//===- MachineSink.cpp - Sinking for machine instructions -----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass moves instructions into successor blocks when possible, so that // they aren't executed on paths where their results aren't needed. // // This pass is not intended to be a replacement or a complete alternative // for an LLVM-IR-level sinking pass. It is only designed to sink simple // constructs that are not exposed before lowering and instruction selection. // //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/CFG.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" #include "llvm/CodeGen/MachineCycleAnalysis.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachinePostDominators.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterClassInfo.h" #include "llvm/CodeGen/RegisterPressure.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/LLVMContext.h" #include "llvm/InitializePasses.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Pass.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "machine-sink" static cl::opt SplitEdges("machine-sink-split", cl::desc("Split critical edges during machine sinking"), cl::init(true), cl::Hidden); static cl::opt UseBlockFreqInfo("machine-sink-bfi", cl::desc("Use block frequency info to find successors to sink"), cl::init(true), cl::Hidden); static cl::opt SplitEdgeProbabilityThreshold( "machine-sink-split-probability-threshold", cl::desc( "Percentage threshold for splitting single-instruction critical edge. " "If the branch threshold is higher than this threshold, we allow " "speculative execution of up to 1 instruction to avoid branching to " "splitted critical edge"), cl::init(40), cl::Hidden); static cl::opt SinkLoadInstsPerBlockThreshold( "machine-sink-load-instrs-threshold", cl::desc("Do not try to find alias store for a load if there is a in-path " "block whose instruction number is higher than this threshold."), cl::init(2000), cl::Hidden); static cl::opt SinkLoadBlocksThreshold( "machine-sink-load-blocks-threshold", cl::desc("Do not try to find alias store for a load if the block number in " "the straight line is higher than this threshold."), cl::init(20), cl::Hidden); static cl::opt SinkInstsIntoCycle("sink-insts-to-avoid-spills", cl::desc("Sink instructions into cycles to avoid " "register spills"), cl::init(false), cl::Hidden); static cl::opt SinkIntoCycleLimit( "machine-sink-cycle-limit", cl::desc("The maximum number of instructions considered for cycle sinking."), cl::init(50), cl::Hidden); STATISTIC(NumSunk, "Number of machine instructions sunk"); STATISTIC(NumCycleSunk, "Number of machine instructions sunk into a cycle"); STATISTIC(NumSplit, "Number of critical edges split"); STATISTIC(NumCoalesces, "Number of copies coalesced"); STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); namespace { class MachineSinking : public MachineFunctionPass { const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; MachineRegisterInfo *MRI; // Machine register information MachineDominatorTree *DT; // Machine dominator tree MachinePostDominatorTree *PDT; // Machine post dominator tree MachineCycleInfo *CI; MachineBlockFrequencyInfo *MBFI; const MachineBranchProbabilityInfo *MBPI; AliasAnalysis *AA; RegisterClassInfo RegClassInfo; // Remember which edges have been considered for breaking. SmallSet, 8> CEBCandidates; // Remember which edges we are about to split. // This is different from CEBCandidates since those edges // will be split. SetVector> ToSplit; DenseSet RegsToClearKillFlags; using AllSuccsCache = std::map>; /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is /// post-dominated by another DBG_VALUE of the same variable location. /// This is necessary to detect sequences such as: /// %0 = someinst /// DBG_VALUE %0, !123, !DIExpression() /// %1 = anotherinst /// DBG_VALUE %1, !123, !DIExpression() /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that /// would re-order assignments. using SeenDbgUser = PointerIntPair; /// Record of DBG_VALUE uses of vregs in a block, so that we can identify /// debug instructions to sink. SmallDenseMap> SeenDbgUsers; /// Record of debug variables that have had their locations set in the /// current block. DenseSet SeenDbgVars; std::map, bool> HasStoreCache; std::map, std::vector> StoreInstrCache; /// Cached BB's register pressure. std::map> CachedRegisterPressure; public: static char ID; // Pass identification MachineSinking() : MachineFunctionPass(ID) { initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; void getAnalysisUsage(AnalysisUsage &AU) const override { MachineFunctionPass::getAnalysisUsage(AU); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); if (UseBlockFreqInfo) AU.addRequired(); } void releaseMemory() override { CEBCandidates.clear(); } private: bool ProcessBlock(MachineBasicBlock &MBB); void ProcessDbgInst(MachineInstr &MI); bool isWorthBreakingCriticalEdge(MachineInstr &MI, MachineBasicBlock *From, MachineBasicBlock *To); bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, MachineInstr &MI); /// Postpone the splitting of the given critical /// edge (\p From, \p To). /// /// We do not split the edges on the fly. Indeed, this invalidates /// the dominance information and thus triggers a lot of updates /// of that information underneath. /// Instead, we postpone all the splits after each iteration of /// the main loop. That way, the information is at least valid /// for the lifetime of an iteration. /// /// \return True if the edge is marked as toSplit, false otherwise. /// False can be returned if, for instance, this is not profitable. bool PostponeSplitCriticalEdge(MachineInstr &MI, MachineBasicBlock *From, MachineBasicBlock *To, bool BreakPHIEdge); bool SinkInstruction(MachineInstr &MI, bool &SawStore, AllSuccsCache &AllSuccessors); /// If we sink a COPY inst, some debug users of it's destination may no /// longer be dominated by the COPY, and will eventually be dropped. /// This is easily rectified by forwarding the non-dominated debug uses /// to the copy source. void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, MachineBasicBlock *TargetBlock); bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, MachineBasicBlock *DefMBB, bool &BreakPHIEdge, bool &LocalUse) const; MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); void FindCycleSinkCandidates(MachineCycle *Cycle, MachineBasicBlock *BB, SmallVectorImpl &Candidates); bool SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I); bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, MachineBasicBlock *MBB, MachineBasicBlock *SuccToSinkTo, AllSuccsCache &AllSuccessors); bool PerformTrivialForwardCoalescing(MachineInstr &MI, MachineBasicBlock *MBB); SmallVector & GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, AllSuccsCache &AllSuccessors) const; std::vector &getBBRegisterPressure(MachineBasicBlock &MBB); }; } // end anonymous namespace char MachineSinking::ID = 0; char &llvm::MachineSinkingID = MachineSinking::ID; INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, "Machine