//===-- SchedClassResolution.cpp --------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "SchedClassResolution.h" #include "BenchmarkResult.h" #include "llvm/ADT/STLExtras.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/Support/FormatVariadic.h" #include #include #include namespace llvm { namespace exegesis { // Return the non-redundant list of WriteProcRes used by the given sched class. // The scheduling model for LLVM is such that each instruction has a certain // number of uops which consume resources which are described by WriteProcRes // entries. Each entry describe how many cycles are spent on a specific ProcRes // kind. // For example, an instruction might have 3 uOps, one dispatching on P0 // (ProcResIdx=1) and two on P06 (ProcResIdx = 7). // Note that LLVM additionally denormalizes resource consumption to include // usage of super resources by subresources. So in practice if there exists a // P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by // P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed // by P06 are also consumed by P016. In the figure below, parenthesized cycles // denote implied usage of superresources by subresources: // P0 P06 P016 // uOp1 1 (1) (1) // uOp2 1 (1) // uOp3 1 (1) // ============================= // 1 3 3 // Eventually we end up with three entries for the WriteProcRes of the // instruction: // {ProcResIdx=1, Cycles=1} // P0 // {ProcResIdx=7, Cycles=3} // P06 // {ProcResIdx=10, Cycles=3} // P016 // // Note that in this case, P016 does not contribute any cycles, so it would // be removed by this function. // FIXME: Move this to MCSubtargetInfo and use it in llvm-mca. static SmallVector getNonRedundantWriteProcRes(const MCSchedClassDesc &SCDesc, const MCSubtargetInfo &STI) { SmallVector Result; const auto &SM = STI.getSchedModel(); const unsigned NumProcRes = SM.getNumProcResourceKinds(); // This assumes that the ProcResDescs are sorted in topological order, which // is guaranteed by the tablegen backend. SmallVector ProcResUnitUsage(NumProcRes); for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc), *const WPREnd = STI.getWriteProcResEnd(&SCDesc); WPR != WPREnd; ++WPR) { const MCProcResourceDesc *const ProcResDesc = SM.getProcResource(WPR->ProcResourceIdx); if (ProcResDesc->SubUnitsIdxBegin == nullptr) { // This is a ProcResUnit. Result.push_back({WPR->ProcResourceIdx, WPR->Cycles}); ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->Cycles; } else { // This is a ProcResGroup. First see if it contributes any cycles or if // it has cycles just from subunits. float RemainingCycles = WPR->Cycles; for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin; SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits; ++SubResIdx) { RemainingCycles -= ProcResUnitUsage[*SubResIdx]; } if (RemainingCycles < 0.01f) { // The ProcResGroup contributes no cycles of its own. continue; } // The ProcResGroup contributes `RemainingCycles` cycles of its own. Result.push_back({WPR->ProcResourceIdx, static_cast(std::round(RemainingCycles))}); // Spread the remaining cycles over all subunits. for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin; SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits; ++SubResIdx) { ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits; } } } return Result; } // Distributes a pressure budget as evenly as possible on the provided subunits // given the already existing port pressure distribution. // // The algorithm is as follows: while there is remaining pressure to // distribute, find the subunits with minimal pressure, and distribute // remaining pressure equally up to the pressure of the unit with // second-to-minimal pressure. // For example, let's assume we want to distribute 2*P1256 // (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is: // DensePressure = P0 P1 P2 P3 P4 P5 P6 P7 // 0.1 0.3 0.2 0.0 0.0 0.5 0.5 0.5 // RemainingPressure = 2.0 // We sort the subunits by pressure: // Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)] // We'll first start by the subunits with minimal pressure, which are at // the beginning of the sorted array. In this example there is one (P2). // The subunit with second-to-minimal pressure is the next one in the // array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles // from the budget. // Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)] // RemainingPressure = 1.9 // We repeat this process: distribute 0.2 pressure on each of the minimal // P2 and P1, decrease budget by 2*0.2: // Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)] // RemainingPressure = 1.5 // There are no second-to-minimal subunits so we just share the remaining // budget (1.5 cycles) equally: // Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)] // RemainingPressure = 0.0 // We stop as there is no remaining budget to distribute. static void distributePressure(float RemainingPressure, SmallVector Subunits, SmallVector &DensePressure) { // Find the number of subunits with minimal pressure (they are at the // front). sort(Subunits, [&DensePressure](const uint16_t A, const uint16_t B) { return DensePressure[A] < DensePressure[B]; }); const auto getPressureForSubunit = [&DensePressure, &Subunits](size_t I) -> float & { return DensePressure[Subunits[I]]; }; size_t NumMinimalSU = 1; while (NumMinimalSU < Subunits.size() && getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) { ++NumMinimalSU; } while (RemainingPressure > 0.0f) { if (NumMinimalSU == Subunits.size()) { // All units are minimal, just distribute evenly and be done. for (size_t I = 0; I < NumMinimalSU; ++I) { getPressureForSubunit(I) += RemainingPressure / NumMinimalSU; } return; } // Distribute the remaining pressure equally. const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1); const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU); assert(MinimalPressure < SecondToMinimalPressure); const float Increment = SecondToMinimalPressure - MinimalPressure; if (RemainingPressure <= NumMinimalSU * Increment) { // There is not enough remaining pressure. for (size_t I = 0; I < NumMinimalSU; ++I) { getPressureForSubunit(I) += RemainingPressure / NumMinimalSU; } return; } // Bump all minimal pressure subunits to `SecondToMinimalPressure`. for (size_t I = 0; I < NumMinimalSU; ++I) { getPressureForSubunit(I) = SecondToMinimalPressure; RemainingPressure -= SecondToMinimalPressure; } while (NumMinimalSU < Subunits.size() && getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) { ++NumMinimalSU; } } } std::vector> computeIdealizedProcResPressure(const MCSchedModel &SM, SmallVector WPRS) { // DensePressure[I] is the port pressure for Proc Resource I. SmallVector DensePressure(SM.getNumProcResourceKinds()); sort(WPRS, [](const MCWriteProcResEntry &A, const MCWriteProcResEntry &B) { return A.ProcResourceIdx < B.ProcResourceIdx; }); for (const MCWriteProcResEntry &WPR : WPRS) { // Get units for the entry. const MCProcResourceDesc *const ProcResDesc = SM.getProcResource(WPR.ProcResourceIdx); if (ProcResDesc->SubUnitsIdxBegin == nullptr) { // This is a ProcResUnit. DensePressure[WPR.ProcResourceIdx] += WPR.Cycles; } else { // This is a ProcResGroup. SmallVector Subunits(ProcResDesc->SubUnitsIdxBegin, ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits); distributePressure(WPR.Cycles, Subunits, DensePressure); } } // Turn dense pressure into sparse pressure by removing zero entries. std::vector> Pressure; for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) { if (DensePressure[I] > 0.0f) Pressure.emplace_back(I, DensePressure[I]); } return