLiteral("B2B2B2B2B2B2B2B2"); const auto key6 = pb.NewDataLiteral("B3B3B3B3B3B3B3B3"); const auto payload1 = pb.NewDataLiteral("AAAAAAAAAAAAAAAA"); const auto payload2 = pb.NewDataLiteral("BBBBBBBBBBBBBBBB"); const auto payload3 = pb.NewDataLiteral("CCCCCCCCCCCCCCCC"); const auto payload4 = pb.NewDataLiteral("XXXXXXXXXXXXXXXX"); const auto payload5 = pb.NewDataLiteral("YYYYYYYYYYYYYYYY"); const auto payload6 = pb.NewDataLiteral("ZZZZZZZZZZZZZZZZ"); const auto tupleType1 = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) }); const auto tupleType2 = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) }); const auto list1 = pb.NewList(tupleType1, { pb.NewTuple({key1, key4, payload1}), pb.NewTuple({key2, key5, payload2}), pb.NewTuple({key3, key6, payload3}) }); const auto list2 = pb.NewList(tupleType2, { pb.NewTuple({key4, key1, payload4}), pb.NewTuple({key5, key2, payload5}), pb.NewTuple({key6, key6, payload6}) }); const auto resultType = pb.NewFlowType(pb.NewMultiType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) })); const auto pgmReturn = pb.Collect(pb.NarrowMap(pb.GraceJoin( pb.ExpandMap(pb.ToFlow(list1), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U), pb.Nth(item, 2U)}; }), pb.ExpandMap(pb.ToFlow(list2), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U), pb.Nth(item, 2U)}; }), EJoinKind::Inner, {0U, 1U}, {1U, 0U}, {1U, 0U}, {2U, 1U}, resultType), [&](TRuntimeNode::TList items) -> TRuntimeNode { return pb.NewTuple(items); }) ); if (SPILLING) { setup.RenameCallable(pgmReturn, "GraceJoin", "GraceJoinWithSpilling"); } const auto graph = setup.BuildGraph(pgmReturn); if (SPILLING) { graph->GetContext().SpillerFactory = std::make_shared(); } const auto iterator = graph->GetValue().GetListIterator(); NUdf::TUnboxedValue tuple; std::map, ui32> u; while (iterator.Next(tuple)) { auto t0 = tuple.GetElement(0); auto t1 = tuple.GetElement(1); ++u[std::make_pair(TString(t0.AsStringRef()), TString(t1.AsStringRef()) )]; } UNIT_ASSERT(!iterator.Next(tuple)); UNIT_ASSERT_EQUAL(u[std::make_pair( TString("B2B2B2B2B2B2B2B2"), TString("YYYYYYYYYYYYYYYY") )], 1); UNIT_ASSERT_EQUAL(u[std::make_pair( TString("B1B1B1B1B1B1B1B1"), TString("XXXXXXXXXXXXXXXX") )], 1); UNIT_ASSERT_EQUAL(u.size(), 2); } } Y_UNIT_TEST_LLVM_SPILLING(TestInnerStringKey1) { if (SPILLING && RuntimeVersion < 50) return; for (ui32 pass = 0; pass < 1; ++pass) { TSetup setup; TProgramBuilder& pb = *setup.PgmBuilder; const auto key1 = pb.NewDataLiteral("1"); const auto key2 = pb.NewDataLiteral("2"); const auto key3 = pb.NewDataLiteral("4"); const auto key4 = pb.NewDataLiteral("4"); const auto payload1 = pb.NewDataLiteral("A"); const auto payload2 = pb.NewDataLiteral("B"); const auto payload3 = pb.NewDataLiteral("C"); const auto payload4 = pb.NewDataLiteral("X"); const auto payload5 = pb.NewDataLiteral("Y"); const auto payload6 = pb.NewDataLiteral("Z"); const auto tupleType = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) }); const auto list1 = pb.NewList(tupleType, { pb.NewTuple({key1, payload1}), pb.NewTuple({key2, payload2}), pb.NewTuple({key3, payload3}) }); const auto list2 = pb.NewList(tupleType, { pb.NewTuple({key2, payload4}), pb.NewTuple({key3, payload5}), pb.NewTuple({key4, payload6}) }); const auto resultType = pb.NewFlowType(pb.NewMultiType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) })); const auto pgmReturn = pb.Collect(pb.NarrowMap(pb.GraceJoin( pb.ExpandMap(pb.ToFlow(list1), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), pb.ExpandMap(pb.ToFlow(list2), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), EJoinKind::Inner, {0U}, {0U}, {1U, 0U}, {1U, 1U}, resultType), [&](TRuntimeNode::TList items) -> TRuntimeNode { return pb.NewTuple(items); }) ); if (SPILLING) { setup.RenameCallable(pgmReturn, "GraceJoin", "GraceJoinWithSpilling"); } const auto graph = setup.BuildGraph(pgmReturn); if (SPILLING) { graph->GetContext().SpillerFactory = std::make_shared(); } const auto iterator = graph->GetValue().GetListIterator(); NUdf::TUnboxedValue tuple; std::map, ui32> u; while (iterator.Next(tuple)) { auto t0 = tuple.GetElement(0); auto t1 = tuple.GetElement(1); ++u[std::make_pair(TString(t0.AsStringRef()), TString(t1.AsStringRef()) )]; } UNIT_ASSERT(!iterator.Next(tuple)); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("B"), TString("X"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("C"), TString("Y"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("C"), TString("Z"))], 1); UNIT_ASSERT_EQUAL(u.size(), 3); } } Y_UNIT_TEST_LLVM_SPILLING(TMiniKQLGraceJoinTestInnerMulti1) { if (SPILLING && RuntimeVersion < 50) return; for (ui32 pass = 0; pass < 1; ++pass) { TSetup setup; TProgramBuilder& pb = *setup.PgmBuilder; const auto key1 = pb.NewDataLiteral(1); const auto key2 = pb.NewDataLiteral(2); const auto key3 = pb.NewDataLiteral(2); const auto key4 = pb.NewDataLiteral(3); const auto payload1 = pb.NewDataLiteral("A"); const auto payload2 = pb.NewDataLiteral("B"); const auto payload3 = pb.NewDataLiteral("C"); const auto payload4 = pb.NewDataLiteral("X"); const auto payload5 = pb.NewDataLiteral("Y"); const auto payload6 = pb.NewDataLiteral("Z"); const auto tupleType = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) }); const auto list1 = pb.NewList(tupleType, { pb.NewTuple({key1, payload1}), pb.NewTuple({key2, payload2}), pb.NewTuple({key3, payload3}) }); const auto list2 = pb.NewList(tupleType, { pb.NewTuple({key2, payload4}), pb.NewTuple({key3, payload5}), pb.NewTuple({key4, payload6}) }); const auto resultType = pb.NewFlowType(pb.NewMultiType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) })); const auto pgmReturn = pb.Collect(pb.NarrowMap(pb.GraceJoin( pb.ExpandMap(pb.ToFlow(list1), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), pb.ExpandMap(pb.ToFlow(list2), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), EJoinKind::Inner, {0U}, {0U}, {1U, 0U}, {1U, 1U}, resultType), [&](TRuntimeNode::TList items) -> TRuntimeNode { return pb.NewTuple(items); }) ); if (SPILLING) { setup.RenameCallable(pgmReturn, "GraceJoin", "GraceJoinWithSpilling"); } const auto graph = setup.BuildGraph(pgmReturn); if (SPILLING) { graph->GetContext().SpillerFactory = std::make_shared(); } const auto iterator = graph->GetValue().GetListIterator(); NUdf::TUnboxedValue tuple; std::map, ui32> u; while (iterator.Next(tuple)) { auto t0 = tuple.GetElement(0); auto t1 = tuple.GetElement(1); ++u[std::make_pair(TString(t0.AsStringRef()), TString(t1.AsStringRef()) )]; } UNIT_ASSERT(!iterator.Next(tuple)); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("B"), TString("X"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("B"), TString("Y"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("C"), TString("X"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("C"), TString("Y"))], 1); UNIT_ASSERT_EQUAL(u.size(), 4); } } Y_UNIT_TEST_LLVM_SPILLING(TestLeft1) { if (SPILLING && RuntimeVersion < 50) return; for (ui32 pass = 0; pass < 1; ++pass) { TSetup setup; TProgramBuilder& pb = *setup.PgmBuilder; const auto key1 = pb.NewDataLiteral(1); const auto key2 = pb.NewDataLiteral(2); const auto key3 = pb.NewDataLiteral(3); const auto key4 = pb.NewDataLiteral(4); const auto payload1 = pb.NewDataLiteral("A"); const auto payload2 = pb.NewDataLiteral("B"); const auto payload3 = pb.NewDataLiteral("C"); const auto payload4 = pb.NewDataLiteral("X"); const auto payload5 = pb.NewDataLiteral("Y"); const auto payload6 = pb.NewDataLiteral("Z"); const auto tupleType = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) }); const auto list1 = pb.NewList(tupleType, { pb.NewTuple({key1, payload1}), pb.NewTuple({key2, payload2}), pb.NewTuple({key3, payload3}) }); const auto list2 = pb.NewList(tupleType, { pb.NewTuple({key2, payload4}), pb.NewTuple({key3, payload5}), pb.NewTuple({key4, payload6}) }); const auto resultType = pb.NewFlowType(pb.NewMultiType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) })); const auto pgmReturn = pb.Collect(pb.NarrowMap(pb.GraceJoin( pb.ExpandMap(pb.ToFlow(list1), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), pb.ExpandMap(pb.ToFlow(list2), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), EJoinKind::Left, {0U}, {0U}, {1U, 0U}, {1U, 1U}, resultType), [&](TRuntimeNode::TList items) -> TRuntimeNode { return pb.NewTuple(items); }) ); if (SPILLING) { setup.RenameCallable(pgmReturn, "GraceJoin", "GraceJoinWithSpilling"); } const auto graph = setup.BuildGraph(pgmReturn); if (SPILLING) { graph->GetContext().SpillerFactory = std::make_shared(); } const auto iterator = graph->GetValue().GetListIterator(); NUdf::TUnboxedValue tuple; std::map, ui32> u; // use empty TString as replacement for NULL while (iterator.Next(tuple)) { auto t0 = tuple.GetElement(0); auto t1 = tuple.GetElement(1); UNIT_ASSERT(!t0 || !t0.AsStringRef().Empty()); // ensure no empty strings UNIT_ASSERT(!t1 || !t1.AsStringRef().Empty()); ++u[std::make_pair(t0 ? TString(t0.AsStringRef()) : TString(), t1 ? TString(t1.AsStringRef()) : TString())]; } UNIT_ASSERT(!iterator.Next(tuple)); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("A"), TString())], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("B"), TString("X"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("C"), TString("Y"))], 1); UNIT_ASSERT_EQUAL(u.size(), 3); } } Y_UNIT_TEST_LLVM_SPILLING(TestLeftMulti1) { if (SPILLING && RuntimeVersion < 50) return; for (ui32 pass = 0; pass < 1; ++pass) { TSetup setup; TProgramBuilder& pb = *setup.PgmBuilder; const auto key1 = pb.NewDataLiteral(1); const auto key2 = pb.NewDataLiteral(2); const auto key3 = pb.NewDataLiteral(2); const auto key4 = pb.NewDataLiteral(3); const auto payload1 = pb.NewDataLiteral("A"); const auto payload2 = pb.NewDataLiteral("B"); const auto payload3 = pb.NewDataLiteral("C"); const auto payload4 = pb.NewDataLiteral("X"); const auto payload5 = pb.NewDataLiteral("Y"); const auto payload6 = pb.NewDataLiteral("Z"); const auto tupleType = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) }); const auto list1 = pb.NewList(tupleType, { pb.NewTuple({key1, payload1}), pb.NewTuple({key2, payload2}), pb.NewTuple({key3, payload3}) }); const