""" The axes_divider module provides helper classes to adjust the positions of multiple axes at drawing time. Divider: this is the class that is used to calculate the axes position. It divides the given rectangular area into several sub rectangles. You initialize the divider by setting the horizontal and vertical lists of sizes that the division will be based on. You then use the new_locator method, whose return value is a callable object that can be used to set the axes_locator of the axes. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import map import matplotlib.transforms as mtransforms from matplotlib.axes import SubplotBase from . import axes_size as Size class Divider(object): """ This class calculates the axes position. It divides the given rectangular area into several sub-rectangles. You initialize the divider by setting the horizontal and vertical lists of sizes (:mod:`mpl_toolkits.axes_grid.axes_size`) that the division will be based on. You then use the new_locator method to create a callable object that can be used as the axes_locator of the axes. """ def __init__(self, fig, pos, horizontal, vertical, aspect=None, anchor="C"): """ Parameters ---------- fig : Figure pos : tuple of 4 floats position of the rectangle that will be divided horizontal : list of :mod:`~mpl_toolkits.axes_grid.axes_size` sizes for horizontal division vertical : list of :mod:`~mpl_toolkits.axes_grid.axes_size` sizes for vertical division aspect : bool if True, the overall rectangular area is reduced so that the relative part of the horizontal and vertical scales have the same scale. anchor : {'C', 'SW', 'S', 'SE', 'E', 'NE', 'N', 'NW', 'W'} placement of the reduced rectangle when *aspect* is True """ self._fig = fig self._pos = pos self._horizontal = horizontal self._vertical = vertical self._anchor = anchor self._aspect = aspect self._xrefindex = 0 self._yrefindex = 0 self._locator = None def get_horizontal_sizes(self, renderer): return [s.get_size(renderer) for s in self.get_horizontal()] def get_vertical_sizes(self, renderer): return [s.get_size(renderer) for s in self.get_vertical()] def get_vsize_hsize(self): from .axes_size import AddList vsize = AddList(self.get_vertical()) hsize = AddList(self.get_horizontal()) return vsize, hsize @staticmethod def _calc_k(l, total_size): rs_sum, as_sum = 0., 0. for _rs, _as in l: rs_sum += _rs as_sum += _as if rs_sum != 0.: k = (total_size - as_sum) / rs_sum return k else: return 0. @staticmethod def _calc_offsets(l, k): offsets = [0.] #for s in l: for _rs, _as in l: #_rs, _as = s.get_size(renderer) offsets.append(offsets[-1] + _rs*k + _as) return offsets def set_position(self, pos): """ set the position of the rectangle. Parameters ---------- pos : tuple of 4 floats position of the rectangle that will be divided """ self._pos = pos def get_position(self): "return the position of the rectangle." return self._pos def set_anchor(self, anchor): """ Parameters ---------- anchor : {'C', 'SW', 'S', 'SE', 'E', 'NE', 'N', 'NW', 'W'} anchor position ===== ============ value description ===== ============ 'C' Center 'SW' bottom left 'S' bottom 'SE' bottom right 'E' right 'NE' top right 'N' top 'NW' top left 'W' left ===== ============ """ if anchor in mtransforms.Bbox.coefs or len(anchor) == 2: self._anchor = anchor else: raise ValueError('argument must be among %s' % ', '.join(mtransforms.BBox.coefs)) def get_anchor(self): "return the anchor" return self._anchor def set_horizontal(self, h): """ Parameters ---------- h : list of :mod:`~mpl_toolkits.axes_grid.axes_size` sizes for horizontal division """ self._horizontal = h def get_horizontal(self): "return horizontal sizes" return self._horizontal def set_vertical(self, v): """ Parameters ---------- v : list of :mod:`~mpl_toolkits.axes_grid.axes_size` sizes for vertical division """ self._vertical = v def get_vertical(self): "return vertical sizes" return self._vertical def