//===-------------- BPFMIPeephole.cpp - MI Peephole Cleanups -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass performs peephole optimizations to cleanup ugly code sequences at // MachineInstruction layer. // // Currently, there are two optimizations implemented: // - One pre-RA MachineSSA pass to eliminate type promotion sequences, those // zero extend 32-bit subregisters to 64-bit registers, if the compiler // could prove the subregisters is defined by 32-bit operations in which // case the upper half of the underlying 64-bit registers were zeroed // implicitly. // // - One post-RA PreEmit pass to do final cleanup on some redundant // instructions generated due to bad RA on subregister. //===----------------------------------------------------------------------===// #include "BPF.h" #include "BPFInstrInfo.h" #include "BPFTargetMachine.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/Debug.h" #include using namespace llvm; #define DEBUG_TYPE "bpf-mi-zext-elim" STATISTIC(ZExtElemNum, "Number of zero extension shifts eliminated"); namespace { struct BPFMIPeephole : public MachineFunctionPass { static char ID; const BPFInstrInfo *TII; MachineFunction *MF; MachineRegisterInfo *MRI; BPFMIPeephole() : MachineFunctionPass(ID) { initializeBPFMIPeepholePass(*PassRegistry::getPassRegistry()); } private: // Initialize class variables. void initialize(MachineFunction &MFParm); bool isCopyFrom32Def(MachineInstr *CopyMI); bool isInsnFrom32Def(MachineInstr *DefInsn); bool isPhiFrom32Def(MachineInstr *MovMI); bool isMovFrom32Def(MachineInstr *MovMI); bool eliminateZExtSeq(); bool eliminateZExt(); std::set PhiInsns; public: // Main entry point for this pass. bool runOnMachineFunction(MachineFunction &MF) override { if (skipFunction(MF.getFunction())) return false; initialize(MF); // First try to eliminate (zext, lshift, rshift) and then // try to eliminate zext. bool ZExtSeqExist, ZExtExist; ZExtSeqExist = eliminateZExtSeq(); ZExtExist = eliminateZExt(); return ZExtSeqExist || ZExtExist; } }; // Initialize class variables. void BPFMIPeephole::initialize(MachineFunction &MFParm) { MF = &MFParm; MRI = &MF->getRegInfo(); TII = MF->getSubtarget().getInstrInfo(); LLVM_DEBUG(dbgs() << "*** BPF MachineSSA ZEXT Elim peephole pass ***\n\n"); } bool BPFMIPeephole::isCopyFrom32Def(MachineInstr *CopyMI) { MachineOperand &opnd = CopyMI->getOperand(1); if (!opnd.isReg()) return false; // Return false if getting value from a 32bit physical register. // Most likely, this physical register is aliased to // function call return value or current function parameters. Register Reg = opnd.getReg(); if (!Register::isVirtualRegister(Reg)) return false; if (MRI->getRegClass(Reg) == &BPF::GPRRegClass) return false; MachineInstr *DefInsn = MRI->getVRegDef(Reg); if (!isInsnFrom32Def(DefInsn)) return false; return true; } bool BPFMIPeephole::isPhiFrom32Def(MachineInstr *PhiMI) { for (unsigned i = 1, e = PhiMI->getNumOperands(); i < e; i += 2) { MachineOperand &opnd = PhiMI->getOperand(i); if (!opnd.isReg()) return false; MachineInstr *PhiDef = MRI->getVRegDef(opnd.getReg()); if (!PhiDef) return false; if (PhiDef->isPHI()) { if (PhiInsns.find(PhiDef) != PhiInsns.end()) return false; PhiInsns.insert(PhiDef); if (!isPhiFrom32Def(PhiDef)) return false; } if (PhiDef->getOpcode() == BPF::COPY && !isCopyFrom32Def(PhiDef)) return