//===----------------------- LSUnit.cpp --------------------------*- C++-*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// /// A Load-Store Unit for the llvm-mca tool. /// //===----------------------------------------------------------------------===// #include "llvm/MCA/HardwareUnits/LSUnit.h" #include "llvm/MCA/Instruction.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "llvm-mca" namespace llvm { namespace mca { LSUnitBase::LSUnitBase(const MCSchedModel &SM, unsigned LQ, unsigned SQ, bool AssumeNoAlias) : LQSize(LQ), SQSize(SQ), UsedLQEntries(0), UsedSQEntries(0), NoAlias(AssumeNoAlias), NextGroupID(1) { if (SM.hasExtraProcessorInfo()) { const MCExtraProcessorInfo &EPI = SM.getExtraProcessorInfo(); if (!LQSize && EPI.LoadQueueID) { const MCProcResourceDesc &LdQDesc = *SM.getProcResource(EPI.LoadQueueID); LQSize = std::max(0, LdQDesc.BufferSize); } if (!SQSize && EPI.StoreQueueID) { const MCProcResourceDesc &StQDesc = *SM.getProcResource(EPI.StoreQueueID); SQSize = std::max(0, StQDesc.BufferSize); } } } LSUnitBase::~LSUnitBase() {} void LSUnitBase::cycleEvent() { for (const std::pair> &G : Groups) G.second->cycleEvent(); } #ifndef NDEBUG void LSUnitBase::dump() const { dbgs() << "[LSUnit] LQ_Size = " << getLoadQueueSize() << '\n'; dbgs() << "[LSUnit] SQ_Size = " << getStoreQueueSize() << '\n'; dbgs() << "[LSUnit] NextLQSlotIdx = " << getUsedLQEntries() << '\n'; dbgs() << "[LSUnit] NextSQSlotIdx = " << getUsedSQEntries() << '\n'; dbgs() << "\n"; for (const auto &GroupIt : Groups) { const MemoryGroup &Group = *GroupIt.second; dbgs() << "[LSUnit] Group (" << GroupIt.first << "): " << "[ #Preds = " << Group.getNumPredecessors() << ", #GIssued = " << Group.getNumExecutingPredecessors() << ", #GExecuted = " << Group.getNumExecutedPredecessors() << ", #Inst = " << Group.getNumInstructions() << ", #IIssued = " << Group.getNumExecuting() << ", #IExecuted = " << Group.getNumExecuted() << '\n'; } } #endif unsigned LSUnit::dispatch(const InstRef &IR) { const InstrDesc &Desc = IR.getInstruction()->getDesc(); bool IsStoreBarrier = IR.getInstruction()->isAStoreBarrier(); bool IsLoadBarrier = IR.getInstruction()->isALoadBarrier(); assert((Desc.MayLoad || Desc.MayStore) && "Not a memory operation!"); if (Desc.MayLoad) acquireLQSlot(); if (Desc.MayStore) acquireSQSlot(); if (Desc.MayStore) { unsigned NewGID = createMemoryGroup(); MemoryGroup &NewGroup = getGroup(NewGID); NewGroup.addInstruction(); // A store may not pass a previous load or load barrier. unsigned ImmediateLoadDominator = std::max(CurrentLoadGroupID, CurrentLoadBarrierGroupID); if (ImmediateLoadDominator) { MemoryGroup &IDom = getGroup(ImmediateLoadDominator); LLVM_DEBUG(dbgs() << "[LSUnit]: GROUP DEP: (" << ImmediateLoadDominator << ") --> (" << NewGID << ")\n"); IDom.addSuccessor(&NewGroup, !assumeNoAlias()); } // A store may not pass a previous store barrier. if (CurrentStoreBarrierGroupID) { MemoryGroup &StoreGroup = getGroup(CurrentStoreBarrierGroupID); LLVM_DEBUG(dbgs() << "[LSUnit]: GROUP DEP: (" << CurrentStoreBarrierGroupID << ") --> (" << NewGID << ")\n"); StoreGroup.addSuccessor(&NewGroup, true); } // A store may not pass a previous store. if (CurrentStoreGroupID && (CurrentStoreGroupID != CurrentStoreBarrierGroupID)) { MemoryGroup &StoreGroup = getGroup(CurrentStoreGroupID); LLVM_DEBUG(dbgs() << "[LSUnit]: GROUP DEP: (" << CurrentStoreGroupID << ") --> (" << NewGID << ")\n"); StoreGroup.addSuccessor(&NewGroup, !assumeNoAlias()); } CurrentStoreGroupID = NewGID; if (IsStoreBarrier) CurrentStoreBarrierGroupID = NewGID; if (Desc.MayLoad) { CurrentLoadGroupID = NewGID; if (IsLoadBarrier) CurrentLoadBarrierGroupID = NewGID; } return NewGID; } assert(Desc.MayLoad && "Expected a load!"); unsigned ImmediateLoadDominator = std::max(CurrentLoadGroupID, CurrentLoadBarrierGroupID); // A new load group is created if we are in one of the following situations: // 1) This is