Pressure; } ResolvedSchedClass::ResolvedSchedClass(const MCSubtargetInfo &STI, unsigned ResolvedSchedClassId, bool WasVariant) : SchedClassId(ResolvedSchedClassId), SCDesc(STI.getSchedModel().getSchedClassDesc(ResolvedSchedClassId)), WasVariant(WasVariant), NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc, STI)), IdealizedProcResPressure(computeIdealizedProcResPressure( STI.getSchedModel(), NonRedundantWriteProcRes)) { assert((SCDesc == nullptr || !SCDesc->isVariant()) && "ResolvedSchedClass should never be variant"); } static unsigned ResolveVariantSchedClassId(const MCSubtargetInfo &STI, const MCInstrInfo &InstrInfo, unsigned SchedClassId, const MCInst &MCI) { const auto &SM = STI.getSchedModel(); while (SchedClassId && SM.getSchedClassDesc(SchedClassId)->isVariant()) { SchedClassId = STI.resolveVariantSchedClass(SchedClassId, &MCI, &InstrInfo, SM.getProcessorID()); } return SchedClassId; } std::pair ResolvedSchedClass::resolveSchedClassId(const MCSubtargetInfo &SubtargetInfo, const MCInstrInfo &InstrInfo, const MCInst &MCI) { unsigned SchedClassId = InstrInfo.get(MCI.getOpcode()).getSchedClass(); const bool WasVariant = SchedClassId && SubtargetInfo.getSchedModel() .getSchedClassDesc(SchedClassId) ->isVariant(); SchedClassId = ResolveVariantSchedClassId(SubtargetInfo, InstrInfo, SchedClassId, MCI); return std::make_pair(SchedClassId, WasVariant); } // Returns a ProxResIdx by id or name. static unsigned findProcResIdx(const MCSubtargetInfo &STI, const StringRef NameOrId) { // Interpret the key as an ProcResIdx. unsigned ProcResIdx = 0; if (to_integer(NameOrId, ProcResIdx, 10)) return ProcResIdx; // Interpret the key as a ProcRes name. const auto &SchedModel = STI.getSchedModel(); for (int I = 0, E = SchedModel.getNumProcResourceKinds(); I < E; ++I) { if (NameOrId == SchedModel.getProcResource(I)->Name) return I; } return 0; } std::vector ResolvedSchedClass::getAsPoint( InstructionBenchmark::ModeE Mode, const MCSubtargetInfo &STI, ArrayRef Representative) const { const size_t NumMeasurements = Representative.size(); std::vector SchedClassPoint(NumMeasurements); if (Mode == InstructionBenchmark::Latency) { assert(NumMeasurements == 1 && "Latency is a single measure."); BenchmarkMeasure &LatencyMeasure = SchedClassPoint[0]; // Find the latency. LatencyMeasure.PerInstructionValue = 0.0; for (unsigned I = 0; I < SCDesc->NumWriteLatencyEntries; ++I) { const MCWriteLatencyEntry *const WLE = STI.getWriteLatencyEntry(SCDesc, I); LatencyMeasure.PerInstructionValue = std::max(LatencyMeasure.PerInstructionValue, WLE->Cycles); } } else if (Mode == InstructionBenchmark::Uops) { for (auto I : zip(SchedClassPoint, Representative)) { BenchmarkMeasure &Measure = std::get<0>(I); const PerInstructionStats &Stats = std::get<1>(I); StringRef Key = Stats.key(); uint16_t ProcResIdx = findProcResIdx(STI, Key); if (ProcResIdx > 0) { // Find the pressure on ProcResIdx `Key`. const auto ProcResPressureIt = llvm::find_if(IdealizedProcResPressure, [ProcResIdx](const std::pair &WPR) { return WPR.first == ProcResIdx; }); Measure.PerInstructionValue = ProcResPressureIt == IdealizedProcResPressure.end() ? 0.0 : ProcResPressureIt->second; } else if (Key == "NumMicroOps") { Measure.PerInstructionValue = SCDesc->NumMicroOps; } else { errs() << "expected `key` to be either a ProcResIdx or a ProcRes " "name, got " << Key << "\n"; return {}; } } } else if (Mode == InstructionBenchmark::InverseThroughput) { assert(NumMeasurements == 1 && "Inverse Throughput is a single measure."); BenchmarkMeasure &RThroughputMeasure = SchedClassPoint[0]; RThroughputMeasure.PerInstructionValue = MCSchedModel::getReciprocalThroughput(STI, *SCDesc); } else { llvm_unreachable("unimplemented measurement matching mode"); } return SchedClassPoint; } } // namespace exegesis } // namespace llvm