//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the visit functions for load, store and alloca. // //===----------------------------------------------------------------------===// #include "InstCombineInternal.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/Loads.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Transforms/InstCombine/InstCombiner.h" #include "llvm/Transforms/Utils/Local.h" using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "instcombine" STATISTIC(NumDeadStore, "Number of dead stores eliminated"); STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); static cl::opt MaxCopiedFromConstantUsers( "instcombine-max-copied-from-constant-users", cl::init(128), cl::desc("Maximum users to visit in copy from constant transform"), cl::Hidden); /// isOnlyCopiedFromConstantMemory - Recursively walk the uses of a (derived) /// pointer to an alloca. Ignore any reads of the pointer, return false if we /// see any stores or other unknown uses. If we see pointer arithmetic, keep /// track of whether it moves the pointer (with IsOffset) but otherwise traverse /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to /// the alloca, and if the source pointer is a pointer to a constant memory /// location, we can optimize this. static bool isOnlyCopiedFromConstantMemory(AAResults *AA, AllocaInst *V, MemTransferInst *&TheCopy, SmallVectorImpl &ToDelete) { // We track lifetime intrinsics as we encounter them. If we decide to go // ahead and replace the value with the memory location, this lets the caller // quickly eliminate the markers. using ValueAndIsOffset = PointerIntPair; SmallVector Worklist; SmallPtrSet Visited; Worklist.emplace_back(V, false); while (!Worklist.empty()) { ValueAndIsOffset Elem = Worklist.pop_back_val(); if (!Visited.insert(Elem).second) continue; if (Visited.size() > MaxCopiedFromConstantUsers) return false; const auto [Value, IsOffset] = Elem; for (auto &U : Value->uses()) { auto *I = cast(U.getUser()); if (auto *LI = dyn_cast(I)) { // Ignore non-volatile loads, they are always ok. if (!LI->isSimple()) return false; continue; } if (isa(I)) { // We set IsOffset=true, to forbid the memcpy from occurring after the // phi: If one of the phi operands is not based on the alloca, we // would incorrectly omit a write. Worklist.emplace_back(I, true); continue; } if (isa(I)) { // If uses of the bitcast are ok, we are ok. Worklist.emplace_back(I, IsOffset); continue; } if (auto *GEP = dyn_cast(I)) { // If the GEP has all zero indices, it doesn't offset the pointer. If it // doesn't, it does. Worklist.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); continue; } if (auto *Call = dyn_cast(I)) { // If this is the function being called then we treat it like a load and // ignore it. if (Call->isCallee(&U)) continue; unsigned DataOpNo = Call->getDataOperandNo(&U); bool IsArgOperand = Call->isArgOperand(&U); // Inalloca arguments are clobbered by the call. if (IsArgOperand && Call->isInAllocaArgument(DataOpNo)) return false; // If this call site doesn't modify the memory, then we know it is just // a load (but one that potentially returns the value itself), so we can // ignore it if we know that the value isn't captured. bool NoCapture = Call->doesNotCapture(DataOpNo); if ((Call->onlyReadsMemory() && (Call->use_empty() || NoCapture)) || (Call->onlyReadsMemory(DataOpNo) && NoCapture)) continue; // If this is being passed as a byval argument, the caller is making a // copy, so it is only a read of the alloca. if (IsArgOperand && Call->isByValArgument(DataOpNo)) continue; } // Lifetime intrinsics can be handled by the caller. if (I->isLifetimeStartOrEnd()) { assert(I->use_empty() && "Lifetime markers have no result to use!"); ToDelete.push_back(I); continue; } // If this is isn't our memcpy/memmove, reject it as something we can't // handle. MemTransferInst *MI = dyn_cast(I); if (!MI) return false; // If the transfer is volatile, reject it. if (MI->isVolatile()) return false; // If the transfer is using the alloca as a source of the transfer, then // ignore it since it is a load (unless the transfer is volatile). if (U.getOperandNo() == 1) continue; // If we already have seen a copy, reject the second one. if (TheCopy) return false; // If the pointer has been offset from the start of the alloca, we can't // safely handle this. if (IsOffset) return false; // If the memintrinsic isn't using the alloca as the dest, reject it. if (U.getOperandNo() != 0) return false; // If the source of the memcpy/move is not constant, reject it. if (isModSet(AA->getModRefInfoMask(MI->getSource()))) return false; // Otherwise, the transform is safe. Remember the copy instruction. TheCopy = MI; } } return true; } /// isOnlyCopiedFromConstantMemory - Return true if the specified alloca is only /// modified by a copy from a constant memory location. If we can prove this, we /// can replace any uses of the alloca with uses of the memory location /// directly. static MemTransferInst * isOnlyCopiedFromConstantMemory(AAResults *AA, AllocaInst *AI, SmallVectorImpl &ToDelete) { MemTransferInst *TheCopy = nullptr; if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete)) return TheCopy; return nullptr; } /// Returns true if V is dereferenceable for size of alloca. static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, const DataLayout &DL) { if (AI->isArrayAllocation()) return false; uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); if (!AllocaSize) return false; return isDereferenceableAndAlignedPointer(V, AI->getAlign(), APInt(64, AllocaSize), DL); } static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC, AllocaInst &AI, DominatorTree &DT) { // Check for array size of 1 (scalar allocation). if (!AI.isArrayAllocation()) { // i32 1 is the canonical array size for scalar allocations. if (AI.getArraySize()->getType()->isIntegerTy(32)) return nullptr; // Canonicalize it. return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1)); } // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 if (const ConstantInt *C = dyn_cast(AI.getArraySize())) { if (C->getValue().getActiveBits() <= 64) { Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); AllocaInst *New = IC.Builder.CreateAlloca(NewTy, AI.getAddressSpace(), nullptr, AI.getName()); New->setAlignment(AI.getAlign()); replaceAllDbgUsesWith(AI, *New, *New, DT); // Scan to the end of the allocation instructions, to skip over a block of // allocas if possible...also skip interleaved debug info // BasicBlock::iterator It(New); while (isa(*It) || isa(*It)) ++It; // Now that I is pointing to the first non-allocation-inst in the block, // insert our getelementptr instruction... // Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); Value *NullIdx = Constant::getNullValue(IdxTy); Value *Idx[2] = {NullIdx, NullIdx}; Instruction *GEP = GetElementPtrInst::CreateInBounds( NewTy, New, Idx, New->getName() + ".sub"); IC.InsertNewInstBefore(GEP, *It); // Now make everything use the getelementptr instead of the original // allocation. return IC.replaceInstUsesWith(AI, GEP); } } if (isa(AI.getArraySize())) return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); // Ensure that the alloca array size argument has type intptr_t, so that // any casting is exposed early. Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); if (AI.getArraySize()->getType() != IntPtrTy) { Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); return IC.replaceOperand(AI, 0, V); } return nullptr; } namespace { // If I and V are pointers in different address space, it is not allowed to // use replaceAllUsesWith since I and V have different types. A // non-target-specific transformation should not use addrspacecast on V since // the two address space may be disjoint depending on target. // // This class chases down uses of the old pointer until reaching the load // instructions, then replaces the old pointer in the load instructions with // the new pointer. If during the chasing it sees bitcast or GEP, it will // create new bitcast or GEP with the new pointer and use them in the load // instruction. class PointerReplacer { public: PointerReplacer(InstCombinerImpl &IC, Instruction &Root) : IC(IC), Root(Root) {} bool collectUsers(); void replacePointer(Value *V); private: bool collectUsersRecursive(Instruction &I); void replace(Instruction *I); Value *getReplacement(Value *I); bool isAvailable(Instruction *I) const { return I == &Root || Worklist.contains(I); } SmallPtrSet ValuesToRevisit; SmallSetVector Worklist; MapVector WorkMap; InstCombinerImpl &IC; Instruction &Root; }; } // end anonymous namespace bool PointerReplacer::collectUsers() { if (!collectUsersRecursive(Root)) return false; // Ensure that all outstanding (indirect) users of I // are inserted into the Worklist. Return false // otherwise. for (auto *Inst : ValuesToRevisit) if (!Worklist.contains(Inst)) return