a load barrier (by construction, a load barrier is always // assigned to a different memory group). // 2) There is no load in flight (by construction we always keep loads and // stores into separate memory groups). // 3) There is a load barrier in flight. This load depends on it. // 4) There is an intervening store between the last load dispatched to the // LSU and this load. We always create a new group even if this load // does not alias the last dispatched store. // 5) There is no intervening store and there is an active load group. // However that group has already started execution, so we cannot add // this load to it. bool ShouldCreateANewGroup = IsLoadBarrier || !ImmediateLoadDominator || CurrentLoadBarrierGroupID == ImmediateLoadDominator || ImmediateLoadDominator <= CurrentStoreGroupID || getGroup(ImmediateLoadDominator).isExecuting(); if (ShouldCreateANewGroup) { unsigned NewGID = createMemoryGroup(); MemoryGroup &NewGroup = getGroup(NewGID); NewGroup.addInstruction(); // A load may not pass a previous store or store barrier // unless flag 'NoAlias' is set. if (!assumeNoAlias() && CurrentStoreGroupID) { MemoryGroup &StoreGroup = getGroup(CurrentStoreGroupID); LLVM_DEBUG(dbgs() << "[LSUnit]: GROUP DEP: (" << CurrentStoreGroupID << ") --> (" << NewGID << ")\n"); StoreGroup.addSuccessor(&NewGroup, true); } // A load barrier may not pass a previous load or load barrier. if (IsLoadBarrier) { if (ImmediateLoadDominator) { MemoryGroup &LoadGroup = getGroup(ImmediateLoadDominator); LLVM_DEBUG(dbgs() << "[LSUnit]: GROUP DEP: (" << ImmediateLoadDominator << ") --> (" << NewGID << ")\n"); LoadGroup.addSuccessor(&NewGroup, true); } } else { // A younger load cannot pass a older load barrier. if (CurrentLoadBarrierGroupID) { MemoryGroup &LoadGroup = getGroup(CurrentLoadBarrierGroupID); LLVM_DEBUG(dbgs() << "[LSUnit]: GROUP DEP: (" << CurrentLoadBarrierGroupID << ") --> (" << NewGID << ")\n"); LoadGroup.addSuccessor(&NewGroup, true); } } CurrentLoadGroupID = NewGID; if (IsLoadBarrier) CurrentLoadBarrierGroupID = NewGID; return NewGID; } // A load may pass a previous load. MemoryGroup &Group = getGroup(CurrentLoadGroupID); Group.addInstruction(); return CurrentLoadGroupID; } LSUnit::Status LSUnit::isAvailable(const InstRef &IR) const { const InstrDesc &Desc = IR.getInstruction()->getDesc(); if (Desc.MayLoad && isLQFull()) return LSUnit::LSU_LQUEUE_FULL; if (Desc.MayStore && isSQFull()) return LSUnit::LSU_SQUEUE_FULL; return LSUnit::LSU_AVAILABLE; } void LSUnitBase::onInstructionExecuted(const InstRef &IR) { unsigned GroupID = IR.getInstruction()->getLSUTokenID(); auto It = Groups.find(GroupID); assert(It != Groups.end() && "Instruction not dispatched to the LS unit"); It->second->onInstructionExecuted(IR); if (It->second->isExecuted()) Groups.erase(It); } void LSUnitBase::onInstructionRetired(const InstRef &IR) { const InstrDesc &Desc = IR.getInstruction()->getDesc(); bool IsALoad = Desc.MayLoad; bool IsAStore = Desc.MayStore; assert((IsALoad || IsAStore) && "Expected a memory operation!"); if (IsALoad) { releaseLQSlot(); LLVM_DEBUG(dbgs() << "[LSUnit]: Instruction idx=" << IR.getSourceIndex() << " has been removed from the load queue.\n"); } if (IsAStore) { releaseSQSlot(); LLVM_DEBUG(dbgs() << "[LSUnit]: Instruction idx=" << IR.getSourceIndex() << " has been removed from the store queue.\n"); } } void LSUnit::onInstructionExecuted(const InstRef &IR) { const Instruction &IS = *IR.getInstruction(); if (!IS.isMemOp()) return; LSUnitBase::onInstructionExecuted(IR); unsigned GroupID = IS.getLSUTokenID(); if (!isValidGroupID(GroupID)) { if (GroupID == CurrentLoadGroupID) CurrentLoadGroupID = 0; if (GroupID == CurrentStoreGroupID) CurrentStoreGroupID = 0; if (GroupID == CurrentLoadBarrierGroupID) CurrentLoadBarrierGroupID = 0; if (GroupID == CurrentStoreBarrierGroupID) CurrentStoreBarrierGroupID = 0; } } } // namespace mca } // namespace llvm