auto list2 = pb.NewList(tupleType, { pb.NewTuple({key2, payload4}), pb.NewTuple({key3, payload5}), pb.NewTuple({key4, payload6}) }); const auto resultType = pb.NewFlowType(pb.NewMultiType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) })); const auto pgmReturn = pb.Collect(pb.NarrowMap(pb.GraceJoin( pb.ExpandMap(pb.ToFlow(list1), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), pb.ExpandMap(pb.ToFlow(list2), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), EJoinKind::Left, {0U}, {0U}, {1U, 0U}, {1U, 1U}, resultType), [&](TRuntimeNode::TList items) -> TRuntimeNode { return pb.NewTuple(items); }) ); if (SPILLING) { setup.RenameCallable(pgmReturn, "GraceJoin", "GraceJoinWithSpilling"); } const auto graph = setup.BuildGraph(pgmReturn); if (SPILLING) { graph->GetContext().SpillerFactory = std::make_shared(); } const auto iterator = graph->GetValue().GetListIterator(); NUdf::TUnboxedValue tuple; std::map, ui32> u; while (iterator.Next(tuple)) { auto t0 = tuple.GetElement(0); auto t1 = tuple.GetElement(1); UNIT_ASSERT(!t0 || !t0.AsStringRef().Empty()); // ensure no empty strings UNIT_ASSERT(!t1 || !t1.AsStringRef().Empty()); ++u[std::make_pair(t0 ? TString(t0.AsStringRef()) : TString(), t1 ? TString(t1.AsStringRef()) : TString())]; } UNIT_ASSERT(!iterator.Next(tuple)); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("A"), TString())], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("B"), TString("X"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("B"), TString("Y"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("C"), TString("X"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("C"), TString("Y"))], 1); UNIT_ASSERT_EQUAL(u.size(), 5); } } Y_UNIT_TEST_LLVM_SPILLING(TestLeftSemi1) { if (SPILLING && RuntimeVersion < 50) return; for (ui32 pass = 0; pass < 1; ++pass) { TSetup setup; TProgramBuilder& pb = *setup.PgmBuilder; const auto key1 = pb.NewDataLiteral(1); const auto key2 = pb.NewDataLiteral(2); const auto key3 = pb.NewDataLiteral(2); const auto key4 = pb.NewDataLiteral(3); const auto payload1 = pb.NewDataLiteral("A"); const auto payload2 = pb.NewDataLiteral("B"); const auto payload3 = pb.NewDataLiteral("C"); const auto payload4 = pb.NewDataLiteral("X"); const auto payload5 = pb.NewDataLiteral("Y"); const auto payload6 = pb.NewDataLiteral("Z"); const auto tupleType = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) }); const auto list1 = pb.NewList(tupleType, { pb.NewTuple({key1, payload1}), pb.NewTuple({key2, payload2}), pb.NewTuple({key3, payload3}) }); const auto list2 = pb.NewList(tupleType, { pb.NewTuple({key2, payload4}), pb.NewTuple({key3, payload5}), pb.NewTuple({key4, payload6}) }); const auto resultType = pb.NewFlowType(pb.NewMultiType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) })); const auto pgmReturn = pb.Collect(pb.NarrowMap(pb.GraceJoin( pb.ExpandMap(pb.ToFlow(list1), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), pb.ExpandMap(pb.ToFlow(list2), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), EJoinKind::LeftSemi, {0U}, {0U}, {1U, 0U, 0U, 1U}, {}, resultType), [&](TRuntimeNode::TList items) -> TRuntimeNode { return pb.NewTuple(items); }) ); if (SPILLING) { setup.RenameCallable(pgmReturn, "GraceJoin", "GraceJoinWithSpilling"); } const auto graph = setup.BuildGraph(pgmReturn); if (SPILLING) { graph->GetContext().SpillerFactory = std::make_shared(); } const auto iterator = graph->GetValue().GetListIterator(); NUdf::TUnboxedValue tuple; std::map, ui32> u; while (iterator.Next(tuple)) { auto t0 = tuple.GetElement(0); auto t1 = tuple.GetElement(1); ++u[std::make_pair(TString(t0.AsStringRef()), t1.Get())]; } UNIT_ASSERT(!iterator.Next(tuple)); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("B"), 2)], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("C"), 2)], 1); UNIT_ASSERT_EQUAL(u.size(), 2); } } Y_UNIT_TEST_LLVM_SPILLING(TestLeftOnly1) { if (SPILLING && RuntimeVersion < 50) return; for (ui32 pass = 0; pass < 1; ++pass) { TSetup setup; TProgramBuilder& pb = *setup.PgmBuilder; const auto key1 = pb.NewDataLiteral(1); const auto key2 = pb.NewDataLiteral(2); const auto key3 = pb.NewDataLiteral(2); const auto key4 = pb.NewDataLiteral(3); const auto key5 = pb.NewDataLiteral(4); const auto payload1 = pb.NewDataLiteral("A"); const auto payload2 = pb.NewDataLiteral("B"); const auto payload3 = pb.NewDataLiteral("C"); const auto payload4 = pb.NewDataLiteral("D"); const auto payload5 = pb.NewDataLiteral("X"); const auto payload6 = pb.NewDataLiteral("Y"); const auto payload7 = pb.NewDataLiteral("Z"); const auto tupleType = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) }); const auto list1 = pb.NewList(tupleType, { pb.NewTuple({key1, payload1}), pb.NewTuple({key2, payload2}), pb.NewTuple({key3, payload3}), pb.NewTuple({key4, payload4}), pb.NewTuple({key5, payload4}) }); const auto list2 = pb.NewList(tupleType, { pb.NewTuple({key2, payload5}), pb.NewTuple({key3, payload6}), pb.NewTuple({key4, payload7}) }); const