false; return true; } bool PointerReplacer::collectUsersRecursive(Instruction &I) { for (auto *U : I.users()) { auto *Inst = cast(&*U); if (auto *Load = dyn_cast(Inst)) { if (Load->isVolatile()) return false; Worklist.insert(Load); } else if (auto *PHI = dyn_cast(Inst)) { // All incoming values must be instructions for replacability if (any_of(PHI->incoming_values(), [](Value *V) { return !isa(V); })) return false; // If at least one incoming value of the PHI is not in Worklist, // store the PHI for revisiting and skip this iteration of the // loop. if (any_of(PHI->incoming_values(), [this](Value *V) { return !isAvailable(cast(V)); })) { ValuesToRevisit.insert(Inst); continue; } Worklist.insert(PHI); if (!collectUsersRecursive(*PHI)) return false; } else if (auto *SI = dyn_cast(Inst)) { if (!isa(SI->getTrueValue()) || !isa(SI->getFalseValue())) return false; if (!isAvailable(cast(SI->getTrueValue())) || !isAvailable(cast(SI->getFalseValue()))) { ValuesToRevisit.insert(Inst); continue; } Worklist.insert(SI); if (!collectUsersRecursive(*SI)) return false; } else if (isa(Inst)) { Worklist.insert(Inst); if (!collectUsersRecursive(*Inst)) return false; } else if (auto *MI = dyn_cast(Inst)) { if (MI->isVolatile()) return false; Worklist.insert(Inst); } else if (Inst->isLifetimeStartOrEnd()) { continue; } else { LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n'); return false; } } return true; } Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(V); } void PointerReplacer::replace(Instruction *I) { if (getReplacement(I)) return; if (auto *LT = dyn_cast(I)) { auto *V = getReplacement(LT->getPointerOperand()); assert(V && "Operand not replaced"); auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(), LT->getAlign(), LT->getOrdering(), LT->getSyncScopeID()); NewI->takeName(LT); copyMetadataForLoad(*NewI, *LT); IC.InsertNewInstWith(NewI, *LT); IC.replaceInstUsesWith(*LT, NewI); WorkMap[LT] = NewI; } else if (auto *PHI = dyn_cast(I)) { Type *NewTy = getReplacement(PHI->getIncomingValue(0))->getType(); auto *NewPHI = PHINode::Create(NewTy, PHI->getNumIncomingValues(), PHI->getName(), PHI); for (unsigned int I = 0; I < PHI->getNumIncomingValues(); ++I) NewPHI->addIncoming(getReplacement(PHI->getIncomingValue(I)), PHI->getIncomingBlock(I)); WorkMap[PHI] = NewPHI; } else if (auto *GEP = dyn_cast(I)) { auto *V = getReplacement(GEP->getPointerOperand()); assert(V && "Operand not replaced"); SmallVector Indices; Indices.append(GEP->idx_begin(), GEP->idx_end()); auto *NewI = GetElementPtrInst::Create(GEP->getSourceElementType(), V, Indices); IC.InsertNewInstWith(NewI, *GEP); NewI->takeName(GEP); WorkMap[GEP] = NewI; } else if (auto *BC = dyn_cast(I)) { auto *V = getReplacement(BC->getOperand(0)); assert(V && "Operand not replaced"); auto *NewT = PointerType::getWithSamePointeeType( cast(BC->getType()), V->getType()->getPointerAddressSpace()); auto *NewI = new BitCastInst(V, NewT); IC.InsertNewInstWith(NewI, *BC); NewI->takeName(BC); WorkMap[BC] = NewI; } else if (auto *SI = dyn_cast(I)) { auto *NewSI = SelectInst::Create( SI->getCondition(), getReplacement(SI->getTrueValue()), getReplacement(SI->getFalseValue()), SI->getName(), nullptr, SI); IC.InsertNewInstWith(NewSI, *SI); NewSI->takeName(SI); WorkMap[SI] = NewSI; } else if (auto *MemCpy = dyn_cast(I)) { auto *SrcV = getReplacement(MemCpy->getRawSource()); // The pointer may appear in the destination of a copy, but we don't want to // replace it. if (!SrcV) { assert(getReplacement(MemCpy->getRawDest()) && "destination not in replace list"); return; } IC.Builder.SetInsertPoint(MemCpy); auto *NewI = IC.Builder.CreateMemTransferInst( MemCpy->getIntrinsicID(), MemCpy->getRawDest(), MemCpy->getDestAlign(), SrcV, MemCpy->getSourceAlign(), MemCpy->getLength(), MemCpy->isVolatile()); AAMDNodes AAMD = MemCpy->getAAMetadata(); if (AAMD) NewI->setAAMetadata(AAMD); IC.eraseInstFromFunction(*MemCpy); WorkMap[MemCpy] = NewI; } else { llvm_unreachable("should never reach here"); } } void PointerReplacer::replacePointer(Value *V) { #ifndef NDEBUG auto *PT = cast(Root.getType()); auto *NT = cast(V->getType()); assert(PT != NT && PT->hasSameElementTypeAs(NT) && "Invalid usage"); #endif WorkMap[&Root] = V; for (Instruction *Workitem : Worklist) replace(Workitem); } Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) { if (auto *I = simplifyAllocaArraySize(*this, AI, DT)) return I; if (AI.getAllocatedType()->isSized()) { // Move