code sinking", false, false) INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, "Machine code sinking", false, false) bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, MachineBasicBlock *MBB) { if (!MI.isCopy()) return false; Register SrcReg = MI.getOperand(1).getReg(); Register DstReg = MI.getOperand(0).getReg(); if (!SrcReg.isVirtual() || !DstReg.isVirtual() || !MRI->hasOneNonDBGUse(SrcReg)) return false; const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); if (SRC != DRC) return false; MachineInstr *DefMI = MRI->getVRegDef(SrcReg); if (DefMI->isCopyLike()) return false; LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); LLVM_DEBUG(dbgs() << "*** to: " << MI); MRI->replaceRegWith(DstReg, SrcReg); MI.eraseFromParent(); // Conservatively, clear any kill flags, since it's possible that they are no // longer correct. MRI->clearKillFlags(SrcReg); ++NumCoalesces; return true; } /// AllUsesDominatedByBlock - Return true if all uses of the specified register /// occur in blocks dominated by the specified block. If any use is in the /// definition block, then return false since it is never legal to move def /// after uses. bool MachineSinking::AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, MachineBasicBlock *DefMBB, bool &BreakPHIEdge, bool &LocalUse) const { assert(Reg.isVirtual() && "Only makes sense for vregs"); // Ignore debug uses because debug info doesn't affect the code. if (MRI->use_nodbg_empty(Reg)) return true; // BreakPHIEdge is true if all the uses are in the successor MBB being sunken // into and they are all PHI nodes. In this case, machine-sink must break // the critical edge first. e.g. // // %bb.1: // Predecessors according to CFG: %bb.0 // ... // %def = DEC64_32r %x, implicit-def dead %eflags // ... // JE_4 <%bb.37>, implicit %eflags // Successors according to CFG: %bb.37 %bb.2 // // %bb.2: // %p = PHI %y, %bb.0, %def, %bb.1 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { MachineInstr *UseInst = MO.getParent(); unsigned OpNo = UseInst->getOperandNo(&MO); MachineBasicBlock *UseBlock = UseInst->getParent(); return UseBlock == MBB && UseInst->isPHI() && UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; })) { BreakPHIEdge = true; return true; } for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { // Determine the block of the use. MachineInstr *UseInst = MO.getParent(); unsigned OpNo = &MO - &UseInst->getOperand(0); MachineBasicBlock *UseBlock = UseInst->getParent(); if (UseInst->isPHI()) { // PHI nodes use the operand in the predecessor block, not the block with // the PHI. UseBlock = UseInst->getOperand(OpNo+1).getMBB(); } else if (UseBlock == DefMBB) { LocalUse = true; return false; } // Check that it dominates. if (!DT->dominates(MBB, UseBlock)) return false; } return true; } /// Return true if this machine instruction loads from global offset table or /// constant pool. static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { assert(MI.mayLoad() && "Expected MI that loads!"); // If we lost memory operands, conservatively assume that the instruction // reads from everything.. if (MI.memoperands_empty()) return true; for (MachineMemOperand *MemOp : MI.memoperands()) if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) if (PSV->isGOT() || PSV->isConstantPool()) return true; return false; } void MachineSinking::FindCycleSinkCandidates( MachineCycle *Cycle, MachineBasicBlock *BB, SmallVectorImpl &Candidates) { for (auto &MI : *BB) { LLVM_DEBUG(dbgs() << "CycleSink: Analysing candidate: " << MI); if (!TII->shouldSink(MI)) { LLVM_DEBUG(dbgs() << "CycleSink: Instruction not a candidate for this " "target\n"); continue; } if (!isCycleInvariant(Cycle, MI)) { LLVM_DEBUG(dbgs() << "CycleSink: Instruction is not cycle invariant\n"); continue; } bool DontMoveAcrossStore = true; if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) { LLVM_DEBUG(dbgs() << "CycleSink: Instruction not safe to move.\n"); continue; } if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) { LLVM_DEBUG(dbgs() << "CycleSink: Dont sink GOT or constant pool loads\n"); continue; } if (MI.isConvergent()) continue; const MachineOperand &MO = MI.getOperand(0); if (!MO.isReg() || !MO.getReg() || !MO.isDef()) continue; if (!MRI->hasOneDef(MO.getReg())) continue; LLVM_DEBUG(dbgs() << "CycleSink: Instruction added as candidate.\n"); Candidates.push_back(&MI); } } bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction())) return false; LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); TII = MF.getSubtarget().getInstrInfo(); TRI = MF.getSubtarget().getRegisterInfo(); MRI = &MF.getRegInfo(); DT = &getAnalysis(); PDT = &getAnalysis(); CI = &getAnalysis().getCycleInfo(); MBFI = UseBlockFreqInfo ? &getAnalysis() : nullptr; MBPI = &getAnalysis(); AA = &getAnalysis().getAAResults(); RegClassInfo.runOnMachineFunction(MF); bool EverMadeChange = false; while (true) { bool MadeChange = false; // Process all basic blocks. CEBCandidates.clear(); ToSplit.clear(); for (auto &MBB: MF) MadeChange |= ProcessBlock(MBB); // If we have anything we marked as toSplit, split it now. for (const auto &Pair : ToSplit) { auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); if (NewSucc != nullptr) { LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " << printMBBReference(*Pair.first) << " -- " << printMBBReference(*NewSucc) << " -- " << printMBBReference(*Pair.second) << '\n'); if (MBFI) MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); MadeChange = true; ++NumSplit; } else LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); } // If this iteration over the code changed anything, keep iterating. if (!MadeChange) break; EverMadeChange = true; } if (SinkInstsIntoCycle) { SmallVector Cycles(CI->toplevel_begin(), CI->toplevel_end()); for (auto *Cycle : Cycles) { MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); if (!Preheader) { LLVM_DEBUG(dbgs() << "CycleSink: Can't find preheader\n"); continue; } SmallVector Candidates; FindCycleSinkCandidates(Cycle, Preheader, Candidates); // Walk the candidates in reverse order so that we start with the use // of a def-use chain, if there is any. // TODO: Sort the candidates using a cost-model. unsigned i = 0; for (MachineInstr *I : llvm::reverse(Candidates)) { if (i++ == SinkIntoCycleLimit) { LLVM_DEBUG(dbgs() << "CycleSink: Limit reached of instructions to " "be analysed."); break; } if (!SinkIntoCycle(Cycle, *I)) break; EverMadeChange = true; ++NumCycleSunk; } } } HasStoreCache.clear(); StoreInstrCache.clear(); // Now clear any kill flags for recorded registers. for (auto I : RegsToClearKillFlags) MRI->clearKillFlags(I); RegsToClearKillFlags.clear(); return EverMadeChange; } bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { // Can't sink anything out of a block that has less than two successors. if (MBB.succ_size() <= 1 || MBB.empty()) return false; // Don't bother sinking code out of unreachable blocks. In addition to being // unprofitable, it can also lead to infinite looping, because in an // unreachable cycle there may be nowhere to