auto resultType = pb.NewFlowType(pb.NewMultiType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) })); const auto pgmReturn = pb.Collect(pb.NarrowMap(pb.GraceJoin( pb.ExpandMap(pb.ToFlow(list1), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), pb.ExpandMap(pb.ToFlow(list2), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), EJoinKind::LeftOnly, {0U}, {0U}, {1U, 0U, 0U, 1U}, {}, resultType), [&](TRuntimeNode::TList items) -> TRuntimeNode { return pb.NewTuple(items); }) ); if (SPILLING) { setup.RenameCallable(pgmReturn, "GraceJoin", "GraceJoinWithSpilling"); } const auto graph = setup.BuildGraph(pgmReturn); if (SPILLING) { graph->GetContext().SpillerFactory = std::make_shared(); } const auto iterator = graph->GetValue().GetListIterator(); NUdf::TUnboxedValue tuple; std::map, ui32> u; while (iterator.Next(tuple)) { auto t0 = tuple.GetElement(0); auto t1 = tuple.GetElement(1); ++u[std::make_pair(TString(t0.AsStringRef()), t1.Get())]; } UNIT_ASSERT(!iterator.Next(tuple)); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("D"), 4)], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("A"), 1)], 1); UNIT_ASSERT_EQUAL(u.size(), 2); } } Y_UNIT_TEST_LLVM_SPILLING(TestLeftSemiWithNullKey1) { if (SPILLING && RuntimeVersion < 50) return; for (ui32 pass = 0; pass < 1; ++pass) { TSetup setup; TProgramBuilder& pb = *setup.PgmBuilder; const auto key0 = pb.NewEmptyOptional(pb.NewDataType(NUdf::TDataType::Id, true)); const auto key1 = pb.NewOptional(pb.NewDataLiteral(1)); const auto key2 = pb.NewOptional(pb.NewDataLiteral(2)); const auto key3 = pb.NewOptional(pb.NewDataLiteral(2)); const auto key4 = pb.NewOptional(pb.NewDataLiteral(3)); const auto payload1 = pb.NewDataLiteral("A"); const auto payload2 = pb.NewDataLiteral("B"); const auto payload3 = pb.NewDataLiteral("C"); const auto payload4 = pb.NewDataLiteral("X"); const auto payload5 = pb.NewDataLiteral("Y"); const auto payload6 = pb.NewDataLiteral("Z"); const auto tupleType = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id, true), pb.NewDataType(NUdf::TDataType::Id) }); const auto list1 = pb.NewList(tupleType, { pb.NewTuple({key0, payload4}), pb.NewTuple({key1, payload1}), pb.NewTuple({key2, payload2}), pb.NewTuple({key3, payload3}) }); const auto list2 = pb.NewList(tupleType, { pb.NewTuple({key0, payload3}), pb.NewTuple({key2, payload4}), pb.NewTuple({key3, payload5}), pb.NewTuple({key4, payload6}) }); const auto resultType = pb.NewFlowType(pb.NewMultiType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) })); const auto pgmReturn = pb.Collect(pb.NarrowMap(pb.GraceJoin( pb.ExpandMap(pb.ToFlow(list1), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), pb.ExpandMap(pb.ToFlow(list2), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), EJoinKind::LeftSemi, {0U}, {0U}, {1U, 0U, 0U, 1U}, {}, resultType), [&](TRuntimeNode::TList items) -> TRuntimeNode { return pb.NewTuple(items); }) ); if (SPILLING) { setup.RenameCallable(pgmReturn, "GraceJoin", "GraceJoinWithSpilling"); } const auto graph = setup.BuildGraph(pgmReturn); if (SPILLING) { graph->GetContext().SpillerFactory = std::make_shared(); } const auto iterator = graph->GetValue().GetListIterator(); NUdf::TUnboxedValue tuple; std::map, ui32> u; while (iterator.Next(tuple)) { auto t0 = tuple.GetElement(0); auto t1 = tuple.GetElement(1); ++u[std::make_pair(TString(t0.AsStringRef()), t1.Get())]; } UNIT_ASSERT(!iterator.Next(tuple)); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("B"), 2)], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("C"), 2)], 1); UNIT_ASSERT_EQUAL(u.size(), 2); } } Y_UNIT_TEST_LLVM_SPILLING(TestLeftOnlyWithNullKey1) { if (SPILLING && RuntimeVersion < 50) return; for (ui32 pass = 0; pass < 1; ++pass) { TSetup setup; TProgramBuilder& pb = *setup.PgmBuilder; const auto key0 = pb.NewEmptyOptional(pb.NewDataType(NUdf::TDataType::Id, true)); const auto key1 = pb.NewOptional(pb.NewDataLiteral(1)); const auto key2 = pb.NewOptional(pb.NewDataLiteral(2)); const auto key3 = pb.NewOptional(pb.NewDataLiteral(2)); const auto key4 = pb.NewOptional(pb.NewDataLiteral(3)); const auto payload1 = pb.NewDataLiteral("A"); const auto payload2 = pb.NewDataLiteral("B"); const auto payload3 = pb.NewDataLiteral("C"); const auto payload4 = pb.NewDataLiteral("X"); const auto payload5 = pb.NewDataLiteral("Y"); const auto payload6 = pb.NewDataLiteral("Z"); const auto tupleType = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id, true), pb.NewDataType(NUdf::TDataType::Id) }); const auto list1 = pb.NewList(tupleType, { pb.NewTuple({key0, payload4}), pb.NewTuple({key1, payload1}), pb.NewTuple({key2, payload2}), pb.NewTuple({key3, payload3}) }); const auto list2 = pb.NewList(tupleType, { pb.NewTuple({key0, payload3}), pb.NewTuple({key2, payload4}), pb.NewTuple({key3, payload5}), pb.NewTuple({key4, payload6}) }); const auto resultType = pb.NewFlowType(pb.NewMultiType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) })); const auto pgmReturn = pb.Collect(pb.NarrowMap(pb.GraceJoin( pb.ExpandMap(pb.ToFlow(list1), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), pb.ExpandMap(pb.ToFlow(list2), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), EJoinKind::LeftOnly, {0U}, {0U}, {1U, 0U, 0U, 1U}, {}, resultType), [&](TRuntimeNode::TList items) -> TRuntimeNode { return pb.NewTuple(items); }) ); if (SPILLING) { setup.RenameCallable(pgmReturn, "GraceJoin", "GraceJoinWithSpilling"); } const auto graph = setup.BuildGraph(pgmReturn); if (SPILLING) { graph->GetContext().SpillerFactory = std::make_shared(); } const auto iterator = graph->GetValue().GetListIterator(); NUdf::TUnboxedValue tuple; std::map, ui32> u; while (iterator.Next(tuple)) { auto t0 = tuple.GetElement(0); auto t1 = tuple.GetElement(1); ++u[std::make_pair(TString(t0.AsStringRef()), t1 ? t1.Get() : std::numeric_limits::max())]; // replace NULL with ::max() } UNIT_ASSERT(!iterator.Next(tuple)); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("A"), 1)], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("X"), std::numeric_limits::max())], 1); UNIT_ASSERT_EQUAL(u.size(), 2); } } Y_UNIT_TEST_LLVM_SPILLING(TestRight1) { if (SPILLING && RuntimeVersion < 50) return; for (ui32 pass = 0; pass < 1; ++pass) { TSetup setup; TProgramBuilder& pb = *setup.PgmBuilder; const auto key1 = pb.NewDataLiteral(1); const auto key2 = pb.NewDataLiteral(2); const auto key3 = pb.NewDataLiteral(3); const auto key4 = pb.NewDataLiteral(4); const auto payload1 = pb.NewDataLiteral("A"); const auto payload2 = pb.NewDataLiteral("B"); const auto payload3 = pb.NewDataLiteral("C"); const auto payload4 = pb.NewDataLiteral("X"); const auto payload5 = pb.NewDataLiteral("Y"); const auto payload6 = pb.NewDataLiteral("Z"); const auto tupleType = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) }); const auto list1 = pb.NewList(tupleType, { pb.NewTuple({key1, payload1}), pb.NewTuple({key2, payload2}), pb.NewTuple({key3, payload3}) }); const auto list2 = pb.NewList(tupleType, { pb.NewTuple({key2, payload4}), pb.NewTuple({key3, payload5}), pb.NewTuple({key4, payload6}) }); const auto resultType = pb.NewFlowType(pb.NewMultiType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) })); const auto pgmReturn = pb.Collect(pb.NarrowMap(pb.GraceJoin( pb.ExpandMap(pb.ToFlow(list1), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), pb.ExpandMap(pb.ToFlow(list2), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), EJoinKind::Right, {0U}, {0U}, {1U, 0U}, {1U, 1U}, resultType), [&](TRuntimeNode::TList items) -> TRuntimeNode { return pb.NewTuple(items); }) ); if (SPILLING) { setup.RenameCallable(pgmReturn, "GraceJoin", "GraceJoinWithSpilling"); } const auto graph = setup.BuildGraph(pgmReturn); if (SPILLING) { graph->GetContext().SpillerFactory = std::make_shared(); } const auto iterator = graph->GetValue().GetListIterator(); NUdf::TUnboxedValue tuple; std::map, ui32> u; while (iterator.Next(tuple)) { auto t0 = tuple.GetElement(0); auto t1 = tuple.GetElement(1); UNIT_ASSERT(!t0 || !t0.AsStringRef().Empty()); // ensure no empty strings UNIT_ASSERT(!t1 || !t1.AsStringRef().Empty()); ++u[std::make_pair(t0 ? TString(t0.AsStringRef()) : TString(), t1 ? TString(t1.AsStringRef()) : TString())]; } UNIT_ASSERT(!iterator.Next(tuple)); UNIT_ASSERT_EQUAL(u[std::make_pair(TString(), TString("Z"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("B"), TString("X"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("C"), TString("Y"))], 1); UNIT_ASSERT_EQUAL(u.size(), 3); } } Y_UNIT_TEST_LLVM_SPILLING(TestRightOnly1) { if (SPILLING && RuntimeVersion < 50) return; for (ui32 pass = 0; pass < 1; ++pass) { TSetup setup; TProgramBuilder& pb = *setup.PgmBuilder; const auto key1 = pb.NewDataLiteral(1); const auto key2 = pb.NewDataLiteral(2); const auto key3 = pb.NewDataLiteral(2); const auto key4 = pb.NewDataLiteral(3); const auto payload1 = pb.NewDataLiteral("A"); const auto payload2 = pb.NewDataLiteral("B"); const auto payload3 = pb.NewDataLiteral("C"); const auto payload4 = pb.NewDataLiteral("X"); const auto payload5 = pb.NewDataLiteral("Y"); const auto payload6 = pb.NewDataLiteral("Z"); const auto tupleType = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) }); const auto list1 = pb.NewList(tupleType, { pb.NewTuple({key1, payload1}), pb.NewTuple({key2, payload2}), pb.NewTuple({key3, payload3}) }); const auto list2 = pb.NewList(tupleType, { pb.NewTuple({key2, payload4}), pb.NewTuple({key3, payload5}), pb.NewTuple({key4, payload6}) }); const auto resultType = pb.NewFlowType(pb.NewMultiType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) })); const auto pgmReturn = pb.Collect(pb.NarrowMap(pb.GraceJoin( pb.ExpandMap(pb.ToFlow(list1), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), pb.ExpandMap(pb.ToFlow(list2), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), EJoinKind::RightOnly, {0U}, {0U}, {}, {1U, 0U, 0U, 1U}, resultType), [&](TRuntimeNode::TList items) -> TRuntimeNode { return pb.NewTuple(items); }) ); if (SPILLING) { setup.RenameCallable(pgmReturn, "GraceJoin", "GraceJoinWithSpilling"); } const auto graph = setup.BuildGraph(pgmReturn); if (SPILLING) { graph->GetContext().SpillerFactory = std::make_shared(); } const auto iterator = graph->GetValue().GetListIterator(); NUdf::TUnboxedValue tuple; std::map, ui32> u; while (iterator.Next(tuple)) { auto t0 = tuple.GetElement(0); auto t1 = tuple.GetElement(1); ++u[std::make_pair(TString(t0.AsStringRef()), t1.Get())]; } UNIT_ASSERT(!iterator.Next(tuple)); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("Z"), 3)], 1); UNIT_ASSERT_EQUAL(u.size(), 1); } } Y_UNIT_TEST_LLVM_SPILLING(TestRightSemi1) { if (SPILLING && RuntimeVersion < 50) return; for (ui32 pass = 0; pass < 1; ++pass) { TSetup setup; TProgramBuilder& pb = *setup.PgmBuilder; const auto key1 = pb.NewDataLiteral(1); const auto key2 = pb.NewDataLiteral(2); const auto key3 = pb.NewDataLiteral(2); const auto key4 = pb.NewDataLiteral(3); const auto payload1 = pb.NewDataLiteral("A"); const auto payload2 = pb.NewDataLiteral("B"); const auto payload3 = pb.NewDataLiteral("C"); const auto payload4 = pb.NewDataLiteral("X"); const auto payload5 = pb.NewDataLiteral("Y"); const auto payload6 = pb.NewDataLiteral("Z"); const auto tupleType = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) }); const auto list1 = pb.NewList(tupleType, { pb.NewTuple({key1, payload1}), pb.NewTuple({key2, payload2}), pb.NewTuple({key3, payload3}) }); const auto list2 = pb.NewList(tupleType, { pb.NewTuple({key2, payload4}), pb.NewTuple({key3, payload5}), pb.NewTuple({key4, payload6}) }); const auto resultType = pb.NewFlowType(pb.NewMultiType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) })); const auto pgmReturn = pb.Collect(pb.NarrowMap(pb.GraceJoin( pb.ExpandMap(pb.ToFlow(list1), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), pb.ExpandMap(pb.ToFlow(list2), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), EJoinKind::RightSemi, {0U}, {0U}, {}, {1U, 0U, 0U, 1U}, resultType), [&](TRuntimeNode::TList items) -> TRuntimeNode { return pb.NewTuple(items); }) ); if (SPILLING) { setup.RenameCallable(pgmReturn, "GraceJoin", "GraceJoinWithSpilling"); } const auto graph = setup.BuildGraph(pgmReturn); if (SPILLING) { graph->GetContext().SpillerFactory = std::make_shared(); } const auto iterator = graph->GetValue().GetListIterator(); NUdf::TUnboxedValue tuple; std::map, ui32> u; while (iterator.Next(tuple)) { auto t0 = tuple.GetElement(0); auto t1 = tuple.GetElement(1); ++u[std::make_pair(TString(t0.AsStringRef()), t1.Get())]; } UNIT_ASSERT(!iterator.Next(tuple)); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("X"), 2)], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("Y"), 2)], 1); UNIT_ASSERT_EQUAL(u.size(), 2); } } Y_UNIT_TEST_LLVM_SPILLING(TestRightMulti1) { if (SPILLING && RuntimeVersion < 50) return; for (ui32 pass = 0; pass < 1; ++pass) { TSetup setup; TProgramBuilder& pb = *setup.PgmBuilder; const auto key1 = pb.NewDataLiteral(1); const auto key2 = pb.NewDataLiteral(2); const auto key3 = pb.NewDataLiteral(2); const auto key4 = pb.NewDataLiteral(3); const auto payload1 = pb.NewDataLiteral("A"); const auto payload2 = pb.NewDataLiteral("B"); const auto payload3 = pb.NewDataLiteral("C"); const auto payload4 = pb.NewDataLiteral("X"); const auto payload5 = pb.NewDataLiteral("Y"); const auto payload6 = pb.NewDataLiteral("Z"); const auto tupleType = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) }); const auto list1 = pb.NewList(tupleType, { pb.NewTuple({key1, payload1}), pb.NewTuple({key2, payload2}), pb.NewTuple({key3, payload3}) }); const auto list2 = pb.NewList(tupleType, { pb.NewTuple({key2, payload4}), pb.NewTuple({key3, payload5}), pb.NewTuple({key4, payload6}) }); const auto resultType = pb.NewFlowType(pb.NewMultiType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) })); const auto pgmReturn = pb.Collect(pb.NarrowMap(pb.GraceJoin( pb.ExpandMap(pb.ToFlow(list1), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), pb.ExpandMap(pb.ToFlow(list2), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), EJoinKind::Right, {0U}, {0U}, {1U, 0U}, {1U, 1U}, resultType), [&](TRuntimeNode::TList items) -> TRuntimeNode { return pb.NewTuple(items); }) ); if (SPILLING) { setup.RenameCallable(pgmReturn, "GraceJoin", "GraceJoinWithSpilling"); } const auto graph = setup.BuildGraph(pgmReturn); if (SPILLING) { graph->GetContext().SpillerFactory = std::make_shared(); } const auto iterator = graph->GetValue().GetListIterator(); NUdf::TUnboxedValue tuple; std::map, ui32> u; while (iterator.Next(tuple)) { auto t0 = tuple.GetElement(0); auto t1 = tuple.GetElement(1); UNIT_ASSERT(!t0 || !t0.AsStringRef().Empty()); // ensure no empty strings UNIT_ASSERT(!t1 || !t1.AsStringRef().Empty()); ++u[std::make_pair(t0 ? TString(t0.AsStringRef()) : TString(), t1 ? TString(t1.AsStringRef()) : TString())]; } UNIT_ASSERT(!iterator.Next(tuple)); UNIT_ASSERT_EQUAL(u[std::make_pair(TString(), TString("Z"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("B"), TString("X"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("B"), TString("Y"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("C"), TString("X"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("C"), TString("Y"))], 