//===-- Value.cpp - Implement the Value class -----------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the Value, ValueHandle, and User classes. // //===----------------------------------------------------------------------===// #include "llvm/IR/Value.h" #include "LLVMContextImpl.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallString.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/DerivedUser.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/ValueHandle.h" #include "llvm/IR/ValueSymbolTable.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; static cl::opt UseDerefAtPointSemantics( "use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(false), cl::desc("Deref attributes and metadata infer facts at definition only")); //===----------------------------------------------------------------------===// // Value Class //===----------------------------------------------------------------------===// static inline Type *checkType(Type *Ty) { assert(Ty && "Value defined with a null type: Error!"); return Ty; } Value::Value(Type *ty, unsigned scid) : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0), SubclassOptionalData(0), SubclassData(0), NumUserOperands(0), IsUsedByMD(false), HasName(false), HasMetadata(false) { static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)"); // FIXME: Why isn't this in the subclass gunk?? // Note, we cannot call isa before the CallInst has been // constructed. unsigned OpCode = 0; if (SubclassID >= InstructionVal) OpCode = SubclassID - InstructionVal; if (OpCode == Instruction::Call || OpCode == Instruction::Invoke || OpCode == Instruction::CallBr) assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && "invalid CallBase type!"); else if (SubclassID != BasicBlockVal && (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal)) assert((VTy->isFirstClassType() || VTy->isVoidTy()) && "Cannot create non-first-class values except for constants!"); static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned), "Value too big"); } Value::~Value() { // Notify all ValueHandles (if present) that this value is going away. if (HasValueHandle) ValueHandleBase::ValueIsDeleted(this); if (isUsedByMetadata()) ValueAsMetadata::handleDeletion(this); // Remove associated metadata from context. if (HasMetadata) clearMetadata(); #ifndef NDEBUG // Only in -g mode... // Check to make sure that there are no uses of this value that are still // around when the value is destroyed. If there are, then we have a dangling // reference and something is wrong. This code is here to print out where // the value is still being referenced. // // Note that use_empty() cannot be called here, as it eventually downcasts // 'this' to GlobalValue (derived class of Value), but GlobalValue has already // been destructed, so accessing it is UB. // if (!materialized_use_empty()) { dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; for (auto *U : users()) dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n"; } #endif assert(materialized_use_empty() && "Uses remain when a value is destroyed!"); // If this value is named, destroy the name. This should not be in a symtab // at this point. destroyValueName(); } void Value::deleteValue() { switch (getValueID()) { #define HANDLE_VALUE(Name) \ case Value::Name##Val: \ delete static_cast(this); \ break; #define HANDLE_MEMORY_VALUE(Name) \ case Value::Name##Val: \ static_cast(this)->DeleteValue( \ static_cast(this)); \ break; #define HANDLE_CONSTANT(Name) \ case Value::Name##Val: \ llvm_unreachable("constants should be destroyed with destroyConstant"); \ break; #define HANDLE_INSTRUCTION(Name) /* nothing */ #include "llvm/IR/Value.def" #define HANDLE_INST(N, OPC, CLASS) \ case Value::InstructionVal + Instruction::OPC: \ delete static_cast(this); \ break; #define HANDLE_USER_INST(N, OPC, CLASS) #include "llvm/IR/Instruction.def" default: llvm_unreachable("attempting to delete unknown value kind"); } } void Value::destroyValueName() { ValueName *Name = getValueName(); if (Name) { MallocAllocator Allocator; Name->Destroy(Allocator); } setValueName(nullptr); } bool Value::hasNUses(unsigned N) const { return hasNItems(use_begin(), use_end(), N); } bool Value::hasNUsesOrMore(unsigned N) const { return hasNItemsOrMore(use_begin(), use_end(), N); } bool Value::hasOneUser() const { if (use_empty()) return false; if (hasOneUse()) return true; return