all alloca's of zero byte objects to the entry block and merge them // together. Note that we only do this for alloca's, because malloc should // allocate and return a unique pointer, even for a zero byte allocation. if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinValue() == 0) { // For a zero sized alloca there is no point in doing an array allocation. // This is helpful if the array size is a complicated expression not used // elsewhere. if (AI.isArrayAllocation()) return replaceOperand(AI, 0, ConstantInt::get(AI.getArraySize()->getType(), 1)); // Get the first instruction in the entry block. BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); if (FirstInst != &AI) { // If the entry block doesn't start with a zero-size alloca then move // this one to the start of the entry block. There is no problem with // dominance as the array size was forced to a constant earlier already. AllocaInst *EntryAI = dyn_cast(FirstInst); if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || DL.getTypeAllocSize(EntryAI->getAllocatedType()) .getKnownMinValue() != 0) { AI.moveBefore(FirstInst); return &AI; } // Replace this zero-sized alloca with the one at the start of the entry // block after ensuring that the address will be aligned enough for both // types. const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign()); EntryAI->setAlignment(MaxAlign); if (AI.getType() != EntryAI->getType()) return new BitCastInst(EntryAI, AI.getType()); return replaceInstUsesWith(AI, EntryAI); } } } // Check to see if this allocation is only modified by a memcpy/memmove from // a memory location whose alignment is equal to or exceeds that of the // allocation. If this is the case, we can change all users to use the // constant memory location instead. This is commonly produced by the CFE by // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' // is only subsequently read. SmallVector ToDelete; if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) { Value *TheSrc = Copy->getSource(); Align AllocaAlign = AI.getAlign(); Align SourceAlign = getOrEnforceKnownAlignment( TheSrc, AllocaAlign, DL, &AI, &AC, &DT); if (AllocaAlign <= SourceAlign && isDereferenceableForAllocaSize(TheSrc, &AI, DL) && !isa(TheSrc)) { // FIXME: Can we sink instructions without violating dominance when TheSrc // is an instruction instead of a constant or argument? LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace(); auto *DestTy = PointerType::get(AI.getAllocatedType(), SrcAddrSpace); if (AI.getAddressSpace() == SrcAddrSpace) { for (Instruction *Delete : ToDelete) eraseInstFromFunction(*Delete); Value *Cast = Builder.CreateBitCast(TheSrc, DestTy); Instruction *NewI = replaceInstUsesWith(AI, Cast); eraseInstFromFunction(*Copy); ++NumGlobalCopies; return NewI; } PointerReplacer PtrReplacer(*this, AI); if (PtrReplacer.collectUsers()) { for (Instruction *Delete : ToDelete) eraseInstFromFunction(*Delete); Value *Cast = Builder.CreateBitCast(TheSrc, DestTy); PtrReplacer.replacePointer(Cast); ++NumGlobalCopies; } } } // At last, use the generic allocation site handler to aggressively remove // unused allocas. return visitAllocSite(AI); } // Are we allowed to form a atomic load or store of this type? static bool isSupportedAtomicType(Type *Ty) { return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy(); } /// Helper to combine a load to a new type. /// /// This just does the work of combining a load to a new type. It handles /// metadata, etc., and returns the new instruction. The \c NewTy should be the /// loaded *value* type. This will convert it to a pointer, cast the operand to /// that pointer type, load it, etc. /// /// Note that this will create all of the instructions with whatever insert /// point the \c InstCombinerImpl currently is using. LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy, const Twine &Suffix) { assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && "can't fold an atomic load to requested type"); Value *Ptr = LI.getPointerOperand(); unsigned AS = LI.getPointerAddressSpace(); Type *NewPtrTy = NewTy->getPointerTo(AS); Value *NewPtr = nullptr; if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) && NewPtr->getType() == NewPtrTy)) NewPtr = Builder.CreateBitCast(Ptr, NewPtrTy); LoadInst *NewLoad = Builder.CreateAlignedLoad( NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix); NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); copyMetadataForLoad(*NewLoad, LI); return