// Copyright 2011 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // Paginated token buffer // // A 'token' is a bit value associated with a probability, either fixed // or a later-to-be-determined after statistics have been collected. // For dynamic probability, we just record the slot id (idx) for the probability // value in the final probability array (uint8_t* probas in VP8EmitTokens). // // Author: Skal (pascal.massimino@gmail.com) #include #include #include #include "./cost_enc.h" #include "./vp8i_enc.h" #include "../utils/utils.h" #if !defined(DISABLE_TOKEN_BUFFER) // we use pages to reduce the number of memcpy() #define MIN_PAGE_SIZE 8192 // minimum number of token per page #define FIXED_PROBA_BIT (1u << 14) typedef uint16_t token_t; // bit #15: bit value // bit #14: flags for constant proba or idx // bits #0..13: slot or constant proba struct VP8Tokens { VP8Tokens* next_; // pointer to next page }; // Token data is located in memory just after the next_ field. // This macro is used to return their address and hide the trick. #define TOKEN_DATA(p) ((const token_t*)&(p)[1]) //------------------------------------------------------------------------------ void VP8TBufferInit(VP8TBuffer* const b, int page_size) { b->tokens_ = NULL; b->pages_ = NULL; b->last_page_ = &b->pages_; b->left_ = 0; b->page_size_ = (page_size < MIN_PAGE_SIZE) ? MIN_PAGE_SIZE : page_size; b->error_ = 0; } void VP8TBufferClear(VP8TBuffer* const b) { if (b != NULL) { VP8Tokens* p = b->pages_; while (p != NULL) { VP8Tokens* const next = p->next_; WebPSafeFree(p); p = next; } VP8TBufferInit(b, b->page_size_); } } static int TBufferNewPage(VP8TBuffer* const b) { VP8Tokens* page = NULL; if (!b->error_) { const size_t size = sizeof(*page) + b->page_size_ * sizeof(token_t); page = (VP8Tokens*)WebPSafeMalloc(1ULL, size); } if (page == NULL) { b->error_ = 1; return 0; } page->next_ = NULL; *b->last_page_ = page; b->last_page_ = &page->next_; b->left_ = b->page_size_; b->tokens_ = (token_t*)TOKEN_DATA(page); return 1; } //------------------------------------------------------------------------------ #define TOKEN_ID(t, b, ctx) \ (NUM_PROBAS * ((ctx) + NUM_CTX * ((b) + NUM_BANDS * (t)))) static WEBP_INLINE uint32_t AddToken(VP8TBuffer* const b, uint32_t bit, uint32_t proba_idx, proba_t* const stats) { assert(proba_idx < FIXED_PROBA_BIT); assert(bit <= 1); if (b->left_ > 0 || TBufferNewPage(b)) { const int slot = --b->left_; b->tokens_[slot] = (bit << 15) | proba_idx; } VP8RecordStats(bit, stats); return bit; } static WEBP_INLINE void AddConstantToken(VP8TBuffer* const b, uint32_t bit, uint32_t proba) { assert(proba < 256); assert(bit <= 1); if (b->left_ > 0 || TBufferNewPage(b)) { const int slot = --b->left_; b->tokens_[slot] = (bit << 15) | FIXED_PROBA_BIT | proba; } } int VP8RecordCoeffTokens(int ctx, const struct VP8Residual* const res, VP8TBuffer* const tokens) { const int16_t* const coeffs = res->coeffs; const int coeff_type = res->coeff_type; const int last = res->last; int n = res->first; uint32_t base_id = TOKEN_ID(coeff_type, n, ctx); // should be stats[VP8EncBands[n]], but it's equivalent for n=0 or 1 proba_t* s = res->stats[n][ctx]; if (!AddToken(tokens, last >= 0, base_id + 0, s + 0)) { return 0; } while (n < 16) { const int c = coeffs[n++]; const int sign = c < 0; const uint32_t v = sign ? -c : c; if (!AddToken(tokens, v != 0, base_id + 1, s + 1)) { base_id = TOKEN_ID(coeff_type, VP8EncBands[n], 0); // ctx=0 s = res->stats[VP8EncBands[n]][0]; continue; } if (!AddToken(tokens, v > 1, base_id + 2, s + 2)) { base_id = TOKEN_ID(coeff_type, VP8EncBands[n], 1); // ctx=1 s = res->stats[VP8EncBands[n]][1]; } else { if (!AddToken(tokens, v > 4, base_id + 3, s + 3)) { if (AddToken(tokens, v != 2, base_id + 4, s + 4)) { AddToken(tokens, v == 4, base_id + 5, s + 5); } } else if (!AddToken(tokens, v > 10, base_id + 6, s + 6)) { if (!AddToken(tokens, v > 6, base_id + 7, s + 7)) { AddConstantToken(tokens, v == 6, 159); } else { AddConstantToken(tokens, v >= 9, 165); AddConstantToken(tokens, !(v & 1), 145); } } else { int mask; const uint8_t* tab; uint32_t residue = v - 3; if (residue < (8 << 1)) { // VP8Cat3 (3b) AddToken(tokens, 0, base_id + 8, s + 8); AddToken(tokens, 0, base_id + 9, s + 9); residue -= (8 << 0); mask = 1 << 2; tab = VP8Cat3; } else if (residue < (8 << 2)) { // VP8Cat4 (4b) AddToken(tokens, 0, base_id + 8, s + 8); AddToken(tokens, 1, base_id + 9, s + 9); residue -= (8 << 1); mask = 1 << 3; tab = VP8Cat4; } else if (residue < (8 << 3)) { // VP8Cat5 (5b) AddToken(tokens, 1, base_id + 8, s + 8); AddToken(tokens, 0, base_id + 10, s + 9); residue -= (8 << 2); mask = 1 << 4; tab = VP8Cat5; } else { // VP8Cat6 (11b) AddToken(tokens, 1, base_id + 8, s + 8); AddToken(tokens, 1, base_id + 10, s + 9); residue -= (8 << 3); mask = 1 << 10; tab = VP8Cat6; } while (mask) { AddConstantToken(tokens, !!(residue & mask), *tab++); mask >>= 1; } } base_id = TOKEN_ID(coeff_type, VP8EncBands[n], 2); // ctx=2 s = res->stats[VP8EncBands[n]][2]; } AddConstantToken(tokens, sign, 128); if (n == 16 || !AddToken(tokens, n <= last, base_id + 0, s + 0)) { return 1; // EOB } } return 1; } #undef TOKEN_ID //------------------------------------------------------------------------------ // Final coding pass, with known probabilities int VP8EmitTokens(VP8TBuffer* const b, VP8BitWriter* const bw, const uint8_t* const probas, int final_pass) { const VP8Tokens* p = b->pages_; assert(!b->error_); while (p != NULL) { const VP8Tokens* const next = p->next_; const int N = (next == NULL) ? b->left_ : 0; int n = b->page_size_; const token_t* const tokens = TOKEN_DATA(p); while (n-- > N) { const token_t token = tokens[n]; const int bit = (token >> 15) & 1; if (token & FIXED_PROBA_BIT) { VP8PutBit(bw, bit, token & 0xffu); // constant proba } else { VP8PutBit(bw, bit, probas[token & 0x3fffu]); } } if (final_pass) WebPSafeFree((void*)p); p = next; } if (final_pass) b->pages_ = NULL; return 1; } // Size estimation size_t VP8EstimateTokenSize(VP8TBuffer* const b, const uint8_t* const probas) { size_t size = 0; const VP8Tokens* p = b->pages_; assert(!b->error_); while (p != NULL) { const VP8Tokens* const next = p->next_; const int N = (next == NULL) ? b->left_ : 0; int n = b->page_size_; const token_t* const tokens = TOKEN_DATA(p); while (n-- > N) { const token_t token = tokens[n]; const int bit = token & (1 << 15); if (token & FIXED_PROBA_BIT) { size += VP8BitCost(bit, token & 0xffu); } else { size += VP8BitCost(bit, probas[token & 0x3fffu]); } } p = next; } return size; } //------------------------------------------------------------------------------ #else // DISABLE_TOKEN_BUFFER void VP8TBufferInit(VP8TBuffer* const b, int page_size) { (void)b; (void)page_size; } void VP8TBufferClear(VP8TBuffer* const b) { (void)b; } #endif // !DISABLE_TOKEN_BUFFER