std::equal(++user_begin(), user_end(), user_begin()); } static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); } Use *Value::getSingleUndroppableUse() { Use *Result = nullptr; for (Use &U : uses()) { if (!U.getUser()->isDroppable()) { if (Result) return nullptr; Result = &U; } } return Result; } User *Value::getUniqueUndroppableUser() { User *Result = nullptr; for (auto *U : users()) { if (!U->isDroppable()) { if (Result && Result != U) return nullptr; Result = U; } } return Result; } bool Value::hasNUndroppableUses(unsigned int N) const { return hasNItems(user_begin(), user_end(), N, isUnDroppableUser); } bool Value::hasNUndroppableUsesOrMore(unsigned int N) const { return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser); } void Value::dropDroppableUses( llvm::function_ref ShouldDrop) { SmallVector ToBeEdited; for (Use &U : uses()) if (U.getUser()->isDroppable() && ShouldDrop(&U)) ToBeEdited.push_back(&U); for (Use *U : ToBeEdited) dropDroppableUse(*U); } void Value::dropDroppableUsesIn(User &Usr) { assert(Usr.isDroppable() && "Expected a droppable user!"); for (Use &UsrOp : Usr.operands()) { if (UsrOp.get() == this) dropDroppableUse(UsrOp); } } void Value::dropDroppableUse(Use &U) { U.removeFromList(); if (auto *Assume = dyn_cast(U.getUser())) { unsigned OpNo = U.getOperandNo(); if (OpNo == 0) U.set(ConstantInt::getTrue(Assume->getContext())); else { U.set(UndefValue::get(U.get()->getType())); CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo); BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore"); } return; } llvm_unreachable("unkown droppable use"); } bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { // This can be computed either by scanning the instructions in BB, or by // scanning the use list of this Value. Both lists can be very long, but // usually one is quite short. // // Scan both lists simultaneously until one is exhausted. This limits the // search to the shorter list. BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); const_user_iterator UI = user_begin(), UE = user_end(); for (; BI != BE && UI != UE; ++BI, ++UI) { // Scan basic block: Check if this Value is used by the instruction at BI. if (is_contained(BI->operands(), this)) return true; // Scan use list: Check if the use at UI is in BB. const auto *User = dyn_cast(*UI); if (User && User->getParent() == BB) return true; } return false; } unsigned Value::getNumUses() const { return (unsigned)std::distance(use_begin(), use_end()); } static bool getSymTab(Value *V, ValueSymbolTable *&ST) { ST = nullptr; if (Instruction *I = dyn_cast(V)) { if (BasicBlock *P = I->getParent()) if (Function *PP = P->getParent()) ST = PP->getValueSymbolTable(); } else if (BasicBlock *BB = dyn_cast(V)) { if (Function *P = BB->getParent()) ST = P->getValueSymbolTable(); } else if (GlobalValue *GV = dyn_cast(V)) { if (Module *P = GV->getParent()) ST = &P->getValueSymbolTable(); } else if (Argument *A = dyn_cast(V)) { if (Function *P = A->getParent()) ST = P->getValueSymbolTable(); } else { assert(isa(V) && "Unknown value type!"); return true; // no name is setable for this. } return false; } ValueName *Value::getValueName() const { if (!HasName) return nullptr; LLVMContext &Ctx = getContext(); auto I = Ctx.pImpl->ValueNames.find(this); assert(I != Ctx.pImpl->ValueNames.end() && "No name entry found!"); return I->second; } void Value::setValueName(ValueName *VN) { LLVMContext &Ctx = getContext(); assert(HasName == Ctx.pImpl->ValueNames.count(this) && "HasName bit out of sync!"); if (!VN) { if (HasName) Ctx.pImpl->ValueNames.erase(this); HasName = false; return; } HasName = true; Ctx.pImpl->ValueNames[this] = VN; } StringRef Value::getName() const { // Make sure the empty string is still a C string. For historical reasons, // some clients want to call .data() on the result and expect it to be null // terminated. if (!hasName()) return StringRef("", 0); return getValueName()->getKey(); } void Value::setNameImpl(const Twine &NewName) { // Fast-path: LLVMContext can be set to strip out non-GlobalValue names if (getContext().shouldDiscardValueNames() && !isa(this)) return; // Fast path for common IRBuilder case of setName("") when there is no name. if (NewName.isTriviallyEmpty() && !hasName()) return; SmallString<256> NameData; StringRef NameRef = NewName.toStringRef(NameData); assert(NameRef.find_first_of(0) == StringRef::npos && "Null bytes are not allowed in names"); // Name isn't changing? if (getName() == NameRef) return; assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); // Get the symbol table to update for this object. ValueSymbolTable *ST; if (getSymTab(this, ST)) return; // Cannot set a name on this value (e.g. constant). if (!ST) { // No symbol table to update? Just do the change. if (NameRef.empty()) { // Free the name for this value. destroyValueName(); return; } // NOTE: Could optimize for the case the name is shrinking to not deallocate // then reallocated. destroyValueName(); // Create the new name. MallocAllocator Allocator; setValueName(ValueName::Create(NameRef, Allocator)); getValueName()->setValue(this); return; } // NOTE: Could optimize for the case the name is shrinking to not deallocate // then reallocated. if (hasName()) { // Remove old name. ST->removeValueName(getValueName()); destroyValueName(); if (NameRef.empty()) return; } // Name is changing to something new. setValueName(ST->createValueName(NameRef, this)); } void Value::setName(const Twine &NewName) { setNameImpl(NewName); if (Function *F = dyn_cast(this)) F->recalculateIntrinsicID(); } void Value::takeName(Value *V) { ValueSymbolTable *ST = nullptr; // If this value has a name, drop it. if (hasName()) { // Get the symtab this is in. if (getSymTab(this, ST)) { // We can't set a name on this value, but we need to clear V's name if // it has one. if (V->hasName()) V->setName(""); return; // Cannot set a name on this value (e.g. constant). } // Remove old name. if (ST) ST->removeValueName(getValueName()); destroyValueName(); } // Now we know that this has no name. // If V has no name either, we're done. if (!V->hasName()) return; // Get this's symtab if we didn't before. if (!ST) { if (getSymTab(this, ST)) { // Clear V's name. V->setName(""); return; // Cannot set a name on this value (e.g. constant). } } // Get V's ST, this should always succed, because V has a name. ValueSymbolTable *VST; bool Failure = getSymTab(V, VST); assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; // If these values are both in the same symtab, we can do this very fast. // This works even if both values have no symtab yet. if (ST == VST) { // Take the name! setValueName(V->getValueName()); V->setValueName(nullptr); getValueName()->setValue(this); return; } // Otherwise, things are slightly more complex. Remove V's name from VST and // then reinsert it into ST. if (VST) VST->removeValueName(V->getValueName()); setValueName(V->getValueName()); V->setValueName(nullptr); getValueName()->setValue(this); if (ST) ST->reinsertValue(this); } #ifndef NDEBUG std::string Value::getNameOrAsOperand() const { if (!getName().empty()) return std::string(getName()); std::string BBName; raw_string_ostream OS(BBName); printAsOperand(OS, false); return OS.str(); } #endif void Value::assertModuleIsMaterializedImpl() const { #ifndef NDEBUG const GlobalValue *GV = dyn_cast(this); if (!GV) return; const Module *M = GV->getParent(); if (!M) return; assert(M->isMaterialized()); #endif } #ifndef NDEBUG static bool contains(SmallPtrSetImpl &Cache, ConstantExpr *Expr, Constant *C) { if (!Cache.insert(Expr).second) return false; for (auto &O : Expr->operands()) { if (O == C) return true; auto *CE = dyn_cast(O); if (!CE) continue; if (contains(Cache, CE, C)) return true; } return false; } static bool contains(Value *Expr, Value *V) { if (Expr == V) return true; auto *C = dyn_cast(V); if (!C) return false; auto *CE = dyn_cast(Expr); if (!CE) return false; SmallPtrSet Cache; return contains(Cache, CE, C); } #endif // NDEBUG void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) { assert(New && "Value::replaceAllUsesWith() is invalid!"); assert(!contains(New, this) && "this->replaceAllUsesWith(expr(this)) is NOT valid!"); assert(New->getType() == getType() && "replaceAllUses of value with new value of different type!"); // Notify all ValueHandles (if present) that this value is going away. if (HasValueHandle) ValueHandleBase::ValueIsRAUWd(this, New); if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata()) ValueAsMetadata::handleRAUW(this, New); while (!materialized_use_empty()) { Use &U = *UseList; // Must handle Constants specially, we cannot call replaceUsesOfWith on a // constant because they are uniqued. if (auto *C = dyn_cast(U.getUser())) { if (!isa(C)) { C->handleOperandChange(this, New); continue; } } U.set(New); } if (BasicBlock *BB = dyn_cast(this)) BB->replaceSuccessorsPhiUsesWith(cast(New)); } void