false; } return true; } // The \p DefInsn instruction defines a virtual register. bool BPFMIPeephole::isInsnFrom32Def(MachineInstr *DefInsn) { if (!DefInsn) return false; if (DefInsn->isPHI()) { if (PhiInsns.find(DefInsn) != PhiInsns.end()) return false; PhiInsns.insert(DefInsn); if (!isPhiFrom32Def(DefInsn)) return false; } else if (DefInsn->getOpcode() == BPF::COPY) { if (!isCopyFrom32Def(DefInsn)) return false; } return true; } bool BPFMIPeephole::isMovFrom32Def(MachineInstr *MovMI) { MachineInstr *DefInsn = MRI->getVRegDef(MovMI->getOperand(1).getReg()); LLVM_DEBUG(dbgs() << " Def of Mov Src:"); LLVM_DEBUG(DefInsn->dump()); PhiInsns.clear(); if (!isInsnFrom32Def(DefInsn)) return false; LLVM_DEBUG(dbgs() << " One ZExt elim sequence identified.\n"); return true; } bool BPFMIPeephole::eliminateZExtSeq() { MachineInstr* ToErase = nullptr; bool Eliminated = false; for (MachineBasicBlock &MBB : *MF) { for (MachineInstr &MI : MBB) { // If the previous instruction was marked for elimination, remove it now. if (ToErase) { ToErase->eraseFromParent(); ToErase = nullptr; } // Eliminate the 32-bit to 64-bit zero extension sequence when possible. // // MOV_32_64 rB, wA // SLL_ri rB, rB, 32 // SRL_ri rB, rB, 32 if (MI.getOpcode() == BPF::SRL_ri && MI.getOperand(2).getImm() == 32) { Register DstReg = MI.getOperand(0).getReg(); Register ShfReg = MI.getOperand(1).getReg(); MachineInstr *SllMI = MRI->getVRegDef(ShfReg); LLVM_DEBUG(dbgs() << "Starting SRL found:"); LLVM_DEBUG(MI.dump()); if (!SllMI || SllMI->isPHI() || SllMI->getOpcode() != BPF::SLL_ri || SllMI->getOperand(2).getImm() != 32) continue; LLVM_DEBUG(dbgs() << " SLL found:"); LLVM_DEBUG(SllMI->dump()); MachineInstr *MovMI = MRI->getVRegDef(SllMI->getOperand(1).getReg()); if (!MovMI || MovMI->isPHI() || MovMI->getOpcode() != BPF::MOV_32_64) continue; LLVM_DEBUG(dbgs() << " Type cast Mov found:"); LLVM_DEBUG(MovMI->dump()); Register SubReg = MovMI->getOperand(1).getReg(); if (!isMovFrom32Def(MovMI)) { LLVM_DEBUG(dbgs() << " One ZExt elim sequence failed qualifying elim.\n"); continue; } BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(BPF::SUBREG_TO_REG), DstReg) .addImm(0).addReg(SubReg).addImm(BPF::sub_32); SllMI->eraseFromParent(); MovMI->eraseFromParent(); // MI is the right shift, we can't erase it in it's own iteration. // Mark it to ToErase, and erase in the next iteration. ToErase = &MI; ZExtElemNum++; Eliminated = true; } } } return Eliminated; } bool BPFMIPeephole::eliminateZExt() { MachineInstr* ToErase = nullptr; bool Eliminated = false; for (MachineBasicBlock &MBB : *MF) { for (MachineInstr &MI : MBB) { // If the previous instruction was marked for elimination, remove it now. if (ToErase) { ToErase->eraseFromParent(); ToErase = nullptr; } if (MI.getOpcode() != BPF::MOV_32_64) continue; // Eliminate MOV_32_64 if possible. // MOV_32_64 rA, wB // // If wB has been zero extended, replace it with a SUBREG_TO_REG. // This is to workaround BPF programs where pkt->{data, data_end} // is encoded as u32, but actually the verifier populates them // as 64bit pointer. The MOV_32_64 will zero out the top 32 bits. LLVM_DEBUG(dbgs() << "Candidate MOV_32_64 instruction:"); LLVM_DEBUG(MI.dump()); if (!isMovFrom32Def(&MI)) continue; LLVM_DEBUG(dbgs() << "Removing the MOV_32_64 instruction\n"); Register dst = MI.getOperand(0).getReg(); Register