//===- OffloadWrapper.cpp ---------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "OffloadWrapper.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/Triple.h" #include "llvm/IR/Constants.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Object/OffloadBinary.h" #include "llvm/Support/Error.h" #include "llvm/Transforms/Utils/ModuleUtils.h" using namespace llvm; namespace { /// Magic number that begins the section containing the CUDA fatbinary. constexpr unsigned CudaFatMagic = 0x466243b1; constexpr unsigned HIPFatMagic = 0x48495046; /// Copied from clang/CGCudaRuntime.h. enum OffloadEntryKindFlag : uint32_t { /// Mark the entry as a global entry. This indicates the presense of a /// kernel if the size size field is zero and a variable otherwise. OffloadGlobalEntry = 0x0, /// Mark the entry as a managed global variable. OffloadGlobalManagedEntry = 0x1, /// Mark the entry as a surface variable. OffloadGlobalSurfaceEntry = 0x2, /// Mark the entry as a texture variable. OffloadGlobalTextureEntry = 0x3, }; IntegerType *getSizeTTy(Module &M) { LLVMContext &C = M.getContext(); switch (M.getDataLayout().getPointerTypeSize(Type::getInt8PtrTy(C))) { case 4u: return Type::getInt32Ty(C); case 8u: return Type::getInt64Ty(C); } llvm_unreachable("unsupported pointer type size"); } // struct __tgt_offload_entry { // void *addr; // char *name; // size_t size; // int32_t flags; // int32_t reserved; // }; StructType *getEntryTy(Module &M) { LLVMContext &C = M.getContext(); StructType *EntryTy = StructType::getTypeByName(C, "__tgt_offload_entry"); if (!EntryTy) EntryTy = StructType::create("__tgt_offload_entry", Type::getInt8PtrTy(C), Type::getInt8PtrTy(C), getSizeTTy(M), Type::getInt32Ty(C), Type::getInt32Ty(C)); return EntryTy; } PointerType *getEntryPtrTy(Module &M) { return PointerType::getUnqual(getEntryTy(M)); } // struct __tgt_device_image { // void *ImageStart; // void *ImageEnd; // __tgt_offload_entry *EntriesBegin; // __tgt_offload_entry *EntriesEnd; // }; StructType *getDeviceImageTy(Module &M) { LLVMContext &C = M.getContext(); StructType *ImageTy = StructType::getTypeByName(C, "__tgt_device_image"); if (!ImageTy) ImageTy = StructType::create("__tgt_device_image", Type::getInt8PtrTy(C), Type::getInt8PtrTy(C), getEntryPtrTy(M), getEntryPtrTy(M)); return ImageTy; } PointerType *getDeviceImagePtrTy(Module &M) { return PointerType::getUnqual(getDeviceImageTy(M)); } // struct __tgt_bin_desc { // int32_t NumDeviceImages; // __tgt_device_image *DeviceImages; // __tgt_offload_entry *HostEntriesBegin; // __tgt_offload_entry *HostEntriesEnd; // }; StructType *getBinDescTy(Module &M) { LLVMContext &C = M.getContext(); StructType *DescTy = StructType::getTypeByName(C, "__tgt_bin_desc"); if (!DescTy) DescTy = StructType::create("__tgt_bin_desc", Type::getInt32Ty(C), getDeviceImagePtrTy(M), getEntryPtrTy(M), getEntryPtrTy(M)); return DescTy; } PointerType *getBinDescPtrTy(Module &M) { return PointerType::getUnqual(getBinDescTy(M)); } /// Creates binary descriptor for the given device images. Binary descriptor /// is an object that is passed to the offloading runtime at program startup /// and it describes all device images available in the executable or shared /// library. It is defined as follows /// /// __attribute__((visibility("hidden"))) /// extern __tgt_offload_entry *__start_omp_offloading_entries; /// __attribute__((visibility("hidden"))) /// extern __tgt_offload_entry *__stop_omp_offloading_entries; /// /// static const char Image0[] = { }; /// ... /// static const char ImageN[] = { }; /// /// static const __tgt_device_image Images[] = { /// { /// Image0, /*ImageStart*/ /// Image0 + sizeof(Image0), /*ImageEnd*/ /// __start_omp_offloading_entries, /*EntriesBegin*/ /// __stop_omp_offloading_entries /*EntriesEnd*/ /// }, /// ... /// { /// ImageN, /*ImageStart*/ /// ImageN + sizeof(ImageN), /*ImageEnd*/ /// __start_omp_offloading_entries, /*EntriesBegin*/ /// __stop_omp_offloading_entries /*EntriesEnd*/ /// } /// }; /// /// static const __tgt_bin_desc BinDesc = { /// sizeof(Images) / sizeof(Images[0]), /*NumDeviceImages*/ /// Images, /*DeviceImages*/ /// __start_omp_offloading_entries, /*HostEntriesBegin*/ /// __stop_omp_offloading_entries /*HostEntriesEnd*/ /// }; /// /// Global variable that represents BinDesc is returned. GlobalVariable *createBinDesc(Module &M, ArrayRef> Bufs) { LLVMContext &C = M.getContext(); // Create external begin/end symbols for the offload entries table. auto *EntriesB = new GlobalVariable( M, getEntryTy(M), /*isConstant*/ true, GlobalValue::ExternalLinkage, /*Initializer*/ nullptr, "__start_omp_offloading_entries"); EntriesB->setVisibility(GlobalValue::HiddenVisibility); auto *EntriesE = new GlobalVariable( M, getEntryTy(M), /*isConstant*/ true, GlobalValue::ExternalLinkage, /*Initializer*/ nullptr, "__stop_omp_offloading_entries"); EntriesE->setVisibility(GlobalValue::HiddenVisibility); // We assume that external begin/end symbols that we have created above will // be defined by the linker. But linker will do that only if linker inputs // have section with "omp_offloading_entries" name which is not guaranteed. // So, we just create dummy zero sized object in the offload entries section // to force linker to define those symbols. auto *DummyInit = ConstantAggregateZero::get(ArrayType::get(getEntryTy(M), 0u)); auto *DummyEntry = new GlobalVariable( M, DummyInit->getType(), true, GlobalVariable::ExternalLinkage, DummyInit, "__dummy.omp_offloading.entry"); DummyEntry->setSection("omp_offloading_entries"); DummyEntry->setVisibility(GlobalValue::HiddenVisibility); auto *Zero = ConstantInt::get(getSizeTTy(M), 0u); Constant *ZeroZero[] = {Zero, Zero}; // Create initializer for the images array. SmallVector ImagesInits; ImagesInits.reserve(Bufs.size()); for (ArrayRef Buf : Bufs) { auto *Data = ConstantDataArray::get(C, Buf); auto *Image = new GlobalVariable(M, Data->getType(), /*isConstant*/ true, GlobalVariable::InternalLinkage, Data, ".omp_offloading.device_image"); Image->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); Image->setSection(".llvm.offloading"); Image->setAlignment(Align(object::OffloadBinary::getAlignment())); auto *Size = ConstantInt::get(getSizeTTy(M), Buf.size()); Constant *ZeroSize[] = {Zero, Size}; auto *ImageB = ConstantExpr::getGetElementPtr(Image->getValueType(), Image, ZeroZero); auto *ImageE = ConstantExpr::getGetElementPtr(Image->getValueType(), Image, ZeroSize); ImagesInits.push_back(ConstantStruct::get(getDeviceImageTy(M), ImageB, ImageE, EntriesB, EntriesE)); } // Then create images array. auto *ImagesData = ConstantArray::get( ArrayType::get(getDeviceImageTy(M), ImagesInits.size()), ImagesInits); auto *Images = new GlobalVariable(M, ImagesData->getType(), /*isConstant*/ true, GlobalValue::InternalLinkage, ImagesData, ".omp_offloading.device_images"); Images->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); auto *ImagesB = ConstantExpr::getGetElementPtr(Images->getValueType(), Images, ZeroZero); // And finally create the binary descriptor object. auto *DescInit = ConstantStruct::get( getBinDescTy(M), ConstantInt::get(Type::getInt32Ty(C), ImagesInits.size()), ImagesB, EntriesB, EntriesE); return new GlobalVariable(M, DescInit->getType(), /*isConstant*/ true, GlobalValue::InternalLinkage, DescInit, ".omp_offloading.descriptor"); } void createRegisterFunction(Module &M, GlobalVariable *BinDesc) { LLVMContext &C = M.getContext(); auto *FuncTy = FunctionType::get(Type::getVoidTy(C), /*isVarArg*/ false); auto *Func = Function::Create(FuncTy, GlobalValue::InternalLinkage, ".omp_offloading.descriptor_reg", &M); Func->setSection(".text.startup"); // Get __tgt_register_lib function declaration. auto *RegFuncTy = FunctionType::get(Type::getVoidTy(C), getBinDescPtrTy(M), /*isVarArg*/ false); FunctionCallee RegFuncC = M.getOrInsertFunction("__tgt_register_lib", RegFuncTy); // Construct function body IRBuilder<> Builder(BasicBlock::Create(C, "entry", Func)); Builder.CreateCall(RegFuncC, BinDesc); Builder.CreateRetVoid(); // Add this function to constructors. // Set priority to 1 so that __tgt_register_lib is executed AFTER // __tgt_register_requires (we want to know what requirements have been // asked for before we load a libomptarget plugin so that by the time the // plugin is loaded it can report how many devices there are which can // satisfy these requirements). appendToGlobalCtors(M, Func, /*Priority*/ 1); } void createUnregisterFunction(Module &M, GlobalVariable *BinDesc) { LLVMContext &C = M.getContext(); auto *FuncTy = FunctionType::get(Type::getVoidTy(C), /*isVarArg*/ false); auto *Func = Function::Create(FuncTy, GlobalValue::InternalLinkage, ".omp_offloading.descriptor_unreg", &M); Func->setSection(".text.startup"); // Get __tgt_unregister_lib function declaration. auto *UnRegFuncTy = FunctionType::get(Type::getVoidTy(C), getBinDescPtrTy(M), /*isVarArg*/ false); FunctionCallee UnRegFuncC = M.getOrInsertFunction("__tgt_unregister_lib", UnRegFuncTy); // Construct function body IRBuilder<> Builder(BasicBlock::Create(C, "entry", Func)); Builder.CreateCall(UnRegFuncC, BinDesc); Builder.CreateRetVoid(); // Add this function to global destructors. // Match priority of __tgt_register_lib appendToGlobalDtors(M, Func, /*Priority*/ 1); } // struct fatbin_wrapper { // int32_t magic; // int32_t version; // void *image; // void *reserved; //}; StructType *getFatbinWrapperTy(Module &M) { LLVMContext &C = M.getContext(); StructType *FatbinTy = StructType::getTypeByName(C, "fatbin_wrapper"); if (!FatbinTy) FatbinTy = StructType::create("fatbin_wrapper", Type::getInt32Ty(C), Type::getInt32Ty(C), Type::getInt8PtrTy(C), Type::getInt8PtrTy(C)); return FatbinTy; } /// Embed the image \p Image into the module \p M so it can be found by the /// runtime. GlobalVariable *createFatbinDesc(Module &M, ArrayRef Image, bool IsHIP) { LLVMContext &C = M.getContext(); llvm::Type *Int8PtrTy = Type::getInt8PtrTy(C); llvm::Triple Triple = llvm::Triple(M.getTargetTriple()); // Create the global string containing the fatbinary. StringRef FatbinConstantSection = IsHIP ? ".hip_fatbin" : (Triple.isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin"); auto *Data = ConstantDataArray::get(C, Image); auto *Fatbin = new GlobalVariable(M, Data->getType(), /*isConstant*/ true, GlobalVariable::InternalLinkage, Data, ".fatbin_image"); Fatbin->setSection(FatbinConstantSection); // Create the fatbinary wrapper StringRef FatbinWrapperSection = IsHIP ? ".hipFatBinSegment" : Triple.isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment"; Constant *FatbinWrapper[] = { ConstantInt::get(Type::getInt32Ty(C), IsHIP ? HIPFatMagic : CudaFatMagic), ConstantInt::get(Type::getInt32Ty(C), 1), ConstantExpr::getPointerBitCastOrAddrSpaceCast(Fatbin, Int8PtrTy), ConstantPointerNull::get(Type::getInt8PtrTy(C))}; Constant *FatbinInitializer = ConstantStruct::get(getFatbinWrapperTy(M), FatbinWrapper); auto *FatbinDesc = new GlobalVariable(M, getFatbinWrapperTy(M), /*isConstant*/ true, GlobalValue::InternalLinkage, FatbinInitializer, ".fatbin_wrapper"); FatbinDesc->setSection(FatbinWrapperSection); FatbinDesc->setAlignment(Align(8)); // We create a dummy entry to ensure the linker will define the begin / end // symbols. The CUDA runtime should ignore the null address if we attempt to // register it. auto *DummyInit = ConstantAggregateZero::get(ArrayType::get(getEntryTy(M), 0u)); auto *DummyEntry = new GlobalVariable( M, DummyInit->getType(), true, GlobalVariable::ExternalLinkage, DummyInit, IsHIP ? "__dummy.hip_offloading.entry" : "__dummy.cuda_offloading.entry"); DummyEntry->setVisibility(GlobalValue::HiddenVisibility); DummyEntry->setSection(IsHIP ? "hip_offloading_entries" : "cuda_offloading_entries"); return FatbinDesc; } /// Create the register globals function. We will iterate all of the offloading /// entries stored at the begin / end symbols and register them according to /// their type. This creates the following function in IR: /// /// extern struct __tgt_offload_entry __start_cuda_offloading_entries; /// extern struct __tgt_offload_entry __stop_cuda_offloading_entries; /// /// extern void __cudaRegisterFunction(void **, void *, void *, void *, int, /// void *, void *, void *, void *, int *); /// extern void __cudaRegisterVar(void **, void *, void *, void *, int32_t, /// int64_t, int32_t, int32_t); /// /// void __cudaRegisterTest(void **fatbinHandle) { /// for (struct __tgt_offload_entry *entry = &__start_cuda_offloading_entries; /// entry != &__stop_cuda_offloading_entries; ++entry) { /// if (!entry->size) /// __cudaRegisterFunction(fatbinHandle, entry->addr, entry->name, /// entry->name, -1, 0, 0, 0, 0, 0); /// else /// __cudaRegisterVar(fatbinHandle, entry->addr, entry->name, entry->name, /// 0, entry->size, 0, 0); /// } /// } Function *createRegisterGlobalsFunction(Module &M, bool IsHIP) { LLVMContext &C = M.getContext(); // Get the __cudaRegisterFunction function declaration. auto *RegFuncTy = FunctionType::get( Type::getInt32Ty(C), {Type::getInt8PtrTy(C)->getPointerTo(), Type::getInt8PtrTy(C), Type::getInt8PtrTy(C), Type::getInt8PtrTy(C), Type::getInt32Ty(C), Type::getInt8PtrTy(C), Type::getInt8PtrTy(C), Type::getInt8PtrTy(C), Type::getInt8PtrTy(C), Type::getInt32PtrTy(C)}, /*isVarArg*/ false); FunctionCallee RegFunc = M.getOrInsertFunction( IsHIP ? "__hipRegisterFunction" : "__cudaRegisterFunction", RegFuncTy); // Get the __cudaRegisterVar function declaration. auto *RegVarTy = FunctionType::get( Type::getVoidTy(C), {Type::getInt8PtrTy(C)->getPointerTo(), Type::getInt8PtrTy(C), Type::getInt8PtrTy(C), Type::getInt8PtrTy(C), Type::getInt32Ty(C), getSizeTTy(M), Type::getInt32Ty(C), Type::getInt32Ty(C)}, /*isVarArg*/ false); FunctionCallee RegVar = M.getOrInsertFunction( IsHIP ? "__hipRegisterVar" : "__cudaRegisterVar", RegVarTy); // Create the references to the start / stop symbols defined by the linker. auto *EntriesB = new GlobalVariable(M, ArrayType::get(getEntryTy(M), 0), /*isConstant*/ true, GlobalValue::ExternalLinkage, /*Initializer*/ nullptr, IsHIP ? "__start_hip_offloading_entries" : "__start_cuda_offloading_entries"); EntriesB->setVisibility(GlobalValue::HiddenVisibility); auto *EntriesE = new GlobalVariable(M, ArrayType::get(getEntryTy(M), 0), /*isConstant*/ true, GlobalValue::ExternalLinkage, /*Initializer*/ nullptr, IsHIP ? "__stop_hip_offloading_entries" : "__stop_cuda_offloading_entries"); EntriesE->setVisibility(GlobalValue::HiddenVisibility); auto *RegGlobalsTy = FunctionType::get(Type::getVoidTy(C), Type::getInt8PtrTy(C)->getPointerTo(), /*isVarArg*/ false); auto *RegGlobalsFn = Function::Create(RegGlobalsTy, GlobalValue::InternalLinkage, IsHIP ? ".hip.globals_reg" : ".cuda.globals_reg", &M); RegGlobalsFn->setSection(".text.startup"); // Create the loop to register all the entries. IRBuilder<> Builder(BasicBlock::Create(C, "entry", RegGlobalsFn)); auto *EntryBB = BasicBlock::Create(C, "while.entry", RegGlobalsFn); auto *IfThenBB = BasicBlock::Create(C, "if.then", RegGlobalsFn); auto *IfElseBB = BasicBlock::Create(C, "if.else", RegGlobalsFn); auto *SwGlobalBB = BasicBlock::Create(C, "sw.global", RegGlobalsFn); auto *SwManagedBB = BasicBlock::Create(C, "sw.managed", RegGlobalsFn); auto *SwSurfaceBB = BasicBlock::Create(C, "sw.surface", RegGlobalsFn); auto *SwTextureBB = BasicBlock::Create(C, "sw.texture", RegGlobalsFn); auto *IfEndBB = BasicBlock::Create(C, "if.end", RegGlobalsFn); auto *ExitBB = BasicBlock::Create(C, "while.end", RegGlobalsFn); auto *EntryCmp = Builder.CreateICmpNE(EntriesB, EntriesE); Builder.CreateCondBr(EntryCmp, EntryBB, ExitBB); Builder.SetInsertPoint(EntryBB); auto *Entry = Builder.CreatePHI(getEntryPtrTy(M), 2, "entry"); auto *AddrPtr = Builder.CreateInBoundsGEP(getEntryTy(M), Entry, {ConstantInt::get(getSizeTTy(M), 0), ConstantInt::get(Type::getInt32Ty(C), 0)}); auto *Addr = Builder.CreateLoad(Type::getInt8PtrTy(C), AddrPtr, "addr"); auto *NamePtr = Builder.CreateInBoundsGEP(getEntryTy(M), Entry, {ConstantInt::get(getSizeTTy(M), 0), ConstantInt::get(Type::getInt32Ty(C), 1)}); auto *Name = Builder.CreateLoad(Type::getInt8PtrTy(C), NamePtr, "name"); auto *SizePtr = Builder.CreateInBoundsGEP(getEntryTy(M), Entry, {ConstantInt::get(getSizeTTy(M), 0), ConstantInt::get(Type::getInt32Ty(C), 2)}); auto *Size = Builder.CreateLoad(getSizeTTy(M), SizePtr, "size"); auto *FlagsPtr = Builder.CreateInBoundsGEP(getEntryTy(M), Entry, {ConstantInt::get(getSizeTTy(M), 0), ConstantInt::get(Type::getInt32Ty(C), 