Value::replaceAllUsesWith(Value *New) { doRAUW(New, ReplaceMetadataUses::Yes); } void Value::replaceNonMetadataUsesWith(Value *New) { doRAUW(New, ReplaceMetadataUses::No); } void Value::replaceUsesWithIf(Value *New, llvm::function_ref ShouldReplace) { assert(New && "Value::replaceUsesWithIf() is invalid!"); assert(New->getType() == getType() && "replaceUses of value with new value of different type!"); SmallVector, 8> Consts; SmallPtrSet Visited; for (Use &U : llvm::make_early_inc_range(uses())) { if (!ShouldReplace(U)) continue; // Must handle Constants specially, we cannot call replaceUsesOfWith on a // constant because they are uniqued. if (auto *C = dyn_cast(U.getUser())) { if (!isa(C)) { if (Visited.insert(C).second) Consts.push_back(TrackingVH(C)); continue; } } U.set(New); } while (!Consts.empty()) { // FIXME: handleOperandChange() updates all the uses in a given Constant, // not just the one passed to ShouldReplace Consts.pop_back_val()->handleOperandChange(this, New); } } /// Replace llvm.dbg.* uses of MetadataAsValue(ValueAsMetadata(V)) outside BB /// with New. static void replaceDbgUsesOutsideBlock(Value *V, Value *New, BasicBlock *BB) { SmallVector DbgUsers; findDbgUsers(DbgUsers, V); for (auto *DVI : DbgUsers) { if (DVI->getParent() != BB) DVI->replaceVariableLocationOp(V, New); } } // Like replaceAllUsesWith except it does not handle constants or basic blocks. // This routine leaves uses within BB. void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { assert(New && "Value::replaceUsesOutsideBlock(, BB) is invalid!"); assert(!contains(New, this) && "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!"); assert(New->getType() == getType() && "replaceUses of value with new value of different type!"); assert(BB && "Basic block that may contain a use of 'New' must be defined\n"); replaceDbgUsesOutsideBlock(this, New, BB); replaceUsesWithIf(New, [BB](Use &U) { auto *I = dyn_cast(U.getUser()); // Don't replace if it's an instruction in the BB basic block. return !I || I->getParent() != BB; }); } namespace { // Various metrics for how much to strip off of pointers. enum PointerStripKind { PSK_ZeroIndices, PSK_ZeroIndicesAndAliases, PSK_ZeroIndicesSameRepresentation, PSK_ForAliasAnalysis, PSK_InBoundsConstantIndices, PSK_InBounds }; template static void NoopCallback(const Value *) {} template static const Value *stripPointerCastsAndOffsets( const Value *V, function_ref Func = NoopCallback) { if (!V->getType()->isPointerTy()) return V; // Even though we don't look through PHI nodes, we could be called on an // instruction in an unreachable block, which may be on a cycle. SmallPtrSet Visited; Visited.insert(V); do { Func(V); if (auto *GEP = dyn_cast(V)) { switch (StripKind) { case PSK_ZeroIndices: case PSK_ZeroIndicesAndAliases: case PSK_ZeroIndicesSameRepresentation: case PSK_ForAliasAnalysis: if (!GEP->hasAllZeroIndices()) return V; break; case PSK_InBoundsConstantIndices: if (!GEP->hasAllConstantIndices()) return V; LLVM_FALLTHROUGH; case PSK_InBounds: if (!GEP->isInBounds()) return V; break; } V = GEP->getPointerOperand(); } else if (Operator::getOpcode(V) == Instruction::BitCast) { V = cast(V)->getOperand(0); if (!V->getType()->isPointerTy()) return V; } else if (StripKind != PSK_ZeroIndicesSameRepresentation && Operator::getOpcode(V) == Instruction::AddrSpaceCast) { // TODO: If we know an address space cast will not change the // representation we could look through it here as well. V = cast(V)->getOperand(0); } else if (StripKind == PSK_ZeroIndicesAndAliases && isa(V)) { V = cast(V)->getAliasee(); } else if (StripKind == PSK_ForAliasAnalysis && isa(V) && cast(V)->getNumIncomingValues() == 1) { V = cast(V)->getIncomingValue(0); } else { if (const auto *Call = dyn_cast(V)) { if (const Value *RV = Call->getReturnedArgOperand()) { V = RV; continue; } // The result of launder.invariant.group must alias it's argument, // but it can't be marked with returned attribute, that's why it needs // special case. if (StripKind == PSK_ForAliasAnalysis && (Call->getIntrinsicID() == Intrinsic::launder_invariant_group || Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) { V = Call->getArgOperand(0); continue; } } return V; } assert(V->getType()->isPointerTy() && "Unexpected operand type!"); } while (Visited.insert(V).second); return V; } } // end anonymous namespace const Value *Value::stripPointerCasts() const { return stripPointerCastsAndOffsets(this); } const