set_aspect(self, aspect=False): """ Parameters ---------- aspect : bool """ self._aspect = aspect def get_aspect(self): "return aspect" return self._aspect def set_locator(self, _locator): self._locator = _locator def get_locator(self): return self._locator def get_position_runtime(self, ax, renderer): if self._locator is None: return self.get_position() else: return self._locator(ax, renderer).bounds def locate(self, nx, ny, nx1=None, ny1=None, axes=None, renderer=None): """ Parameters ---------- nx, nx1 : int Integers specifying the column-position of the cell. When *nx1* is None, a single *nx*-th column is specified. Otherwise location of columns spanning between *nx* to *nx1* (but excluding *nx1*-th column) is specified. ny, ny1 : int Same as *nx* and *nx1*, but for row positions. axes renderer """ figW, figH = self._fig.get_size_inches() x, y, w, h = self.get_position_runtime(axes, renderer) hsizes = self.get_horizontal_sizes(renderer) vsizes = self.get_vertical_sizes(renderer) k_h = self._calc_k(hsizes, figW*w) k_v = self._calc_k(vsizes, figH*h) if self.get_aspect(): k = min(k_h, k_v) ox = self._calc_offsets(hsizes, k) oy = self._calc_offsets(vsizes, k) ww = (ox[-1] - ox[0])/figW hh = (oy[-1] - oy[0])/figH pb = mtransforms.Bbox.from_bounds(x, y, w, h) pb1 = mtransforms.Bbox.from_bounds(x, y, ww, hh) pb1_anchored = pb1.anchored(self.get_anchor(), pb) x0, y0 = pb1_anchored.x0, pb1_anchored.y0 else: ox = self._calc_offsets(hsizes, k_h) oy = self._calc_offsets(vsizes, k_v) x0, y0 = x, y if nx1 is None: nx1 = nx+1 if ny1 is None: ny1 = ny+1 x1, w1 = x0 + ox[nx]/figW, (ox[nx1] - ox[nx])/figW y1, h1 = y0 + oy[ny]/figH, (oy[ny1] - oy[ny])/figH return mtransforms.Bbox.from_bounds(x1, y1, w1, h1) def new_locator(self, nx, ny, nx1=None, ny1=None): """ Returns a new locator (:class:`mpl_toolkits.axes_grid.axes_divider.AxesLocator`) for specified cell. Parameters ---------- nx, nx1 : int Integers specifying the column-position of the cell. When *nx1* is None, a single *nx*-th column is specified. Otherwise location of columns spanning between *nx* to *nx1* (but excluding *nx1*-th column) is specified. ny, ny1 : int Same as *nx* and *nx1*, but for row positions. """ return AxesLocator(self, nx, ny, nx1, ny1) def append_size(self, position, size): if position == "left": self._horizontal.insert(0, size) self._xrefindex += 1 elif position == "right": self._horizontal.append(size) elif position == "bottom": self._vertical.insert(0, size) self._yrefindex += 1 elif position == "top": self._vertical.append(size) else: raise ValueError("the position must be one of left," + " right, bottom, or top") def add_auto_adjustable_area(self, use_axes, pad=0.1, adjust_dirs=None, ): if adjust_dirs is None: adjust_dirs = ["left", "right", "bottom", "top"] from .axes_size import Padded, SizeFromFunc, GetExtentHelper for d in adjust_dirs: helper = GetExtentHelper(use_axes, d) size = SizeFromFunc(helper) padded_size = Padded(size, pad) # pad in inch self.append_size(d, padded_size) class AxesLocator(object): """ A simple callable object, initialized with AxesDivider class, returns the position and size of the given cell. """ def __init__(self, axes_divider, nx, ny, nx1=None, ny1=None): """ Parameters ---------- axes_divider : AxesDivider nx, nx1 : int Integers specifying the column-position of the cell. When *nx1* is None, a single *nx*-th column is specified. Otherwise location of columns spanning between *nx* to *nx1* (but excluding *nx1*-th column) is specified. ny, ny1 : int Same as *nx* and *nx1*, but for row positions. """ self._axes_divider = axes_divider _xrefindex = axes_divider._xrefindex _yrefindex = axes_divider._yrefindex self._nx, self._ny = nx - _xrefindex, ny - _yrefindex if nx1 is None: nx1 = nx+1 if ny1 is None: ny1 = ny+1 self._nx1 = nx1 - _xrefindex self._ny1 = ny1 - _yrefindex def __call__(self, axes, renderer): _xrefindex = self._axes_divider._xrefindex _yrefindex = self._axes_divider._yrefindex return self._axes_divider.locate(self._nx + _xrefindex, self._ny + _yrefindex, self._nx1 + _xrefindex, self._ny1 + _yrefindex, axes, renderer) def get_subplotspec(self): if hasattr(self._axes_divider, "get_subplotspec"): return self._axes_divider.get_subplotspec() else: return None from matplotlib.gridspec import SubplotSpec, GridSpec class SubplotDivider(Divider): """ The Divider class whose rectangle area is specified as a subplot geometry. """ def __init__(self, fig, *args, **kwargs): """ Parameters ---------- fig : :class:`matplotlib.figure.Figure` args : tuple (*numRows*, *numCols*, *plotNum*) The array of subplots in the figure has dimensions *numRows*, *numCols*, and *plotNum* is the number of the subplot being created. *plotNum* starts at 1 in the upper left corner and increases to the right. If *numRows* <= *numCols* <= *plotNum* < 10, *args* can be the decimal integer *numRows* * 100 + *numCols* * 10 + *plotNum*. """ self.figure = fig if len(args) == 1: if isinstance(args[0], SubplotSpec): self._subplotspec = args[0] else: try: s = str(int(args[0])) rows, cols, num = map(int, s) except ValueError: raise ValueError( 'Single argument to subplot must be a 3-digit integer') self._subplotspec = GridSpec(rows, cols)[num-1] # num - 1 for converting from MATLAB to python indexing elif len(args) == 3: rows, cols, num = args rows = int(rows) cols = int(cols) if isinstance(num, tuple) and len(num) == 2: num = [int(n) for n in num] self._subplotspec = GridSpec(rows, cols)[num[0]-1:num[1]] else: self._subplotspec = GridSpec(rows, cols)[int(num)-1] # num - 1 for converting from MATLAB to python indexing else: raise ValueError('Illegal argument(s) to subplot: %s' % (args,)) # total = rows*cols # num -= 1 # convert from matlab to python indexing # # i.e., num in range(0,total) # if num >= total: # raise ValueError( 'Subplot number exceeds total subplots') # self._rows = rows # self._cols = cols # self._num = num # self.update_params() # sets self.fixbox self.update_params() pos = self.figbox.bounds horizontal = kwargs.pop("horizontal", []) vertical = kwargs.pop("vertical", []) aspect = kwargs.pop("aspect", None) anchor = kwargs.pop("anchor", "C") if kwargs: raise Exception("") Divider.__init__(self, fig, pos, horizontal, vertical, aspect=aspect, anchor=anchor) def get_position(self): "return the bounds of the subplot box" self.update_params() # update self.figbox return self.figbox.bounds # def update_params(self): # 'update the subplot position from fig.subplotpars' # rows = self._rows # cols = self._cols # num = self._num # pars = self.figure.subplotpars # left = pars.left # right = pars.right # bottom = pars.bottom # top = pars.top # wspace = pars.wspace # hspace = pars.hspace # totWidth = right-left # totHeight = top-bottom # figH = totHeight/(rows + hspace*(rows-1)) # sepH = hspace*figH # figW = totWidth/(cols + wspace*(cols-1)) # sepW = wspace*figW # rowNum, colNum = divmod(num, cols) # figBottom = top - (rowNum+1)*figH - rowNum*sepH # figLeft = left + colNum*(figW + sepW) # self.figbox = mtransforms.Bbox.from_bounds(figLeft, figBottom, # figW, figH) def update_params(self): 'update the subplot position from fig.subplotpars' self.figbox = self.get_subplotspec().get_position(self.figure) def get_geometry(self): 'get the subplot geometry, e.g., 2,2,3' rows, cols, num1, num2 = self.get_subplotspec().get_geometry() return rows, cols, num1+1 # for compatibility # COVERAGE NOTE: Never used internally or from examples def change_geometry(self, numrows, numcols, num): 'change subplot geometry, e.g., from 1,1,1 to 2,2,3' self._subplotspec = GridSpec(numrows, numcols)[num-1] self.update_params() self.set_position(self.figbox) def get_subplotspec(self): 'get the SubplotSpec instance' return self._subplotspec def set_subplotspec(self, subplotspec): 'set the SubplotSpec instance' self._subplotspec = subplotspec class AxesDivider(Divider): """ Divider based on the pre-existing axes. """ def __init__(self, axes, xref=None, yref=None): """ Parameters ---------- axes : :class:`~matplotlib.axes.Axes` xref yref """ self._axes = axes if xref is None: self._xref = Size.AxesX(axes) else: self._xref = xref if yref is None: self._yref = Size.AxesY(axes) else: self._yref = yref Divider.