1); UNIT_ASSERT_EQUAL(u.size(), 5); } } Y_UNIT_TEST_LLVM_SPILLING(TestRightSemiWithNullKey1) { if (SPILLING && RuntimeVersion < 50) return; for (ui32 pass = 0; pass < 1; ++pass) { TSetup setup; TProgramBuilder& pb = *setup.PgmBuilder; const auto key0 = pb.NewEmptyOptional(pb.NewDataType(NUdf::TDataType::Id, true)); const auto key1 = pb.NewOptional(pb.NewDataLiteral(1)); const auto key2 = pb.NewOptional(pb.NewDataLiteral(2)); const auto key3 = pb.NewOptional(pb.NewDataLiteral(2)); const auto key4 = pb.NewOptional(pb.NewDataLiteral(3)); const auto payload1 = pb.NewDataLiteral("A"); const auto payload2 = pb.NewDataLiteral("B"); const auto payload3 = pb.NewDataLiteral("C"); const auto payload4 = pb.NewDataLiteral("X"); const auto payload5 = pb.NewDataLiteral("Y"); const auto payload6 = pb.NewDataLiteral("Z"); const auto tupleType = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id, true), pb.NewDataType(NUdf::TDataType::Id) }); const auto list1 = pb.NewList(tupleType, { pb.NewTuple({key0, payload4}), pb.NewTuple({key1, payload1}), pb.NewTuple({key2, payload2}), pb.NewTuple({key3, payload3}) }); const auto list2 = pb.NewList(tupleType, { pb.NewTuple({key0, payload3}), pb.NewTuple({key2, payload4}), pb.NewTuple({key3, payload5}), pb.NewTuple({key4, payload6}) }); const auto resultType = pb.NewFlowType(pb.NewMultiType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) })); const auto pgmReturn = pb.Collect(pb.NarrowMap(pb.GraceJoin( pb.ExpandMap(pb.ToFlow(list1), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), pb.ExpandMap(pb.ToFlow(list2), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), EJoinKind::RightSemi, {0U}, {0U}, {}, {1U, 0U, 0U, 1U}, resultType), [&](TRuntimeNode::TList items) -> TRuntimeNode { return pb.NewTuple(items); }) ); if (SPILLING) { setup.RenameCallable(pgmReturn, "GraceJoin", "GraceJoinWithSpilling"); } const auto graph = setup.BuildGraph(pgmReturn); if (SPILLING) { graph->GetContext().SpillerFactory = std::make_shared(); } const auto iterator = graph->GetValue().GetListIterator(); NUdf::TUnboxedValue tuple; std::map, ui32> u; while (iterator.Next(tuple)) { auto t0 = tuple.GetElement(0); auto t1 = tuple.GetElement(1); ++u[std::make_pair(TString(t0.AsStringRef()), t1.Get())]; } UNIT_ASSERT(!iterator.Next(tuple)); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("X"), 2)], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("Y"), 2)], 1); UNIT_ASSERT_EQUAL(u.size(), 2); } } Y_UNIT_TEST_LLVM_SPILLING(TestRightOnlyWithNullKey1) { if (SPILLING && RuntimeVersion < 50) return; for (ui32 pass = 0; pass < 1; ++pass) { TSetup setup; TProgramBuilder& pb = *setup.PgmBuilder; const auto key0 = pb.NewEmptyOptional(pb.NewDataType(NUdf::TDataType::Id, true)); const auto key1 = pb.NewOptional(pb.NewDataLiteral(1)); const auto key2 = pb.NewOptional(pb.NewDataLiteral(2)); const auto key3 = pb.NewOptional(pb.NewDataLiteral(2)); const auto key4 = pb.NewOptional(pb.NewDataLiteral(3)); const auto payload1 = pb.NewDataLiteral("A"); const auto payload2 = pb.NewDataLiteral("B"); const auto payload3 = pb.NewDataLiteral("C"); const auto payload4 = pb.NewDataLiteral("X"); const auto payload5 = pb.NewDataLiteral("Y"); const auto payload6 = pb.NewDataLiteral("Z"); const auto tupleType = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id, true), pb.NewDataType(NUdf::TDataType::Id) }); const auto list1 = pb.NewList(tupleType, { pb.NewTuple({key0, payload4}), pb.NewTuple({key1, payload1}), pb.NewTuple({key2, payload2}), pb.NewTuple({key3, payload3}) }); const auto list2 = pb.NewList(tupleType, { pb.NewTuple({key0, payload3}), pb.NewTuple({key2, payload4}), pb.NewTuple({key3, payload5}), pb.NewTuple({key4, payload6}) }); const auto resultType = pb.NewFlowType(pb.NewMultiType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) })); const auto pgmReturn = pb.Collect(pb.NarrowMap(pb.GraceJoin( pb.ExpandMap(pb.ToFlow(list1), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), pb.ExpandMap(pb.ToFlow(list2), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), EJoinKind::RightOnly, {0U}, {0U}, {}, {1U, 0U, 0U, 1U}, resultType), [&](TRuntimeNode::TList items) -> TRuntimeNode { return pb.NewTuple(items); }) ); if (SPILLING) { setup.RenameCallable(pgmReturn, "GraceJoin", "GraceJoinWithSpilling"); } const auto graph = setup.BuildGraph(pgmReturn); if (SPILLING) { graph->GetContext().SpillerFactory = std::make_shared(); } const auto iterator = graph->GetValue().GetListIterator(); NUdf::TUnboxedValue tuple; std::map, ui32> u; while (iterator.Next(tuple)) { auto t0 = tuple.GetElement(0); auto t1 = tuple.GetElement(1); ++u[std::make_pair(TString(t0.AsStringRef()), t1 ? t1.Get() : std::numeric_limits::max())]; // replace NULL with ::max() } UNIT_ASSERT(!iterator.Next(tuple)); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("Z"), 3)], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("C"), std::numeric_limits::max())], 1); UNIT_ASSERT_EQUAL(u.size(), 