//===--- ByteCodeEmitter.cpp - Instruction emitter for the VM ---*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "ByteCodeEmitter.h" #include "Context.h" #include "Opcode.h" #include "Program.h" #include "clang/AST/DeclCXX.h" #include using namespace clang; using namespace clang::interp; using APSInt = llvm::APSInt; using Error = llvm::Error; Expected ByteCodeEmitter::compileFunc(const FunctionDecl *FuncDecl) { // Function is not defined at all or not yet. We will // create a Function instance but not compile the body. That // will (maybe) happen later. bool HasBody = FuncDecl->hasBody(FuncDecl); // Create a handle over the emitted code. Function *Func = P.getFunction(FuncDecl); if (!Func) { // Set up argument indices. unsigned ParamOffset = 0; SmallVector ParamTypes; llvm::DenseMap ParamDescriptors; // If the return is not a primitive, a pointer to the storage where the // value is initialized in is passed as the first argument. See 'RVO' // elsewhere in the code. QualType Ty = FuncDecl->getReturnType(); bool HasRVO = false; if (!Ty->isVoidType() && !Ctx.classify(Ty)) { HasRVO = true; ParamTypes.push_back(PT_Ptr); ParamOffset += align(primSize(PT_Ptr)); } // If the function decl is a member decl, the next parameter is // the 'this' pointer. This parameter is pop()ed from the // InterpStack when calling the function. bool HasThisPointer = false; if (const auto *MD = dyn_cast(FuncDecl); MD && MD->isInstance()) { HasThisPointer = true; ParamTypes.push_back(PT_Ptr); ParamOffset += align(primSize(PT_Ptr)); } // Assign descriptors to all parameters. // Composite objects are lowered to pointers. for (const ParmVarDecl *PD : FuncDecl->parameters()) { PrimType Ty = Ctx.classify(PD->getType()).value_or(PT_Ptr); Descriptor *Desc = P.createDescriptor(PD, Ty); ParamDescriptors.insert({ParamOffset, {Ty, Desc}}); Params.insert({PD, ParamOffset}); ParamOffset += align(primSize(Ty)); ParamTypes.push_back(Ty); } Func = P.createFunction(FuncDecl, ParamOffset, std::move(ParamTypes), std::move(ParamDescriptors), HasThisPointer, HasRVO); } assert(Func); if (!HasBody) return Func; // Compile the function body. if (!FuncDecl->isConstexpr() || !visitFunc(FuncDecl)) { // Return a dummy function if compilation failed. if (BailLocation) return llvm::make_error(*BailLocation); else { Func->setIsFullyCompiled(true); return Func; } } else { // Create scopes from descriptors. llvm::SmallVector Scopes; for (auto &DS : Descriptors) { Scopes.emplace_back(std::move(DS)); } // Set the function's code. Func->setCode(NextLocalOffset, std::move(Code), std::move(SrcMap), std::move(Scopes)); Func->setIsFullyCompiled(true); return Func; } } Scope::Local ByteCodeEmitter::createLocal(Descriptor *D) { NextLocalOffset += sizeof(Block); unsigned Location = NextLocalOffset; NextLocalOffset += align(D->getAllocSize()); return {Location, D}; } void ByteCodeEmitter::emitLabel(LabelTy Label) { const size_t Target = Code.size(); LabelOffsets.insert({Label, Target}); auto It = LabelRelocs.find(Label); if (It != LabelRelocs.end()) { for (unsigned Reloc : It->second) { using namespace llvm::support; /// Rewrite the operand of all jumps to this label. void *Location = Code.data() + Reloc - align(sizeof(int32_t)); assert(aligned(Location)); const int32_t Offset = Target - static_cast(Reloc); endian::write(Location, Offset); } LabelRelocs.erase(It); } } int32_t ByteCodeEmitter::getOffset(LabelTy Label) { // Compute the PC offset which the jump is relative to. const int64_t Position = Code.size() + align(sizeof(Opcode)) + align(sizeof(int32_t)); assert(aligned(Position)); // If target is known, compute jump offset. auto It = LabelOffsets.find(Label); if (It != LabelOffsets.end()) { return It->second - Position; } // Otherwise, record relocation and return dummy offset. LabelRelocs[Label].push_back(Position); return 0ull; } bool ByteCodeEmitter::bail(const SourceLocation &Loc) { if (!BailLocation) BailLocation = Loc; return false; } /// Helper to write bytecode and bail out if 32-bit offsets become invalid. /// Pointers will be automatically marshalled as 32-bit IDs. template static void emit(Program &P, std::vector &Code, const T &Val, bool &Success) { size_t Size; if constexpr (std::is_pointer_v) Size = sizeof(uint32_t); else Size = sizeof(T); if (Code.size() + Size > std::numeric_limits::max()) { Success = false; return; } // Access must be aligned! size_t ValPos = align(Code.size()); Size = align(Size); assert(aligned(ValPos + Size)); Code.resize(ValPos + Size); if constexpr (!std::is_pointer_v) { new (Code.data() + ValPos) T(Val); } else { uint32_t ID = P.getOrCreateNativePointer(Val); new (Code.data() + ValPos) uint32_t(ID); } } template bool ByteCodeEmitter::emitOp(Opcode Op, const Tys &... Args, const SourceInfo &SI) { bool Success = true; /// The opcode is followed by arguments. The source info is /// attached to the address after the opcode. emit(P, Code, Op, Success); if (SI) SrcMap.emplace_back(Code.size(), SI); /// The initializer list forces the expression to be evaluated /// for each argument in the variadic template, in order. (void)std::initializer_list{(emit(P, Code, Args, Success), 0)...}; return Success; } bool ByteCodeEmitter::jumpTrue(const LabelTy &Label) { return emitJt(getOffset(Label), SourceInfo{}); } bool ByteCodeEmitter::jumpFalse(const LabelTy &Label) { return emitJf(getOffset(Label), SourceInfo{}); } bool ByteCodeEmitter::jump(const LabelTy &Label) { return emitJmp(getOffset(Label), SourceInfo{}); } bool ByteCodeEmitter::fallthrough(const LabelTy &Label) { emitLabel(Label); return true; } //===----------------------------------------------------------------------===// // Opcode emitters //===----------------------------------------------------------------------===// #define GET_LINK_IMPL #include "Opcodes.inc" #undef GET_LINK_IMPL