__init__(self, fig=axes.get_figure(), pos=None, horizontal=[self._xref], vertical=[self._yref], aspect=None, anchor="C") def _get_new_axes(self, **kwargs): axes = self._axes axes_class = kwargs.pop("axes_class", None) if axes_class is None: if isinstance(axes, SubplotBase): axes_class = axes._axes_class else: axes_class = type(axes) ax = axes_class(axes.get_figure(), axes.get_position(original=True), **kwargs) return ax def new_horizontal(self, size, pad=None, pack_start=False, **kwargs): """ Add a new axes on the right (or left) side of the main axes. Parameters ---------- size : :mod:`~mpl_toolkits.axes_grid.axes_size` or float or string A width of the axes. If float or string is given, *from_any* function is used to create the size, with *ref_size* set to AxesX instance of the current axes. pad : :mod:`~mpl_toolkits.axes_grid.axes_size` or float or string Pad between the axes. It takes same argument as *size*. pack_start : bool If False, the new axes is appended at the end of the list, i.e., it became the right-most axes. If True, it is inserted at the start of the list, and becomes the left-most axes. kwargs All extra keywords arguments are passed to the created axes. If *axes_class* is given, the new axes will be created as an instance of the given class. Otherwise, the same class of the main axes will be used. """ if pad: if not isinstance(pad, Size._Base): pad = Size.from_any(pad, fraction_ref=self._xref) if pack_start: self._horizontal.insert(0, pad) self._xrefindex += 1 else: self._horizontal.append(pad) if not isinstance(size, Size._Base): size = Size.from_any(size, fraction_ref=self._xref) if pack_start: self._horizontal.insert(0, size) self._xrefindex += 1 locator = self.new_locator(nx=0, ny=self._yrefindex) else: self._horizontal.append(size) locator = self.new_locator(nx=len(self._horizontal)-1, ny=self._yrefindex) ax = self._get_new_axes(**kwargs) ax.set_axes_locator(locator) return ax def new_vertical(self, size, pad=None, pack_start=False, **kwargs): """ Add a new axes on the top (or bottom) side of the main axes. Parameters ---------- size : :mod:`~mpl_toolkits.axes_grid.axes_size` or float or string A height of the axes. If float or string is given, *from_any* function is used to create the size, with *ref_size* set to AxesX instance of the current axes. pad : :mod:`~mpl_toolkits.axes_grid.axes_size` or float or string Pad between the axes. It takes same argument as *size*. pack_start : bool If False, the new axes is appended at the end of the list, i.e., it became the right-most axes. If True, it is inserted at the start of the list, and becomes the left-most axes. kwargs All extra keywords arguments are passed to the created axes. If *axes_class* is given, the new axes will be created as an instance of the given class. Otherwise, the same class of the main axes will be used. """ if pad: if not isinstance(pad, Size._Base): pad = Size.from_any(pad, fraction_ref=self._yref) if pack_start: self._vertical.insert(0, pad) self._yrefindex += 1 else: self._vertical.append(pad) if not isinstance(size, Size._Base): size = Size.from_any(size, fraction_ref=self._yref) if pack_start: self._vertical.insert(0, size) self._yrefindex += 1 locator = self.new_locator(nx=self._xrefindex, ny=0) else: self._vertical.append(size) locator = self.new_locator(nx=self._xrefindex, ny=len(self._vertical)-1) ax = self._get_new_axes(**kwargs) ax.set_axes_locator(locator) return ax def append_axes(self, position, size, pad=None, add_to_figure=True, **kwargs): """ create an axes at the given *position* with the same height (or width) of the main