3)}); auto *Flags = Builder.CreateLoad(Type::getInt32Ty(C), FlagsPtr, "flag"); auto *FnCond = Builder.CreateICmpEQ(Size, ConstantInt::getNullValue(getSizeTTy(M))); Builder.CreateCondBr(FnCond, IfThenBB, IfElseBB); // Create kernel registration code. Builder.SetInsertPoint(IfThenBB); Builder.CreateCall(RegFunc, {RegGlobalsFn->arg_begin(), Addr, Name, Name, ConstantInt::get(Type::getInt32Ty(C), -1), ConstantPointerNull::get(Type::getInt8PtrTy(C)), ConstantPointerNull::get(Type::getInt8PtrTy(C)), ConstantPointerNull::get(Type::getInt8PtrTy(C)), ConstantPointerNull::get(Type::getInt8PtrTy(C)), ConstantPointerNull::get(Type::getInt32PtrTy(C))}); Builder.CreateBr(IfEndBB); Builder.SetInsertPoint(IfElseBB); auto *Switch = Builder.CreateSwitch(Flags, IfEndBB); // Create global variable registration code. Builder.SetInsertPoint(SwGlobalBB); Builder.CreateCall(RegVar, {RegGlobalsFn->arg_begin(), Addr, Name, Name, ConstantInt::get(Type::getInt32Ty(C), 0), Size, ConstantInt::get(Type::getInt32Ty(C), 0), ConstantInt::get(Type::getInt32Ty(C), 0)}); Builder.CreateBr(IfEndBB); Switch->addCase(Builder.getInt32(OffloadGlobalEntry), SwGlobalBB); // Create managed variable registration code. Builder.SetInsertPoint(SwManagedBB); Builder.CreateBr(IfEndBB); Switch->addCase(Builder.getInt32(OffloadGlobalManagedEntry), SwManagedBB); // Create surface variable registration code. Builder.SetInsertPoint(SwSurfaceBB); Builder.CreateBr(IfEndBB); Switch->addCase(Builder.getInt32(OffloadGlobalSurfaceEntry), SwSurfaceBB); // Create texture variable registration code. Builder.SetInsertPoint(SwTextureBB); Builder.CreateBr(IfEndBB); Switch->addCase(Builder.getInt32(OffloadGlobalTextureEntry), SwTextureBB); Builder.SetInsertPoint(IfEndBB); auto *NewEntry = Builder.CreateInBoundsGEP( getEntryTy(M), Entry, ConstantInt::get(getSizeTTy(M), 1)); auto *Cmp = Builder.CreateICmpEQ( NewEntry, ConstantExpr::getInBoundsGetElementPtr( ArrayType::get(getEntryTy(M), 0), EntriesE, ArrayRef({ConstantInt::get(getSizeTTy(M), 0), ConstantInt::get(getSizeTTy(M), 0)}))); Entry->addIncoming( ConstantExpr::getInBoundsGetElementPtr( ArrayType::get(getEntryTy(M), 0), EntriesB, ArrayRef({ConstantInt::get(getSizeTTy(M), 0), ConstantInt::get(getSizeTTy(M), 0)})), &RegGlobalsFn->getEntryBlock()); Entry->addIncoming(NewEntry, IfEndBB); Builder.CreateCondBr(Cmp, ExitBB, EntryBB); Builder.SetInsertPoint(ExitBB); Builder.CreateRetVoid(); return RegGlobalsFn; } // Create the constructor and destructor to register the fatbinary with the CUDA // runtime. void createRegisterFatbinFunction(Module &M, GlobalVariable *FatbinDesc, bool IsHIP) { LLVMContext &C = M.getContext(); auto *CtorFuncTy = FunctionType::get(Type::getVoidTy(C), /*isVarArg*/ false); auto *CtorFunc = Function::Create(CtorFuncTy, GlobalValue::InternalLinkage, IsHIP ? ".hip.fatbin_reg" : ".cuda.fatbin_reg", &M); CtorFunc->setSection(".text.startup"); auto *DtorFuncTy = FunctionType::get(Type::getVoidTy(C), /*isVarArg*/ false); auto *DtorFunc = Function::Create(DtorFuncTy, GlobalValue::InternalLinkage, IsHIP ? ".hip.fatbin_unreg" : ".cuda.fatbin_unreg", &M); DtorFunc->setSection(".text.startup"); // Get the __cudaRegisterFatBinary function declaration. auto *RegFatTy = FunctionType::get(Type::getInt8PtrTy(C)->getPointerTo(), Type::getInt8PtrTy(C), /*isVarArg*/ false); FunctionCallee RegFatbin = M.getOrInsertFunction( IsHIP ? "__hipRegisterFatBinary" : "__cudaRegisterFatBinary", RegFatTy); // Get the __cudaRegisterFatBinaryEnd function declaration. auto *RegFatEndTy = FunctionType::get(Type::getVoidTy(C), Type::getInt8PtrTy(C)->getPointerTo(), /*isVarArg*/ false); FunctionCallee RegFatbinEnd = M.getOrInsertFunction("__cudaRegisterFatBinaryEnd", RegFatEndTy); // Get the __cudaUnregisterFatBinary function declaration. auto *UnregFatTy = FunctionType::get(Type::getVoidTy(C), Type::getInt8PtrTy(C)->getPointerTo(), /*isVarArg*/ false); FunctionCallee UnregFatbin = M.getOrInsertFunction( IsHIP ? "__hipUnregisterFatBinary" : "__cudaUnregisterFatBinary", UnregFatTy); auto *AtExitTy = FunctionType::get(Type::getInt32Ty(C), DtorFuncTy->getPointerTo(), /*isVarArg*/ false); FunctionCallee AtExit = M.getOrInsertFunction("atexit", AtExitTy); auto *BinaryHandleGlobal = new llvm::GlobalVariable( M, Type::getInt8PtrTy(C)->getPointerTo(), false, llvm::GlobalValue::InternalLinkage, llvm::ConstantPointerNull::get(Type::getInt8PtrTy(C)->getPointerTo()), IsHIP ? ".hip.binary_handle" : ".cuda.binary_handle"); // Create the constructor to register this image with the runtime. IRBuilder<> CtorBuilder(BasicBlock::Create(C, "entry", CtorFunc)); CallInst *Handle = CtorBuilder.CreateCall( RegFatbin, ConstantExpr::getPointerBitCastOrAddrSpaceCast( FatbinDesc, Type::getInt8PtrTy(C))); CtorBuilder.CreateAlignedStore( Handle, BinaryHandleGlobal, Align(M.getDataLayout().getPointerTypeSize(Type::getInt8PtrTy(C)))); CtorBuilder.CreateCall(createRegisterGlobalsFunction(M, IsHIP), Handle); if (!IsHIP) CtorBuilder.CreateCall(RegFatbinEnd, Handle); CtorBuilder.CreateCall(AtExit, DtorFunc); CtorBuilder.CreateRetVoid(); // Create the destructor to unregister the image with the runtime. We cannot // use a standard global destructor after CUDA 9.2 so this must be called by // `atexit()` intead. IRBuilder<> DtorBuilder(BasicBlock::Create(C, "entry", DtorFunc)); LoadInst *BinaryHandle = DtorBuilder.CreateAlignedLoad( Type::getInt8PtrTy(C)->getPointerTo(), BinaryHandleGlobal, Align(M.getDataLayout().getPointerTypeSize(Type::getInt8PtrTy(C)))); DtorBuilder.CreateCall(UnregFatbin, BinaryHandle); DtorBuilder.CreateRetVoid(); // Add this function to constructors. appendToGlobalCtors(M, CtorFunc, /*Priority*/ 1); } } // namespace Error wrapOpenMPBinaries(Module &M, ArrayRef> Images) { GlobalVariable *Desc = createBinDesc(M, Images); if (!Desc) return createStringError(inconvertibleErrorCode(), "No binary descriptors created."); createRegisterFunction(M, Desc); createUnregisterFunction(M, Desc); return Error::success(); } Error wrapCudaBinary(Module &M, ArrayRef Image) { GlobalVariable *Desc = createFatbinDesc(M, Image, /* IsHIP */ false); if (!Desc) return createStringError(inconvertibleErrorCode(), "No fatinbary section created."); createRegisterFatbinFunction(M, Desc, /* IsHIP */ false); return Error::success(); } Error wrapHIPBinary(Module &M, ArrayRef Image) { GlobalVariable *Desc = createFatbinDesc(M, Image, /* IsHIP */ true); if (!Desc) return createStringError(inconvertibleErrorCode(), "No fatinbary section created."); createRegisterFatbinFunction(M, Desc, /* IsHIP */ true); return Error::success(); }