Value *Value::stripPointerCastsAndAliases() const { return stripPointerCastsAndOffsets(this); } const Value *Value::stripPointerCastsSameRepresentation() const { return stripPointerCastsAndOffsets(this); } const Value *Value::stripInBoundsConstantOffsets() const { return stripPointerCastsAndOffsets(this); } const Value *Value::stripPointerCastsForAliasAnalysis() const { return stripPointerCastsAndOffsets(this); } const Value *Value::stripAndAccumulateConstantOffsets( const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup, function_ref ExternalAnalysis) const { if (!getType()->isPtrOrPtrVectorTy()) return this; unsigned BitWidth = Offset.getBitWidth(); assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) && "The offset bit width does not match the DL specification."); // Even though we don't look through PHI nodes, we could be called on an // instruction in an unreachable block, which may be on a cycle. SmallPtrSet Visited; Visited.insert(this); const Value *V = this; do { if (auto *GEP = dyn_cast(V)) { // If in-bounds was requested, we do not strip non-in-bounds GEPs. if (!AllowNonInbounds && !GEP->isInBounds()) return V; // If one of the values we have visited is an addrspacecast, then // the pointer type of this GEP may be different from the type // of the Ptr parameter which was passed to this function. This // means when we construct GEPOffset, we need to use the size // of GEP's pointer type rather than the size of the original // pointer type. APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0); if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis)) return V; // Stop traversal if the pointer offset wouldn't fit in the bit-width // provided by the Offset argument. This can happen due to AddrSpaceCast // stripping. if (GEPOffset.getMinSignedBits() > BitWidth) return V; // External Analysis can return a result higher/lower than the value // represents. We need to detect overflow/underflow. APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth); if (!ExternalAnalysis) { Offset += GEPOffsetST; } else { bool Overflow = false; APInt OldOffset = Offset; Offset = Offset.sadd_ov(GEPOffsetST, Overflow); if (Overflow) { Offset = OldOffset; return V; } } V = GEP->getPointerOperand(); } else if (Operator::getOpcode(V) == Instruction::BitCast || Operator::getOpcode(V) == Instruction::AddrSpaceCast) { V = cast(V)->getOperand(0); } else if (auto *GA = dyn_cast(V)) { if (!GA->isInterposable()) V = GA->getAliasee(); } else if (const auto *Call = dyn_cast(V)) { if (const Value *RV = Call->getReturnedArgOperand()) V = RV; if (AllowInvariantGroup && Call->isLaunderOrStripInvariantGroup()) V = Call->getArgOperand(0); } assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); } while (Visited.insert(V).second); return V; } const Value * Value::stripInBoundsOffsets(function_ref Func) const { return stripPointerCastsAndOffsets(this, Func); } bool Value::canBeFreed() const { assert(getType()->isPointerTy()); // Cases that can simply never be deallocated // *) Constants aren't allocated per se, thus not deallocated either. if (isa(this)) return false; // Handle byval/byref/sret/inalloca/preallocated arguments. The storage // lifetime is guaranteed to be longer than the callee's lifetime. if (auto *A = dyn_cast(this)) { if (A->hasPointeeInMemoryValueAttr()) return false; // A pointer to an object in a function which neither frees, nor can arrange // for another thread to free on its behalf, can not be freed in the scope // of the function. Note that this logic is restricted to memory // allocations in existance before the call; a nofree function *is* allowed // to free memory it allocated. const Function *F = A->getParent(); if (F->doesNotFreeMemory() && F->hasNoSync()) return false; } const Function *F = nullptr; if (auto *I = dyn_cast(this)) F = I->getFunction(); if (auto *A = dyn_cast(this)) F = A->getParent(); if (!F) return true; // With garbage collection, deallocation typically occurs solely at or after // safepoints. If we're compiling for a collector which uses the // gc.statepoint infrastructure, safepoints aren't explicitly present // in the IR until after lowering from abstract to physical machine model. // The collector could chose to mix explicit deallocation and gc'd objects // which is why we need the explicit opt in on a per collector basis. if (!F->hasGC()) return true; const auto &GCName = F->getGC(); if (GCName == "statepoint-example") { auto *PT = cast(this->getType()); if (PT->getAddressSpace() != 1) // For the sake of this example GC, we arbitrarily pick addrspace(1) as // our GC managed heap. This must match the same check in // RewriteStatepointsForGC (and probably needs better factored.) return true; // It is cheaper to scan for a declaration than to scan for a use in this // function. Note that gc.statepoint is a type overloaded function so the // usual trick of requesting declaration of the intrinsic from the module // doesn't work. for (auto &Fn : *F->getParent()) if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint) return true; return false; } return true; } uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const { assert(getType()->isPointerTy() && "must be pointer"); uint64_t DerefBytes = 0; CanBeNull = false; CanBeFreed = UseDerefAtPointSemantics && canBeFreed(); if (const Argument *A = dyn_cast(this)) { DerefBytes = A->getDereferenceableBytes(); if (DerefBytes == 0) { // Handle byval/byref/inalloca/preallocated arguments if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) { if (ArgMemTy->isSized()) { // FIXME: Why isn't this the type alloc size? DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinSize(); } } } if (DerefBytes == 0) { DerefBytes = A->getDereferenceableOrNullBytes(); CanBeNull = true; } } else if (const auto *Call = dyn_cast(this)) { DerefBytes = Call->getRetDereferenceableBytes(); if (DerefBytes == 0) { DerefBytes = Call->getRetDereferenceableOrNullBytes(); CanBeNull = true; } } else if (const LoadInst *LI = dyn_cast(this)) { if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { ConstantInt *CI = mdconst::extract(MD->getOperand(0)); DerefBytes = CI->getLimitedValue(); } if (DerefBytes == 0) { if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { ConstantInt *CI = mdconst::extract(MD->getOperand(0)); DerefBytes = CI->getLimitedValue(); } CanBeNull = true; } } else if (auto *IP = dyn_cast(this)) { if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) { ConstantInt *CI = mdconst::extract(MD->getOperand(0)); DerefBytes = CI->getLimitedValue(); } if (DerefBytes == 0) { if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { ConstantInt *CI = mdconst::extract(MD->getOperand(0)); DerefBytes = CI->getLimitedValue(); } CanBeNull = true; } } else if (auto *AI = dyn_cast(this)) { if (!AI->isArrayAllocation()) { DerefBytes = DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinSize(); CanBeNull = false; CanBeFreed = false; } } else if (auto *GV = dyn_cast(this)) { if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) { // TODO: Don't outright reject hasExternalWeakLinkage but set the // CanBeNull flag. DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedSize(); CanBeNull = false; CanBeFreed = false; } } return DerefBytes; } Align Value::getPointerAlignment(const DataLayout &DL) const { assert(getType()->isPointerTy() && "must be pointer"); if (auto *GO = dyn_cast(this)) { if (isa(GO)) { Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne(); switch (DL.getFunctionPtrAlignType()) { case DataLayout::FunctionPtrAlignType::Independent: return FunctionPtrAlign; case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign: return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne()); } llvm_unreachable("Unhandled FunctionPtrAlignType"); } const MaybeAlign Alignment(GO->getAlign()); if (!Alignment) { if (auto *GVar = dyn_cast(GO)) { Type *ObjectType = GVar->getValueType(); if (ObjectType->isSized()) { // If the object is defined in the current Module, we'll be giving // it the preferred alignment. Otherwise, we have to assume that it // may only have the minimum ABI alignment. if (GVar->isStrongDefinitionForLinker()) return DL.getPreferredAlign(GVar); else return DL.getABITypeAlign(ObjectType); } } } return Alignment.valueOrOne(); } else if (const Argument *A = dyn_cast(this)) { const MaybeAlign Alignment = A->getParamAlign(); if (!Alignment && A->hasStructRetAttr()) { // An sret parameter has at least the ABI alignment of the return type. Type *EltTy = A->getParamStructRetType(); if (EltTy->isSized()) return DL.getABITypeAlign(EltTy); } return Alignment.valueOrOne(); } else if (const AllocaInst *AI = dyn_cast(this)) { return AI->getAlign(); } else if (const auto *Call = dyn_cast(this)) { MaybeAlign Alignment = Call->getRetAlign(); if (!Alignment && Call->getCalledFunction()) Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment(); return