stop. if (!DT->isReachableFromEntry(&MBB)) return false; bool MadeChange = false; // Cache all successors, sorted by frequency info and cycle depth. AllSuccsCache AllSuccessors; // Walk the basic block bottom-up. Remember if we saw a store. MachineBasicBlock::iterator I = MBB.end(); --I; bool ProcessedBegin, SawStore = false; do { MachineInstr &MI = *I; // The instruction to sink. // Predecrement I (if it's not begin) so that it isn't invalidated by // sinking. ProcessedBegin = I == MBB.begin(); if (!ProcessedBegin) --I; if (MI.isDebugOrPseudoInstr()) { if (MI.isDebugValue()) ProcessDbgInst(MI); continue; } bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); if (Joined) { MadeChange = true; continue; } if (SinkInstruction(MI, SawStore, AllSuccessors)) { ++NumSunk; MadeChange = true; } // If we just processed the first instruction in the block, we're done. } while (!ProcessedBegin); SeenDbgUsers.clear(); SeenDbgVars.clear(); // recalculate the bb register pressure after sinking one BB. CachedRegisterPressure.clear(); return MadeChange; } void MachineSinking::ProcessDbgInst(MachineInstr &MI) { // When we see DBG_VALUEs for registers, record any vreg it reads, so that // we know what to sink if the vreg def sinks. assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), MI.getDebugLoc()->getInlinedAt()); bool SeenBefore = SeenDbgVars.contains(Var); for (MachineOperand &MO : MI.debug_operands()) { if (MO.isReg() && MO.getReg().isVirtual()) SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); } // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. SeenDbgVars.insert(Var); } bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, MachineBasicBlock *From, MachineBasicBlock *To) { // FIXME: Need much better heuristics. // If the pass has already considered breaking this edge (during this pass // through the function), then let's go ahead and break it. This means // sinking multiple "cheap" instructions into the same block. if (!CEBCandidates.insert(std::make_pair(From, To)).second) return true; if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) return true; if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= BranchProbability(SplitEdgeProbabilityThreshold, 100)) return true; // MI is cheap, we probably don't want to break the critical edge for it. // However, if this would allow some definitions of its source operands // to be sunk then it's probably worth it. for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg() || !MO.isUse()) continue; Register Reg = MO.getReg(); if (Reg == 0) continue; // We don't move live definitions of physical registers, // so sinking their uses won't enable any opportunities. if (Reg.isPhysical()) continue; // If this instruction is the only user of a virtual register, // check if breaking the edge will enable sinking // both this instruction and the defining instruction. if (MRI->hasOneNonDBGUse(Reg)) { // If the definition resides in same MBB, // claim it's likely we can sink these together. // If definition resides elsewhere, we aren't // blocking it from being sunk so don't break the edge. MachineInstr *DefMI = MRI->getVRegDef(Reg); if (DefMI->getParent() == MI.getParent()) return true; } } return false; } bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, MachineBasicBlock *FromBB, MachineBasicBlock *ToBB, bool BreakPHIEdge) { if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) return false; // Avoid breaking back edge. From == To means backedge for single BB cycle. if (!SplitEdges || FromBB == ToBB) return false; MachineCycle *FromCycle = CI->getCycle(FromBB); MachineCycle *ToCycle = CI->getCycle(ToBB); // Check for backedges of more "complex" cycles. if (FromCycle == ToCycle && FromCycle && (!FromCycle->isReducible() || FromCycle->getHeader() == ToBB)) return false; // It's not always legal to break critical edges and sink the computation // to the edge. // // %bb.1: // v1024 // Beq %bb.3 // // %bb.2: // ... no uses of v1024 // // %bb.3: // ... // = v1024 // // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: // // %bb.1: // ... // Bne %bb.2 // %bb.4: // v1024 = // B %bb.3 // %bb.2: // ... no uses of v1024 // // %bb.3: // ... // = v1024 // // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 // flow. We need to ensure the new basic block where the computation is // sunk to dominates all the uses. // It's only legal to break critical edge and sink the computation to the // new block if all the predecessors of "To", except for "From", are // not dominated by "From". Given SSA property, this means these // predecessors are dominated by "To". // // There is no need to do this check if all the uses are PHI nodes. PHI // sources are only defined on the specific predecessor edges. if (!BreakPHIEdge) { for (MachineBasicBlock *Pred : ToBB->predecessors()) if (Pred != FromBB && !DT->dominates(ToBB, Pred)) return false; } ToSplit.insert(std::make_pair(FromBB, ToBB)); return true; } std::vector & MachineSinking::getBBRegisterPressure(MachineBasicBlock &MBB) { // Currently to save compiling time, MBB's register pressure will not change // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's // register pressure is changed after sinking any instructions into it. // FIXME: need a accurate and cheap register pressure estiminate model here. auto RP = CachedRegisterPressure.find(&MBB); if (RP != CachedRegisterPressure.end()) return RP->second; RegionPressure Pressure; RegPressureTracker RPTracker(Pressure); // Initialize the register pressure tracker. RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); for (MachineBasicBlock::iterator MII = MBB.instr_end(), MIE = MBB.instr_begin(); MII != MIE; --MII) { MachineInstr &MI = *std::prev(MII); if (MI.isDebugInstr() || MI.isPseudoProbe()) continue; RegisterOperands RegOpers; RegOpers.collect(MI, *TRI, *MRI, false, false); RPTracker.recedeSkipDebugValues(); assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); RPTracker.recede(RegOpers); } RPTracker.closeRegion(); auto It = CachedRegisterPressure.insert( std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); return It.first->second; } /// isProfitableToSinkTo - Return true if it is profitable to sink MI. bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, MachineBasicBlock *MBB, MachineBasicBlock *SuccToSinkTo, AllSuccsCache &AllSuccessors) { assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); if (MBB == SuccToSinkTo) return false; // It is profitable if SuccToSinkTo does not post dominate current block. if (!PDT->dominates(SuccToSinkTo, MBB)) return true; // It is profitable to sink an instruction from a deeper cycle to a shallower // cycle, even if the latter post-dominates the former (PR21115). if (CI->getCycleDepth(MBB) > CI->getCycleDepth(SuccToSinkTo)) return true; // Check if only use in post dominated block is PHI instruction. bool NonPHIUse = false; for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { MachineBasicBlock *UseBlock = UseInst.getParent(); if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) NonPHIUse = true; } if (!NonPHIUse) return true; // If SuccToSinkTo post dominates then also it may be profitable if MI // can further profitably sinked into another block in next round. bool BreakPHIEdge = false; // FIXME - If finding successor is compile time expensive then cache results. if (MachineBasicBlock *MBB2 = FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); MachineCycle *MCycle = CI->getCycle(MBB); // If the instruction is not inside a cycle, it is not profitable to sink MI to // a post dominate block SuccToSinkTo. if (!MCycle) return false; auto isRegisterPressureSetExceedLimit = [&](const TargetRegisterClass *RC) { unsigned Weight = TRI->getRegClassWeight(RC).RegWeight; const int *PS = TRI->getRegClassPressureSets(RC); // Get register pressure for block SuccToSinkTo. std::vector BBRegisterPressure = getBBRegisterPressure(*SuccToSinkTo); for (; *PS != -1; PS++) // check if any register pressure set exceeds limit in block SuccToSinkTo // after sinking. if (Weight + BBRegisterPressure[*PS] >= TRI->getRegPressureSetLimit(*MBB->getParent(), *PS)) return true; return false; }; // If this instruction is inside a Cycle and sinking this instruction can make // more registers live range shorten, it is still prifitable. for (const MachineOperand &MO : MI.operands()) { // Ignore non-register operands. if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (Reg == 0) continue; if (Reg.isPhysical()) { if (MO.isUse() && (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO))) continue; // Don't handle non-constant and non-ignorable physical register. return false; } // Users for the defs are all dominated by SuccToSinkTo. if (MO.isDef()) { // This def register's live range is shortened after sinking. bool LocalUse = false; if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, LocalUse)) return false; } else { MachineInstr *DefMI = MRI->getVRegDef(Reg); if (!DefMI) continue; MachineCycle *Cycle = CI->getCycle(DefMI->getParent()); // DefMI is defined outside of cycle. There should be no live range // impact for this operand. Defination outside of cycle means: // 1: defination is outside of cycle. // 2: defination is in this cycle, but it is a PHI in the cycle header. if (Cycle != MCycle || (DefMI->isPHI() && Cycle && Cycle->isReducible() && Cycle->getHeader() == DefMI->getParent())) continue; // The DefMI is defined inside the cycle. // If sinking this operand makes some register pressure set exceed limit, // it is not profitable. if (isRegisterPressureSetExceedLimit(MRI->getRegClass(Reg))) { LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); return false; } } } // If MI is in cycle and all its operands are alive across the whole cycle or // if no operand sinking make register pressure set exceed limit, it is // profitable to sink MI. return true; } /// Get the sorted sequence of successors for this MachineBasicBlock, possibly /// computing it if it was not already cached. SmallVector & MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, AllSuccsCache &AllSuccessors) const { // Do we have the sorted successors in cache ? auto Succs = AllSuccessors.find(MBB); if (Succs != AllSuccessors.end()) return Succs->second; SmallVector AllSuccs(MBB->successors()); // Handle cases where sinking can happen but where the sink point isn't a // successor. For example: // // x = computation // if () {} else {} // use x // for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { // DomTree children of MBB that have MBB as immediate dominator are added. if (DTChild->getIDom()->getBlock() == MI.getParent() && // Skip MBBs already added to the AllSuccs vector above. !MBB->isSuccessor(DTChild->getBlock())) AllSuccs.push_back(DTChild->getBlock()); } // Sort Successors according to their cycle depth or block frequency info. llvm::stable_sort( AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; return HasBlockFreq ? LHSFreq < RHSFreq : CI->getCycleDepth(L) < CI->getCycleDepth(R); }); auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); return it.first->second; } /// FindSuccToSinkTo - Find a successor to sink this instruction to. MachineBasicBlock * MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, bool &BreakPHIEdge, AllSuccsCache &AllSuccessors) { assert (MBB && "Invalid MachineBasicBlock!"); // loop over all the operands of the specified instruction. If there is // anything we can't handle, bail out. // SuccToSinkTo - This is the successor to sink this instruction to, once we // decide. MachineBasicBlock *SuccToSinkTo = nullptr; for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg()) continue; // Ignore non-register operands. Register Reg = MO.getReg(); if (Reg == 0) continue; if (Reg.isPhysical()) { if (MO.isUse()) { // If the physreg has no defs anywhere, it's just an ambient register // and we can freely move its uses. Alternatively, if it's allocatable, // it could get allocated to something with a def during allocation. if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) return nullptr; } else if (!MO.isDead()) { // A def that isn't dead. We can't move it. return nullptr; } } else { // Virtual register uses are always safe to sink. if (MO.isUse()) continue; // If it's not safe to move defs of the register class, then abort. if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) return nullptr; // Virtual register defs can only be sunk if all their uses are in blocks // dominated by one of the successors. if (SuccToSinkTo) { // If a previous operand picked a block to sink to, then this operand // must be sinkable to the same block. bool LocalUse = false; if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, LocalUse)) return nullptr; continue; } // Otherwise, we should look at all the successors and decide which one // we should sink to. If we have reliable block frequency information // (frequency != 0) available, give successors with smaller frequencies // higher priority, otherwise prioritize smaller cycle depths. for (MachineBasicBlock *SuccBlock : GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { bool LocalUse = false; if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, BreakPHIEdge, LocalUse)) { SuccToSinkTo = SuccBlock; break; } if (LocalUse) // Def is used locally, it's never safe to move this def. return nullptr; } // If we couldn't find a block to sink to, ignore this instruction. if (!SuccToSinkTo) return nullptr; if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) return nullptr; } } // It is not possible to sink an instruction into its own block. This can // happen with cycles. if (MBB == SuccToSinkTo) return nullptr; // It's not safe to sink instructions to EH landing pad. Control flow into // landing pad is implicitly defined. if (SuccToSinkTo && SuccToSinkTo->isEHPad()) return nullptr; // It ought to be okay to sink instructions into an INLINEASM_BR target, but // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in // the source block (which this code does not yet do). So for now, forbid // doing so. if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) return nullptr; return SuccToSinkTo; } /// Return true if MI is likely to be usable as a memory operation by the /// implicit null check optimization. /// /// This is a "best effort" heuristic, and should not be relied upon for /// correctness. This returning true does not guarantee that the implicit null /// check optimization is legal over MI, and this returning false does not /// guarantee MI cannot possibly be used to do a null check. static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) { using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; auto *MBB = MI.getParent(); if (MBB->pred_size() != 1) return false; auto *PredMBB = *MBB->pred_begin(); auto *PredBB = PredMBB->getBasicBlock(); // Frontends that don't use implicit null checks have no reason to emit // branches with make.implicit metadata, and this function should always // return false for them. if (!PredBB || !