axes. *position* ["left"|"right"|"bottom"|"top"] *size* and *pad* should be axes_grid.axes_size compatible. """ if position == "left": ax = self.new_horizontal(size, pad, pack_start=True, **kwargs) elif position == "right": ax = self.new_horizontal(size, pad, pack_start=False, **kwargs) elif position == "bottom": ax = self.new_vertical(size, pad, pack_start=True, **kwargs) elif position == "top": ax = self.new_vertical(size, pad, pack_start=False, **kwargs) else: raise ValueError("the position must be one of left," + " right, bottom, or top") if add_to_figure: self._fig.add_axes(ax) return ax def get_aspect(self): if self._aspect is None: aspect = self._axes.get_aspect() if aspect == "auto": return False else: return True else: return self._aspect def get_position(self): if self._pos is None: bbox = self._axes.get_position(original=True) return bbox.bounds else: return self._pos def get_anchor(self): if self._anchor is None: return self._axes.get_anchor() else: return self._anchor def get_subplotspec(self): if hasattr(self._axes, "get_subplotspec"): return self._axes.get_subplotspec() else: return None class HBoxDivider(SubplotDivider): def __init__(self, fig, *args, **kwargs): SubplotDivider.__init__(self, fig, *args, **kwargs) @staticmethod def _determine_karray(equivalent_sizes, appended_sizes, max_equivalent_size, total_appended_size): n = len(equivalent_sizes) import numpy as np A = np.mat(np.zeros((n+1, n+1), dtype="d")) B = np.zeros((n+1), dtype="d") # AxK = B # populated A for i, (r, a) in enumerate(equivalent_sizes): A[i, i] = r A[i, -1] = -1 B[i] = -a A[-1, :-1] = [r for r, a in appended_sizes] B[-1] = total_appended_size - sum([a for rs, a in appended_sizes]) karray_H = (A.I*np.mat(B).T).A1 karray = karray_H[:-1] H = karray_H[-1] if H > max_equivalent_size: karray = ((max_equivalent_size - np.array([a for r, a in equivalent_sizes])) / np.array([r for r, a in equivalent_sizes])) return karray @staticmethod def _calc_offsets(appended_sizes, karray): offsets = [0.] #for s in l: for (r, a), k in zip(appended_sizes, karray): offsets.append(offsets[-1] + r*k + a) return offsets def new_locator(self, nx, nx1=None): """ returns a new locator (:class:`mpl_toolkits.axes_grid.axes_divider.AxesLocator`) for specified cell. Parameters ---------- nx, nx1 : int Integers specifying the column-position of the cell. When *nx1* is None, a single *nx*-th column is specified. Otherwise location of columns spanning between *nx* to *nx1* (but excluding *nx1*-th column) is specified. ny, ny1 : int Same as *nx* and *nx1*, but for row positions. """ return AxesLocator(self, nx, 0, nx1, None) def _locate(self, x, y, w, h, y_equivalent_sizes, x_appended_sizes, figW, figH): """ Parameters ---------- x y w h y_equivalent_sizes x_appended_sizes figW figH """ equivalent_sizes = y_equivalent_sizes appended_sizes = x_appended_sizes max_equivalent_size = figH*h total_appended_size = figW*w karray = self._determine_karray(equivalent_sizes, appended_sizes, max_equivalent_size, total_appended_size) ox = self._calc_offsets(appended_sizes, karray) ww = (ox[-1] - ox[0])/figW ref_h = equivalent_sizes[0] hh = (karray[0]*ref_h[0] + ref_h[1])/figH pb = mtransforms.Bbox.from_bounds(x, y, w, h) pb1 = mtransforms.Bbox.from_bounds(x, y, ww, hh) pb1_anchored = pb1.anchored(self.get_anchor(), pb) x0, y0 = pb1_anchored.x0, pb1_anchored.y0 return x0, y0, ox, hh def locate(self, nx, ny, nx1=None, ny1=None, axes=None, renderer=None): """ Parameters ---------- axes_divider : AxesDivider nx, nx1 : int Integers specifying the column-position of the cell. When *nx1* is None, a single *nx*-th column is specified. Otherwise location of columns spanning between *nx* to *nx1* (but excluding *nx1*-th column) is specified. ny, ny1 : int Same as *nx* and *nx1*, but for row positions. axes renderer """ figW, figH = self._fig.get_size_inches() x, y, w, h = self.get_position_runtime(axes, renderer) y_equivalent_sizes = self.get_vertical_sizes(renderer) x_appended_sizes = self.get_horizontal_sizes(renderer) x0, y0, ox, hh = self._locate(x, y, w, h, y_equivalent_sizes, x_appended_sizes, figW, figH) if nx1 is None: nx1 = nx+1 x1, w1 = x0 + ox[nx]/figW, (ox[nx1] - ox[nx])/figW y1, h1 = y0, hh return mtransforms.Bbox.from_bounds(x1, y1, w1, h1) class VBoxDivider(HBoxDivider): """ The Divider class whose rectangle area is specified as a subplot geometry. """ def new_locator(self, ny, ny1=None): """ returns a new locator (:class:`mpl_toolkits.axes_grid.axes_divider.AxesLocator`) for specified cell. Parameters ---------- ny, ny1 : int Integers specifying the row-position of the cell. When *ny1* is None, a single *ny*-th row is specified. Otherwise location of rows spanning between *ny* to *ny1* (but excluding *ny1*-th row) is specified. """ return AxesLocator(self, 0, ny, None, ny1) def locate(self, nx, ny, nx1=None, ny1=None, axes=None, renderer=None): """ Parameters ---------- axes_divider : AxesDivider nx, nx1 : int Integers specifying the column-position of the cell. When *nx1* is None, a single *nx*-th column is specified. Otherwise location of columns spanning between *nx* to *nx1* (but excluding *nx1*-th column) is specified. ny, ny1 : int Same as *nx* and *nx1*, but for row positions. axes renderer """ figW, figH = self._fig.get_size_inches() x, y, w, h = self.get_position_runtime(axes, renderer) x_equivalent_sizes = self.get_horizontal_sizes(renderer) y_appended_sizes = self.get_vertical_sizes(renderer) y0, x0, oy, ww = self._locate(y, x, h, w, x_equivalent_sizes, y_appended_sizes, figH, figW) if ny1 is None: ny1 = ny+1 x1, w1 = x0, ww y1, h1 = y0 + oy[ny]/figH, (oy[ny1] - oy[ny])/figH return mtransforms.Bbox.from_bounds(x1, y1, w1, h1) class LocatableAxesBase(object): def __init__(self, *kl, **kw): self._axes_class.__init__(self, *kl, **kw) self._locator = None self._locator_renderer = None def set_axes_locator(self, locator): self._locator = locator def get_axes_locator(self): return self._locator def apply_aspect(self, position=None): if self.get_axes_locator() is None: self._axes_class.apply_aspect(self, position) else: pos = self.get_axes_locator()(self, self._locator_renderer) self._axes_class.apply_aspect(self, position=pos) def draw(self, renderer=None, inframe=False): self._locator_renderer = renderer self._axes_class.draw(self, renderer, inframe) def _make_twin_axes(self, *kl, **kwargs): """ Need to overload so that twinx/twiny will work with these axes. """ if 'sharex' in kwargs and 'sharey' in kwargs: raise ValueError("Twinned Axes may share only one axis.") ax2 = type(self)(self.figure, self.get_position(True), *kl, **kwargs) ax2.set_axes_locator(self.get_axes_locator()) self.figure.add_axes(ax2) self.set_adjustable('datalim') ax2.set_adjustable('datalim') self._twinned_axes.join(self, ax2) return ax2 _locatableaxes_classes = {} def locatable_axes_factory(axes_class): new_class = _locatableaxes_classes.get(axes_class) if new_class is None: new_class = type(str("Locatable%s" % (axes_class.__name__)), (LocatableAxesBase, axes_class), {'_axes_class': axes_class}) _locatableaxes_classes[axes_class] = new_class return new_class #if hasattr(maxes.Axes, "get_axes_locator"): # LocatableAxes = maxes.Axes #else: def make_axes_locatable(axes): if not hasattr(axes, "set_axes_locator"): new_class = locatable_axes_factory(type(axes)) axes.__class__ = new_class divider = AxesDivider(axes) locator = divider.new_locator(nx=0, ny=0) axes.set_axes_locator(locator) return divider def make_axes_area_auto_adjustable(ax, use_axes=None, pad=0.1, adjust_dirs=None): if adjust_dirs is None: adjust_dirs = ["left", "right", "bottom", "top"] divider = make_axes_locatable(ax) if use_axes is None: use_axes = ax divider.add_auto_adjustable_area(use_axes=use_axes, pad=pad, adjust_dirs=adjust_dirs) #from matplotlib.axes import Axes from .mpl_axes import Axes LocatableAxes = locatable_axes_factory(Axes)