Alignment.valueOrOne(); } else if (const LoadInst *LI = dyn_cast(this)) { if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { ConstantInt *CI = mdconst::extract(MD->getOperand(0)); return Align(CI->getLimitedValue()); } } else if (auto *CstPtr = dyn_cast(this)) { if (auto *CstInt = dyn_cast_or_null(ConstantExpr::getPtrToInt( const_cast(CstPtr), DL.getIntPtrType(getType()), /*OnlyIfReduced=*/true))) { size_t TrailingZeros = CstInt->getValue().countTrailingZeros(); // While the actual alignment may be large, elsewhere we have // an arbitrary upper alignmet limit, so let's clamp to it. return Align(TrailingZeros < Value::MaxAlignmentExponent ? uint64_t(1) << TrailingZeros : Value::MaximumAlignment); } } return Align(1); } const Value *Value::DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) const { auto *PN = dyn_cast(this); if (PN && PN->getParent() == CurBB) return PN->getIncomingValueForBlock(PredBB); return this; } LLVMContext &Value::getContext() const { return VTy->getContext(); } void Value::reverseUseList() { if (!UseList || !UseList->Next) // No need to reverse 0 or 1 uses. return; Use *Head = UseList; Use *Current = UseList->Next; Head->Next = nullptr; while (Current) { Use *Next = Current->Next; Current->Next = Head; Head->Prev = &Current->Next; Head = Current; Current = Next; } UseList = Head; Head->Prev = &UseList; } bool Value::isSwiftError() const { auto *Arg = dyn_cast(this); if (Arg) return Arg->hasSwiftErrorAttr(); auto *Alloca = dyn_cast(this); if (!Alloca) return false; return Alloca->isSwiftError(); } bool Value::isTransitiveUsedByMetadataOnly() const { if (use_empty()) return false; llvm::SmallVector WorkList; llvm::SmallPtrSet Visited; WorkList.insert(WorkList.begin(), user_begin(), user_end()); while (!WorkList.empty()) { const User *U = WorkList.pop_back_val(); Visited.insert(U); // If it is transitively used by a global value or a non-constant value, // it's obviously not only used by metadata. if (!isa(U) || isa(U)) return false; for (const User *UU : U->users()) if (!Visited.count(UU)) WorkList.push_back(UU); } return true; } //===----------------------------------------------------------------------===// // ValueHandleBase Class //===----------------------------------------------------------------------===// void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { assert(List && "Handle list is null?"); // Splice ourselves into the list. Next = *List; *List = this; setPrevPtr(List); if (Next) { Next->setPrevPtr(&Next); assert(getValPtr() == Next->getValPtr() && "Added to wrong list?"); } } void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { assert(List && "Must insert after existing node"); Next = List->Next; setPrevPtr(&List->Next); List->Next = this; if (Next) Next->setPrevPtr(&Next); } void ValueHandleBase::AddToUseList() { assert(getValPtr() && "Null pointer doesn't have a use list!"); LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; if (getValPtr()->HasValueHandle) { // If this value already has a ValueHandle, then it must be in the // ValueHandles map already. ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()]; assert(Entry && "Value doesn't have any handles?"); AddToExistingUseList(&Entry); return; } // Ok, it doesn't have any handles yet, so we must insert it into the // DenseMap. However, doing this insertion could cause the DenseMap to // reallocate itself, which would invalidate all of the PrevP pointers that // point into the old table. Handle this by checking for reallocation and // updating the stale pointers only if needed. DenseMap &Handles = pImpl->ValueHandles; const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); ValueHandleBase *&Entry = Handles[getValPtr()]; assert(!Entry && "Value really did already have handles?"); AddToExistingUseList(&Entry); getValPtr()->HasValueHandle = true; // If reallocation didn't happen or if this was the first insertion, don't // walk the table. if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || Handles.size() == 1) { return; } // Okay, reallocation did happen. Fix the Prev Pointers. for (DenseMap::iterator I = Handles.begin(), E = Handles.end(); I != E; ++I) { assert(I->second && I->first == I->second->getValPtr() && "List invariant broken!"); I->second->setPrevPtr(&I->second); } } void ValueHandleBase::RemoveFromUseList() { assert(getValPtr() && getValPtr()->HasValueHandle && "Pointer doesn't have