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) return false; const MachineOperand *BaseOp; int64_t Offset; bool OffsetIsScalable; if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) return false; if (!BaseOp->isReg()) return false; if (!(MI.mayLoad() && !MI.isPredicable())) return false; MachineBranchPredicate MBP; if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) return false; return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && (MBP.Predicate == MachineBranchPredicate::PRED_NE || MBP.Predicate == MachineBranchPredicate::PRED_EQ) && MBP.LHS.getReg() == BaseOp->getReg(); } /// If the sunk instruction is a copy, try to forward the copy instead of /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if /// there's any subregister weirdness involved. Returns true if copy /// propagation occurred. static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI, Register Reg) { const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); // Copy DBG_VALUE operand and set the original to undef. We then check to // see whether this is something that can be copy-forwarded. If it isn't, // continue around the loop. const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; auto CopyOperands = TII.isCopyInstr(SinkInst); if (!CopyOperands) return false; SrcMO = CopyOperands->Source; DstMO = CopyOperands->Destination; // Check validity of forwarding this copy. bool PostRA = MRI.getNumVirtRegs() == 0; // Trying to forward between physical and virtual registers is too hard. if (Reg.isVirtual() != SrcMO->getReg().isVirtual()) return false; // Only try virtual register copy-forwarding before regalloc, and physical // register copy-forwarding after regalloc. bool arePhysRegs = !Reg.isVirtual(); if (arePhysRegs != PostRA) return false; // Pre-regalloc, only forward if all subregisters agree (or there are no // subregs at all). More analysis might recover some forwardable copies. if (!PostRA) for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) if (DbgMO.getSubReg() != SrcMO->getSubReg() || DbgMO.getSubReg() != DstMO->getSubReg()) return false; // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register // of this copy. Only forward the copy if the DBG_VALUE operand exactly // matches the copy destination. if (PostRA && Reg != DstMO->getReg()) return false; for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) { DbgMO.setReg(SrcMO->getReg()); DbgMO.setSubReg(SrcMO->getSubReg()); } return true; } using MIRegs = std::pair>; /// Sink an instruction and its associated debug instructions. static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, MachineBasicBlock::iterator InsertPos, ArrayRef DbgValuesToSink) { // If we cannot find a location to use (merge with), then we erase the debug // location to prevent debug-info driven tools from potentially reporting // wrong location information. if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), InsertPos->getDebugLoc())); else MI.setDebugLoc(DebugLoc()); // Move the instruction. MachineBasicBlock *ParentBlock = MI.getParent(); SuccToSinkTo.splice(InsertPos, ParentBlock, MI, ++MachineBasicBlock::iterator(MI)); // Sink a copy of debug users to the insert position. Mark the original // DBG_VALUE location as 'undef', indicating that any earlier variable // location should be terminated as we've optimised away the value at this // point. for (const auto &DbgValueToSink : DbgValuesToSink) { MachineInstr *DbgMI = DbgValueToSink.first; MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI); SuccToSinkTo.insert(InsertPos, NewDbgMI); bool PropagatedAllSunkOps = true; for (unsigned Reg : DbgValueToSink.second) { if (DbgMI->hasDebugOperandForReg(Reg)) { if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) { PropagatedAllSunkOps = false; break; } } } if (!PropagatedAllSunkOps) DbgMI->setDebugValueUndef(); } } /// hasStoreBetween - check if there is store betweeen straight line blocks From /// and To. bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, MachineInstr &MI) { // Make sure From and To are in straight line which means From dominates To // and To post dominates From. if (!DT->dominates(From, To) || !PDT->dominates(To, From)) return true; auto BlockPair = std::make_pair(From, To); // Does these two blocks pair be queried before and have a definite cached // result? if (HasStoreCache.find(BlockPair) != HasStoreCache.end()) return HasStoreCache[BlockPair]; if (StoreInstrCache.find(BlockPair) != StoreInstrCache.end()) return llvm::any_of(StoreInstrCache[BlockPair], [&](MachineInstr *I) { return I->mayAlias(AA, MI, false); }); bool SawStore = false; bool HasAliasedStore = false; DenseSet HandledBlocks; DenseSet HandledDomBlocks; // Go through all reachable blocks from From. for (MachineBasicBlock *BB : depth_first(From)) { // We insert the instruction at the start of block To, so no need to worry // about stores inside To. // Store in block From should be already considered when just enter function // SinkInstruction. if (BB == To || BB == From) continue; // We already handle this BB in previous iteration. if (HandledBlocks.count(BB)) continue; HandledBlocks.insert(BB); // To post dominates BB, it must be a path from block From. if (PDT->dominates(To, BB)) { if (!HandledDomBlocks.count(BB)) HandledDomBlocks.insert(BB); // If this BB is too big or the block number in straight line between From // and To is too big, stop searching to save compiling time. if (BB->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold) || HandledDomBlocks.size() > SinkLoadBlocksThreshold) { for (auto *DomBB : HandledDomBlocks) { if (DomBB != BB && DT->dominates(DomBB, BB)) HasStoreCache[std::make_pair(DomBB, To)] = true; else if(DomBB != BB && DT->dominates(BB, DomBB)) HasStoreCache[std::make_pair(From, DomBB)] = true; } HasStoreCache[BlockPair] = true; return true; } for (MachineInstr &I : *BB) { // Treat as alias conservatively for a call or an ordered memory // operation. if (I.isCall() || I.hasOrderedMemoryRef()) { for (auto *DomBB : HandledDomBlocks) { if (DomBB != BB && DT->dominates(DomBB, BB)) HasStoreCache[std::make_pair(DomBB, To)] = true; else if(DomBB != BB && DT->dominates(BB, DomBB)) HasStoreCache[std::make_pair(From, DomBB)] = true; } HasStoreCache[BlockPair] = true; return true; } if (I.mayStore()) { SawStore = true; // We still have chance to sink MI if all stores between are not // aliased to MI. // Cache all store instructions, so that we don't need to go through // all From reachable blocks for next load instruction. if (I.mayAlias(AA, MI, false)) HasAliasedStore = true; StoreInstrCache[BlockPair].push_back(&I); } } } } // If there is no store at all, cache the result. if (!SawStore) HasStoreCache[BlockPair] = false; return HasAliasedStore; } /// Sink instructions into cycles if profitable. This especially tries to /// prevent register spills caused by register pressure if there is little to no /// overhead moving instructions into cycles. bool MachineSinking::SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I) { LLVM_DEBUG(dbgs() << "CycleSink: Finding sink block for: " << I); MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); assert(Preheader && "Cycle sink needs a preheader block"); MachineBasicBlock *SinkBlock = nullptr; bool CanSink = true; const MachineOperand &MO = I.getOperand(0); for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { LLVM_DEBUG(dbgs() << "CycleSink: Analysing use: " << MI); if (!Cycle->contains(MI.getParent())) { LLVM_DEBUG(dbgs() << "CycleSink: Use not in cycle, can't sink.\n"); CanSink = false; break; } // FIXME: Come up with a proper cost model that estimates whether sinking // the instruction (and thus possibly executing it on every cycle // iteration) is more expensive than a register. // For now assumes that copies are cheap and thus almost always worth it. if (!MI.isCopy()) { LLVM_DEBUG(dbgs() << "CycleSink: Use is not a copy\n"); CanSink = false; break; } if (!SinkBlock) { SinkBlock = MI.getParent(); LLVM_DEBUG(dbgs() << "CycleSink: Setting sink block to: " << printMBBReference(*SinkBlock) << "\n"); continue; } SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent()); if (!SinkBlock) { LLVM_DEBUG(dbgs() << "CycleSink: Can't find nearest dominator\n"); CanSink = false; break; } LLVM_DEBUG(dbgs() << "CycleSink: Setting nearest common dom block: " << printMBBReference(*SinkBlock) << "\n"); } if (!CanSink) { LLVM_DEBUG(dbgs() << "CycleSink: Can't sink instruction.\n"); return false; } if (!SinkBlock) { LLVM_DEBUG(dbgs() << "CycleSink: Not sinking, can't find sink block.\n"); return false; } if (SinkBlock == Preheader) { LLVM_DEBUG( dbgs() << "CycleSink: Not sinking, sink block is the preheader\n"); return false; } if (SinkBlock->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold)) { LLVM_DEBUG( dbgs() << "CycleSink: Not Sinking, block too large to analyse.\n"); return false; } LLVM_DEBUG(dbgs() << "CycleSink: Sinking instruction!\n"); SinkBlock->splice(SinkBlock->SkipPHIsAndLabels(SinkBlock->begin()), Preheader, I); // Conservatively clear any kill flags on uses of sunk instruction for (MachineOperand &MO : I.operands()) { if (MO.isReg() && MO.readsReg()) RegsToClearKillFlags.insert(MO.getReg()); } // The instruction is moved from its basic block, so do not retain the // debug information. assert(!I.isDebugInstr() && "Should not sink debug inst"); I.setDebugLoc(DebugLoc()); return true; } /// Return true if a target defined block prologue instruction interferes /// with a sink candidate. static bool blockPrologueInterferes(MachineBasicBlock *BB, MachineBasicBlock::iterator End, MachineInstr &MI, const TargetRegisterInfo *TRI, const TargetInstrInfo *TII, const MachineRegisterInfo *MRI) { if (BB->begin() == End) return false; // no prologue for (MachineBasicBlock::iterator PI = BB->getFirstNonPHI(); PI != End; ++PI) { // Only check target defined prologue instructions if (!TII->isBasicBlockPrologue(*PI)) continue; for (auto &MO : MI.operands()) { if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (!Reg) continue; if (MO.isUse()) { if (Reg.isPhysical() && (TII->isIgnorableUse(MO) || (MRI && MRI->isConstantPhysReg(Reg)))) continue; if (PI->modifiesRegister(Reg, TRI)) return true; } else { if (PI->readsRegister(Reg, TRI)) return true; // Check for interference with non-dead defs auto *DefOp = PI->findRegisterDefOperand(Reg, false, true, TRI); if (DefOp && !DefOp->isDead()) return true; } } } return false; } /// SinkInstruction - Determine whether it is safe to sink the specified machine /// instruction out of its current block into a successor. bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, AllSuccsCache &AllSuccessors) { // Don't sink instructions that the target prefers not to sink. if (!TII->shouldSink(MI)) return false; // Check if it's safe to move the instruction. if (!MI.isSafeToMove(AA, SawStore)) return false; // Convergent operations may not be made control-dependent on additional // values. if (MI.isConvergent()) return false; // Don't break implicit null checks. This is a performance heuristic, and not // required for correctness. if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) return false; // FIXME: This should include support for sinking instructions within the // block they are currently in to shorten the live ranges. We often get // instructions sunk into the top of a large block, but it would be better to // also sink them down before their first use in the block. This xform has to // be careful not to *increase* register pressure though, e.g. sinking // "x = y + z" down if it kills y and z would increase the live ranges of y // and z and only shrink the live range of x. bool BreakPHIEdge = false; MachineBasicBlock *ParentBlock = MI.getParent(); MachineBasicBlock *SuccToSinkTo = FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); // If there are no outputs, it must have side-effects. if (!SuccToSinkTo) return false; // If the instruction to move defines a dead physical register which is live // when leaving the basic block, don't move it because it could turn into a // "zombie" define of that preg. E.g., EFLAGS. () for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg() || MO.isUse()) continue; Register Reg = MO.getReg(); if (Reg == 0 || !Reg.isPhysical()) continue; if (SuccToSinkTo->isLiveIn(Reg)) return false; } LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); // If the block has multiple predecessors, this is a critical edge. // Decide if we can sink along it or need to break the edge. if (SuccToSinkTo->pred_size() > 1) { // We cannot sink a load across a critical edge - there may be stores in // other code paths. bool TryBreak = false; bool Store = MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; if (!MI.isSafeToMove(AA, Store)) { LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); TryBreak = true; } // We don't want to sink across a critical edge if we don't dominate the // successor. We could be introducing calculations to new code paths. if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); TryBreak = true; } // Don't sink instructions into a cycle. if (!TryBreak && CI->getCycle(SuccToSinkTo) && (!CI->getCycle(SuccToSinkTo)->isReducible() || CI->getCycle(SuccToSinkTo)->getHeader() == SuccToSinkTo)) { LLVM_DEBUG(dbgs() << " *** NOTE: cycle header found\n"); TryBreak = true; } // Otherwise we are OK with sinking along a critical edge. if (!TryBreak) LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); else { // Mark this edge as to be split. // If the edge can actually be split, the next iteration of the main loop // will sink MI in the newly created block. bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); if (!Status) LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " "break critical edge\n"); // The instruction will not be sunk this time. return false; } } if (BreakPHIEdge) { // BreakPHIEdge is true if all the uses are in the successor MBB being // sunken into and they are all PHI nodes. In this case, machine-sink must // break the critical edge first. bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); if (!Status) LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " "break critical edge\n"); // The instruction will not be sunk this time. return false; } // Determine where to insert into. Skip phi nodes. MachineBasicBlock::iterator InsertPos = SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin()); if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) { LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n"); return false; } // Collect debug users of any vreg that this inst defines. SmallVector DbgUsersToSink; for (auto &MO : MI.operands()) { if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) continue; if (!SeenDbgUsers.count(MO.getReg())) continue; // Sink any users that don't pass any other DBG_VALUEs for this variable. auto &Users = SeenDbgUsers[MO.getReg()]; for (auto &User : Users) { MachineInstr *DbgMI = User.getPointer(); if (User.getInt()) { // This DBG_VALUE would re-order assignments. If we can't copy-propagate // it, it can't be recovered. Set it undef. if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg())) DbgMI->setDebugValueUndef(); } else { DbgUsersToSink.push_back( {DbgMI, SmallVector(1, MO.getReg())}); } } } // After sinking, some debug users may not be dominated any more. If possible, // copy-propagate their operands. As it's expensive, don't do this if there's // no debuginfo in the program. if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); // Conservatively, clear any kill flags, since it's possible that they are no // longer correct. // Note that we have to clear the kill flags for any register this instruction // uses as we may sink over another instruction which currently kills the // used registers. for (MachineOperand &MO : MI.operands()) { if (MO.isReg() && MO.isUse()) RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags. } return true; } void MachineSinking::SalvageUnsunkDebugUsersOfCopy( MachineInstr &MI, MachineBasicBlock *TargetBlock) { assert(MI.isCopy()); assert(MI.getOperand(1).isReg()); // Enumerate all users of vreg operands that are def'd. Skip those that will // be sunk. For the rest, if they are not dominated by the block we will sink // MI into, propagate the copy source to them. SmallVector DbgDefUsers; SmallVector DbgUseRegs; const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); for (auto &MO : MI.operands()) { if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) continue; DbgUseRegs.push_back(MO.getReg()); for (auto &User : MRI.use_instructions(MO.getReg())) { if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) continue; // If is in same block, will either sink or be use-before-def. if (User.getParent() == MI.getParent()) continue; assert(User.hasDebugOperandForReg(MO.getReg()) && "DBG_VALUE user of vreg, but has no operand for it?"); DbgDefUsers.push_back(&User); } } // Point the users of this copy that are no longer dominated, at the source // of the copy. for (auto *User : DbgDefUsers) { for (auto &Reg : DbgUseRegs) { for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) { DbgOp.setReg(MI.getOperand(1).getReg()); DbgOp.setSubReg(MI.getOperand(1).getSubReg()); } } } } //===----------------------------------------------------------------------===// // This pass is not intended to be a replacement or a complete alternative // for the pre-ra machine sink pass. It is only designed to sink COPY // instructions which should be handled after RA. // // This pass sinks COPY instructions into a successor block, if the COPY is not // used in the current block and the COPY is live-in to a single successor // (i.e., doesn't require the COPY to be duplicated). This avoids executing the // copy on paths where their results aren't needed. This also exposes // additional opportunites for dead copy elimination and shrink wrapping. // // These copies were either not handled by or are inserted after the MachineSink // pass. As an example of the former case, the MachineSink pass cannot sink // COPY instructions with allocatable source registers; for AArch64 these type // of copy instructions are frequently used to move function parameters (PhyReg) // into virtual registers in the entry block. // // For the machine IR below, this pass will sink %w19 in the entry into its // successor (%bb.1) because %w19 is only live-in in %bb.1. // %bb.0: // %wzr = SUBSWri %w1, 1 // %w19 = COPY %w0 // Bcc 11, %bb.2 // %bb.1: // Live Ins: %w19 // BL @fun // %w0 = ADDWrr %w0, %w19 // RET %w0 // %bb.2: // %w0 = COPY %wzr // RET %w0 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be // able to see %bb.0 as a candidate. //===----------------------------------------------------------------------===// namespace { class PostRAMachineSinking : public MachineFunctionPass { public: bool runOnMachineFunction(MachineFunction &MF) override; static char ID; PostRAMachineSinking() : MachineFunctionPass(ID) {} StringRef getPassName() const override { return "PostRA Machine Sink"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } private: /// Track which register units have been modified and used. LiveRegUnits ModifiedRegUnits, UsedRegUnits; /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an /// entry in this map for each unit it touches. The DBG_VALUE's entry /// consists of a pointer to the instruction itself, and a vector of registers /// referred to by the instruction that overlap the key register unit. DenseMap> SeenDbgInstrs; /// Sink Copy instructions unused in the same block close to their uses in /// successors. bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); }; } // namespace char PostRAMachineSinking::ID = 0; char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", "PostRA Machine Sink", false, false) static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, const TargetRegisterInfo *TRI) { LiveRegUnits LiveInRegUnits(*TRI); LiveInRegUnits.addLiveIns(MBB); return !LiveInRegUnits.available(Reg); } static MachineBasicBlock * getSingleLiveInSuccBB(MachineBasicBlock &CurBB, const SmallPtrSetImpl &SinkableBBs, unsigned Reg, const TargetRegisterInfo *TRI) { // Try to find a single sinkable successor in which Reg is live-in. MachineBasicBlock *BB = nullptr; for (auto *SI : SinkableBBs) { if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { // If BB is set here, Reg is live-in to at least two sinkable successors, // so quit. if (BB) return nullptr; BB = SI; } } // Reg is not live-in to any sinkable successors. if (!BB) return nullptr; // Check if any register aliased with Reg is live-in in other successors. for (auto *SI : CurBB.successors()) { if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) return nullptr; } return BB; } static MachineBasicBlock * getSingleLiveInSuccBB(MachineBasicBlock &CurBB, const SmallPtrSetImpl &SinkableBBs, ArrayRef DefedRegsInCopy, const TargetRegisterInfo *TRI) { MachineBasicBlock *SingleBB = nullptr; for (auto DefReg : DefedRegsInCopy) { MachineBasicBlock *BB = getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); if (!BB || (SingleBB && SingleBB != BB)) return nullptr; SingleBB = BB; } return SingleBB; } static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, SmallVectorImpl &UsedOpsInCopy, LiveRegUnits &UsedRegUnits, const TargetRegisterInfo *TRI) { for (auto U : UsedOpsInCopy) { MachineOperand &MO = MI->getOperand(U); Register SrcReg = MO.getReg(); if (!UsedRegUnits.available(SrcReg)) { MachineBasicBlock::iterator NI = std::next(MI->getIterator()); for (MachineInstr &UI : make_range(NI, CurBB.end())) { if (UI.killsRegister(SrcReg, TRI)) { UI.clearRegisterKills(SrcReg, TRI); MO.setIsKill(true); break; } } } } } static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, SmallVectorImpl &UsedOpsInCopy, SmallVectorImpl &DefedRegsInCopy) { MachineFunction &MF = *SuccBB->getParent(); const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); for (unsigned DefReg : DefedRegsInCopy) for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S) SuccBB->removeLiveIn(*S); for (auto U : UsedOpsInCopy) { Register SrcReg = MI->getOperand(U).getReg(); LaneBitmask Mask; for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) { Mask |= (*S).second; } SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll()); } SuccBB->sortUniqueLiveIns(); } static bool hasRegisterDependency(MachineInstr *MI, SmallVectorImpl &UsedOpsInCopy, SmallVectorImpl &DefedRegsInCopy, LiveRegUnits &ModifiedRegUnits, LiveRegUnits &UsedRegUnits) { bool HasRegDependency = false; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (!Reg) continue; if (MO.isDef()) { if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { HasRegDependency = true; break; } DefedRegsInCopy.push_back(Reg); // FIXME: instead of isUse(), readsReg() would be a better fix here, // For example, we can ignore modifications in reg with undef. However, // it's not perfectly clear if skipping the internal read is safe in all // other targets. } else if (MO.isUse()) { if (!ModifiedRegUnits.available(Reg)) { HasRegDependency = true; break; } UsedOpsInCopy.push_back(i); } } return HasRegDependency; } bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, MachineFunction &MF, const TargetRegisterInfo *TRI, const TargetInstrInfo *TII) { SmallPtrSet SinkableBBs; // FIXME: For now, we sink only to a successor which has a single predecessor // so that we can directly sink COPY instructions to the successor without // adding any new block or branch instruction. for (MachineBasicBlock *SI : CurBB.successors()) if (!SI->livein_empty() && SI->pred_size() == 1) SinkableBBs.insert(SI); if (SinkableBBs.empty()) return false; bool Changed = false; // Track which registers have been modified and used between the end of the // block and the current instruction. ModifiedRegUnits.clear(); UsedRegUnits.clear(); SeenDbgInstrs.clear(); for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) { // Track the operand index for use in Copy. SmallVector UsedOpsInCopy; // Track the register number defed in Copy. SmallVector DefedRegsInCopy; // We must sink this DBG_VALUE if its operand is sunk. To avoid searching // for DBG_VALUEs later, record them when they're encountered. if (MI.isDebugValue() && !MI.isDebugRef()) { SmallDenseMap, 4> MIUnits; bool IsValid = true; for (MachineOperand &MO : MI.debug_operands()) { if (MO.isReg() && MO.getReg().isPhysical()) { // Bail if we can already tell the sink would be rejected, rather // than needlessly accumulating lots of DBG_VALUEs. if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, ModifiedRegUnits, UsedRegUnits)) { IsValid = false; break; } // Record debug use of each reg unit. for (auto RI = MCRegUnitIterator(MO.getReg(), TRI); RI.isValid(); ++RI) MIUnits[*RI].push_back(MO.getReg()); } } if (IsValid) { for (auto &RegOps : MIUnits) SeenDbgInstrs[RegOps.first].emplace_back(&MI, std::move(RegOps.second)); } continue; } if (MI.isDebugOrPseudoInstr()) continue; // Do not move any instruction across function call. if (MI.isCall()) return false; if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) { LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); continue; } // Don't sink the COPY if it would violate a register dependency. if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, ModifiedRegUnits, UsedRegUnits)) { LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); continue; } assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && "Unexpect SrcReg or DefReg"); MachineBasicBlock *SuccBB = getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); // Don't sink if we cannot find a single sinkable successor in which Reg // is live-in. if (!SuccBB) { LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); continue; } assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && "Unexpected predecessor"); // Collect DBG_VALUEs that must sink with this copy. We've previously // recorded which reg units that DBG_VALUEs read, if this instruction // writes any of those units then the corresponding DBG_VALUEs must sink. MapVector DbgValsToSinkMap; for (auto &MO : MI.operands()) { if (!MO.isReg() || !MO.isDef()) continue; for (auto RI = MCRegUnitIterator(MO.getReg(), TRI); RI.isValid(); ++RI) { for (const auto &MIRegs : SeenDbgInstrs.lookup(*RI)) { auto &Regs = DbgValsToSinkMap[MIRegs.first]; for (unsigned Reg : MIRegs.second) Regs.push_back(Reg); } } } auto DbgValsToSink = DbgValsToSinkMap.takeVector(); LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccBB); MachineBasicBlock::iterator InsertPos = SuccBB->SkipPHIsAndLabels(SuccBB->begin()); if (blockPrologueInterferes(SuccBB, InsertPos, MI, TRI, TII, nullptr)) { LLVM_DEBUG( dbgs() << " *** Not sinking: prologue interference\n"); continue; } // Clear the kill flag if SrcReg is killed between MI and the end of the // block. clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); performSink(MI, *SuccBB, InsertPos, DbgValsToSink); updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); Changed = true; ++NumPostRACopySink; } return Changed; } bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction())) return false; bool Changed = false; const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); ModifiedRegUnits.init(*TRI); UsedRegUnits.init(*TRI); for (auto &BB : MF) Changed |= tryToSinkCopy(BB, MF, TRI, TII); return Changed; }