src = MI.getOperand(1).getReg(); // Build a SUBREG_TO_REG instruction. BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(BPF::SUBREG_TO_REG), dst) .addImm(0).addReg(src).addImm(BPF::sub_32); ToErase = &MI; Eliminated = true; } } return Eliminated; } } // end default namespace INITIALIZE_PASS(BPFMIPeephole, DEBUG_TYPE, "BPF MachineSSA Peephole Optimization For ZEXT Eliminate", false, false) char BPFMIPeephole::ID = 0; FunctionPass* llvm::createBPFMIPeepholePass() { return new BPFMIPeephole(); } STATISTIC(RedundantMovElemNum, "Number of redundant moves eliminated"); namespace { struct BPFMIPreEmitPeephole : public MachineFunctionPass { static char ID; MachineFunction *MF; const TargetRegisterInfo *TRI; BPFMIPreEmitPeephole() : MachineFunctionPass(ID) { initializeBPFMIPreEmitPeepholePass(*PassRegistry::getPassRegistry()); } private: // Initialize class variables. void initialize(MachineFunction &MFParm); bool eliminateRedundantMov(); public: // Main entry point for this pass. bool runOnMachineFunction(MachineFunction &MF) override { if (skipFunction(MF.getFunction())) return false; initialize(MF); return eliminateRedundantMov(); } }; // Initialize class variables. void BPFMIPreEmitPeephole::initialize(MachineFunction &MFParm) { MF = &MFParm; TRI = MF->getSubtarget().getRegisterInfo(); LLVM_DEBUG(dbgs() << "*** BPF PreEmit peephole pass ***\n\n"); } bool BPFMIPreEmitPeephole::eliminateRedundantMov() { MachineInstr* ToErase = nullptr; bool Eliminated = false; for (MachineBasicBlock &MBB : *MF) { for (MachineInstr &MI : MBB) { // If the previous instruction was marked for elimination, remove it now. if (ToErase) { LLVM_DEBUG(dbgs() << " Redundant Mov Eliminated:"); LLVM_DEBUG(ToErase->dump()); ToErase->eraseFromParent(); ToErase = nullptr; } // Eliminate identical move: // // MOV rA, rA // // Note that we cannot remove // MOV_32_64 rA, wA // MOV_rr_32 wA, wA // as these two instructions having side effects, zeroing out // top 32 bits of rA. unsigned Opcode = MI.getOpcode(); if (Opcode == BPF::MOV_rr) { Register dst = MI.getOperand(0).getReg(); Register src = MI.getOperand(1).getReg(); if (dst != src) continue; ToErase = &MI; RedundantMovElemNum++; Eliminated = true; } } } return Eliminated; } } // end default namespace INITIALIZE_PASS(BPFMIPreEmitPeephole, "bpf-mi-pemit-peephole", "BPF PreEmit Peephole Optimization", false, false) char BPFMIPreEmitPeephole::ID = 0; FunctionPass* llvm::createBPFMIPreEmitPeepholePass() { return new BPFMIPreEmitPeephole(); } STATISTIC(TruncElemNum, "Number of truncation eliminated"); namespace { struct BPFMIPeepholeTruncElim : public MachineFunctionPass { static char ID; const BPFInstrInfo *TII; MachineFunction *MF; MachineRegisterInfo *MRI; BPFMIPeepholeTruncElim() : MachineFunctionPass(ID) { initializeBPFMIPeepholeTruncElimPass(*PassRegistry::getPassRegistry()); } private: // Initialize class variables. void initialize(MachineFunction &MFParm); bool eliminateTruncSeq(); public: // Main entry point for this pass. bool runOnMachineFunction(MachineFunction &MF) override { if (skipFunction(MF.getFunction())) return false; initialize(MF); return eliminateTruncSeq(); } }; static bool TruncSizeCompatible(int TruncSize, unsigned opcode) { if (TruncSize == 1) return opcode == BPF::LDB || opcode == BPF::LDB32; if (TruncSize == 2) return opcode == BPF::LDH || opcode == BPF::LDH32; if (TruncSize == 4) return opcode == BPF::LDW || opcode == BPF::LDW32; return false; } // Initialize class variables. void BPFMIPeepholeTruncElim::initialize(MachineFunction &MFParm) { MF = &MFParm; MRI = &MF->getRegInfo(); TII = MF->getSubtarget().getInstrInfo(); LLVM_DEBUG(dbgs() << "*** BPF MachineSSA TRUNC Elim peephole pass ***\n\n"); } // Reg truncating is often the result of 8/16/32bit->64bit or // 8/16bit->32bit conversion. If the reg value is loaded with // masked byte width, the AND operation can be removed since // BPF LOAD already has zero extension. // // This also solved a correctness issue. // In BPF socket-related program, e.g., __sk_buff->{data, data_end} // are 32-bit registers, but later on, kernel verifier will rewrite // it with 64-bit value. Therefore, truncating the value after the // load will result in incorrect code. bool BPFMIPeepholeTruncElim::eliminateTruncSeq() { MachineInstr* ToErase = nullptr; bool Eliminated = false; for (MachineBasicBlock &MBB : *MF) { for (MachineInstr &MI : MBB) { // The second insn to remove if the eliminate candidate is a pair. MachineInstr *MI2 = nullptr; Register DstReg, SrcReg; MachineInstr *DefMI; int TruncSize = -1; // If the previous instruction was marked for elimination, remove it now. if (ToErase) { ToErase->eraseFromParent(); ToErase = nullptr; } // AND A, 0xFFFFFFFF will be turned into SLL/SRL pair due to immediate // for BPF ANDI is i32, and this case only happens on ALU64. if (MI.getOpcode() == BPF::SRL_ri && MI.getOperand(2).getImm() == 32) { SrcReg = MI.getOperand(1).getReg(); if (!MRI->hasOneNonDBGUse(SrcReg)) continue; MI2 = MRI->getVRegDef(SrcReg); DstReg = MI.getOperand(0).getReg(); if (!MI2 || MI2->getOpcode() != BPF::SLL_ri || MI2->getOperand(2).getImm() != 32) continue; // Update SrcReg. SrcReg = MI2->getOperand(1).getReg(); DefMI = MRI->getVRegDef(SrcReg); if (DefMI) TruncSize = 4; } else if (MI.getOpcode() == BPF::AND_ri || MI.getOpcode() == BPF::AND_ri_32) { SrcReg = MI.getOperand(1).getReg(); DstReg = MI.getOperand(0).getReg(); DefMI = MRI->getVRegDef(SrcReg); if (!DefMI) continue; int64_t imm = MI.getOperand(2).getImm(); if (imm == 0xff) TruncSize = 1; else if (imm == 0xffff) TruncSize = 2; } if (TruncSize == -1) continue; // The definition is PHI node, check all inputs. if (DefMI->isPHI()) { bool CheckFail = false; for (unsigned i = 1, e = DefMI->getNumOperands(); i < e; i += 2) { MachineOperand &opnd = DefMI->getOperand(i); if (!opnd.isReg()) { CheckFail = true; break; } MachineInstr *PhiDef = MRI->getVRegDef(opnd.getReg()); if (!PhiDef || PhiDef->isPHI() || !TruncSizeCompatible(TruncSize, PhiDef->getOpcode())) { CheckFail = true; break; } } if (CheckFail) continue; } else if (!TruncSizeCompatible(TruncSize, DefMI->getOpcode())) { continue; } BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(BPF::MOV_rr), DstReg) .addReg(SrcReg); if (MI2) MI2->eraseFromParent(); // Mark it to ToErase, and erase in the next iteration. ToErase = &MI; TruncElemNum++; Eliminated = true; } } return Eliminated; } } // end default namespace INITIALIZE_PASS(BPFMIPeepholeTruncElim, "bpf-mi-trunc-elim", "BPF MachineSSA Peephole Optimization For TRUNC Eliminate", false, false) char BPFMIPeepholeTruncElim::ID = 0; FunctionPass* llvm::createBPFMIPeepholeTruncElimPass() { return new BPFMIPeepholeTruncElim(); }