a use list!"); // Unlink this from its use list. ValueHandleBase **PrevPtr = getPrevPtr(); assert(*PrevPtr == this && "List invariant broken"); *PrevPtr = Next; if (Next) { assert(Next->getPrevPtr() == &Next && "List invariant broken"); Next->setPrevPtr(PrevPtr); return; } // If the Next pointer was null, then it is possible that this was the last // ValueHandle watching VP. If so, delete its entry from the ValueHandles // map. LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; DenseMap &Handles = pImpl->ValueHandles; if (Handles.isPointerIntoBucketsArray(PrevPtr)) { Handles.erase(getValPtr()); getValPtr()->HasValueHandle = false; } } void ValueHandleBase::ValueIsDeleted(Value *V) { assert(V->HasValueHandle && "Should only be called if ValueHandles present"); // Get the linked list base, which is guaranteed to exist since the // HasValueHandle flag is set. LLVMContextImpl *pImpl = V->getContext().pImpl; ValueHandleBase *Entry = pImpl->ValueHandles[V]; assert(Entry && "Value bit set but no entries exist"); // We use a local ValueHandleBase as an iterator so that ValueHandles can add // and remove themselves from the list without breaking our iteration. This // is not really an AssertingVH; we just have to give ValueHandleBase a kind. // Note that we deliberately do not the support the case when dropping a value // handle results in a new value handle being permanently added to the list // (as might occur in theory for CallbackVH's): the new value handle will not // be processed and the checking code will mete out righteous punishment if // the handle is still present once we have finished processing all the other // value handles (it is fine to momentarily add then remove a value handle). for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { Iterator.RemoveFromUseList(); Iterator.AddToExistingUseListAfter(Entry); assert(Entry->Next == &Iterator && "Loop invariant broken."); switch (Entry->getKind()) { case Assert: break; case Weak: case WeakTracking: // WeakTracking and Weak just go to null, which unlinks them // from the list. Entry->operator=(nullptr); break; case Callback: // Forward to the subclass's implementation. static_cast(Entry)->deleted(); break; } } // All callbacks, weak references, and assertingVHs should be dropped by now. if (V->HasValueHandle) { #ifndef NDEBUG // Only in +Asserts mode... dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() << "\n"; if (pImpl->ValueHandles[V]->getKind() == Assert) llvm_unreachable("An asserting value handle still pointed to this" " value!"); #endif llvm_unreachable("All references to V were not removed?"); } } void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); assert(Old != New && "Changing value into itself!"); assert(Old->getType() == New->getType() && "replaceAllUses of value with new value of different type!"); // Get the linked list base, which is guaranteed to exist since the // HasValueHandle flag is set. LLVMContextImpl *pImpl = Old->getContext().pImpl; ValueHandleBase *Entry = pImpl->ValueHandles[Old]; assert(Entry && "Value bit set but no entries exist"); // We use a local ValueHandleBase as an iterator so that // ValueHandles can add and remove themselves from the list without // breaking our iteration. This is not really an AssertingVH; we // just have to give ValueHandleBase some kind. for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { Iterator.RemoveFromUseList(); Iterator.AddToExistingUseListAfter(Entry); assert(Entry->Next == &Iterator && "Loop invariant broken."); switch (Entry->getKind()) { case Assert: case Weak: // Asserting and Weak handles do not follow RAUW implicitly. break; case WeakTracking: // Weak goes to the new value, which will unlink it from Old's list. Entry->operator=(New); break; case Callback: // Forward to the subclass's implementation. static_cast(Entry)->allUsesReplacedWith(New); break; } } #ifndef NDEBUG // If any new weak value handles were added while processing the // list, then complain about it now. if (Old->HasValueHandle) for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) switch (Entry->getKind()) { case WeakTracking: dbgs() << "After RAUW from " << *Old->getType() << " %" << Old->getName() << " to " << *New->getType() << " %" << New->getName() << "\n"; llvm_unreachable( "A weak tracking value handle still pointed to the old value!\n"); default: break; } #endif } // Pin the vtable to this file. void CallbackVH::anchor() {}