2); } } Y_UNIT_TEST_LLVM_SPILLING(TestFull1) { if (SPILLING && RuntimeVersion < 50) return; for (ui32 pass = 0; pass < 1; ++pass) { TSetup setup; TProgramBuilder& pb = *setup.PgmBuilder; const auto key1 = pb.NewDataLiteral(1); const auto key2 = pb.NewDataLiteral(2); const auto key3 = pb.NewDataLiteral(2); const auto key4 = pb.NewDataLiteral(3); const auto payload1 = pb.NewDataLiteral("A"); const auto payload2 = pb.NewDataLiteral("B"); const auto payload3 = pb.NewDataLiteral("C"); const auto payload4 = pb.NewDataLiteral("X"); const auto payload5 = pb.NewDataLiteral("Y"); const auto payload6 = pb.NewDataLiteral("Z"); const auto tupleType = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) }); const auto list1 = pb.NewList(tupleType, { pb.NewTuple({key1, payload1}), pb.NewTuple({key2, payload2}), pb.NewTuple({key3, payload3}) }); const auto list2 = pb.NewList(tupleType, { pb.NewTuple({key2, payload4}), pb.NewTuple({key3, payload5}), pb.NewTuple({key4, payload6}) }); const auto resultType = pb.NewFlowType(pb.NewMultiType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) })); const auto pgmReturn = pb.Collect(pb.NarrowMap(pb.GraceJoin( pb.ExpandMap(pb.ToFlow(list1), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), pb.ExpandMap(pb.ToFlow(list2), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), EJoinKind::Full, {0U}, {0U}, {1U, 0U}, {1U, 1U}, resultType), [&](TRuntimeNode::TList items) -> TRuntimeNode { return pb.NewTuple(items); }) ); if (SPILLING) { setup.RenameCallable(pgmReturn, "GraceJoin", "GraceJoinWithSpilling"); } const auto graph = setup.BuildGraph(pgmReturn); if (SPILLING) { graph->GetContext().SpillerFactory = std::make_shared(); } const auto iterator = graph->GetValue().GetListIterator(); NUdf::TUnboxedValue tuple; std::map, ui32> u; while (iterator.Next(tuple)) { auto t0 = tuple.GetElement(0); auto t1 = tuple.GetElement(1); UNIT_ASSERT(!t0 || !t0.AsStringRef().Empty()); // ensure no empty strings UNIT_ASSERT(!t1 || !t1.AsStringRef().Empty()); ++u[std::make_pair(t0 ? TString(t0.AsStringRef()) : TString(), t1 ? TString(t1.AsStringRef()) : TString())]; } UNIT_ASSERT(!iterator.Next(tuple)); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("B"), TString("X"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("B"), TString("Y"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("C"), TString("X"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("C"), TString("Y"))], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("A"), TString())], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString(), TString("Z"))], 1); UNIT_ASSERT_EQUAL(u.size(), 6); } } Y_UNIT_TEST_LLVM_SPILLING(TestExclusion1) { if (SPILLING && RuntimeVersion < 50) return; for (ui32 pass = 0; pass < 1; ++pass) { TSetup setup; TProgramBuilder& pb = *setup.PgmBuilder; const auto key1 = pb.NewDataLiteral(1); const auto key2 = pb.NewDataLiteral(2); const auto key3 = pb.NewDataLiteral(2); const auto key4 = pb.NewDataLiteral(3); const auto payload1 = pb.NewDataLiteral("A"); const auto payload2 = pb.NewDataLiteral("B"); const auto payload3 = pb.NewDataLiteral("C"); const auto payload4 = pb.NewDataLiteral("X"); const auto payload5 = pb.NewDataLiteral("Y"); const auto payload6 = pb.NewDataLiteral("Z"); const auto tupleType = pb.NewTupleType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) }); const auto list1 = pb.NewList(tupleType, { pb.NewTuple({key1, payload1}), pb.NewTuple({key2, payload2}), pb.NewTuple({key3, payload3}) }); const auto list2 = pb.NewList(tupleType, { pb.NewTuple({key2, payload4}), pb.NewTuple({key3, payload5}), pb.NewTuple({key4, payload6}) }); const auto resultType = pb.NewFlowType(pb.NewMultiType({ pb.NewDataType(NUdf::TDataType::Id), pb.NewDataType(NUdf::TDataType::Id) })); const auto pgmReturn = pb.Collect(pb.NarrowMap(pb.GraceJoin( pb.ExpandMap(pb.ToFlow(list1), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), pb.ExpandMap(pb.ToFlow(list2), [&](TRuntimeNode item) -> TRuntimeNode::TList { return {pb.Nth(item, 0U), pb.Nth(item, 1U)}; }), EJoinKind::Exclusion, {0U}, {0U}, {1U, 0U}, {1U, 1U}, resultType), [&](TRuntimeNode::TList items) -> TRuntimeNode { return pb.NewTuple(items); }) ); if (SPILLING) { setup.RenameCallable(pgmReturn, "GraceJoin", "GraceJoinWithSpilling"); } const auto graph = setup.BuildGraph(pgmReturn); if (SPILLING) { graph->GetContext().SpillerFactory = std::make_shared(); } const auto iterator = graph->GetValue().GetListIterator(); NUdf::TUnboxedValue tuple; std::map, ui32> u; while (iterator.Next(tuple)) { auto t0 = tuple.GetElement(0); auto t1 = tuple.GetElement(1); UNIT_ASSERT(!t0 || !t0.AsStringRef().Empty()); // ensure no empty strings UNIT_ASSERT(!t1 || !t1.AsStringRef().Empty()); ++u[std::make_pair(t0 ? TString(t0.AsStringRef()) : TString(), t1 ? TString(t1.AsStringRef()) : TString())]; } UNIT_ASSERT(!iterator.Next(tuple)); UNIT_ASSERT_EQUAL(u[std::make_pair(TString("A"), TString())], 1); UNIT_ASSERT_EQUAL(u[std::make_pair(TString(), TString("Z"))], 1); UNIT_ASSERT_EQUAL(u.size(), 2); } } } } }