NewLoad; } /// Combine a store to a new type. /// /// Returns the newly created store instruction. static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI, Value *V) { assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && "can't fold an atomic store of requested type"); Value *Ptr = SI.getPointerOperand(); unsigned AS = SI.getPointerAddressSpace(); SmallVector, 8> MD; SI.getAllMetadata(MD); StoreInst *NewStore = IC.Builder.CreateAlignedStore( V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), SI.getAlign(), SI.isVolatile()); NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); for (const auto &MDPair : MD) { unsigned ID = MDPair.first; MDNode *N = MDPair.second; // Note, essentially every kind of metadata should be preserved here! This // routine is supposed to clone a store instruction changing *only its // type*. The only metadata it makes sense to drop is metadata which is // invalidated when the pointer type changes. This should essentially // never be the case in LLVM, but we explicitly switch over only known // metadata to be conservatively correct. If you are adding metadata to // LLVM which pertains to stores, you almost certainly want to add it // here. switch (ID) { case LLVMContext::MD_dbg: case LLVMContext::MD_DIAssignID: case LLVMContext::MD_tbaa: case LLVMContext::MD_prof: case LLVMContext::MD_fpmath: case LLVMContext::MD_tbaa_struct: case LLVMContext::MD_alias_scope: case LLVMContext::MD_noalias: case LLVMContext::MD_nontemporal: case LLVMContext::MD_mem_parallel_loop_access: case LLVMContext::MD_access_group: // All of these directly apply. NewStore->setMetadata(ID, N); break; case LLVMContext::MD_invariant_load: case LLVMContext::MD_nonnull: case LLVMContext::MD_noundef: case LLVMContext::MD_range: case LLVMContext::MD_align: case LLVMContext::MD_dereferenceable: case LLVMContext::MD_dereferenceable_or_null: // These don't apply for stores. break; } } return NewStore; } /// Returns true if instruction represent minmax pattern like: /// select ((cmp load V1, load V2), V1, V2). static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) { assert(V->getType()->isPointerTy() && "Expected pointer type."); // Ignore possible ty* to ixx* bitcast. V = InstCombiner::peekThroughBitcast(V); // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax // pattern. CmpInst::Predicate Pred; Instruction *L1; Instruction *L2; Value *LHS; Value *RHS; if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), m_Value(LHS), m_Value(RHS)))) return false; LoadTy = L1->getType(); return (match(L1, m_Load(m_Specific(LHS))) && match(L2, m_Load(m_Specific(RHS)))) || (match(L1, m_Load(m_Specific(RHS))) && match(L2, m_Load(m_Specific(LHS)))); } /// Combine loads to match the type of their uses' value after looking /// through intervening bitcasts. /// /// The core idea here is that if the result of a load is used in an operation, /// we should load the type most conducive to that operation. For example, when /// loading an integer and converting that immediately to a pointer, we should /// instead directly load a pointer. /// /// However, this routine must never change the width of a load or the number of /// loads as that would introduce a semantic change. This combine is expected to /// be a semantic no-op which just allows loads to more closely model the types /// of their consuming operations. /// /// Currently, we also refuse to change the precise type used for an atomic load /// or a volatile load. This is debatable, and might be reasonable to change /// later. However, it is risky in case some backend or other part of LLVM is /// relying on the exact type loaded to select appropriate atomic operations. static Instruction *combineLoadToOperationType(InstCombinerImpl &IC, LoadInst &Load) { // FIXME: We could probably with some care handle both volatile and ordered // atomic loads here but it isn't clear that this is important. if (!Load.isUnordered()) return nullptr; if (Load.use_empty()) return nullptr; // swifterror values can't be bitcasted. if (Load.getPointerOperand()->isSwiftError()) return nullptr; // Fold away bit casts of the loaded value by loading the desired type. // Note that we should not do this for pointer<->integer casts, // because that would result in type punning. if (Load.hasOneUse()) { // Don't transform when the type is x86_amx, it makes the pass that lower // x86_amx type happy. Type *LoadTy = Load.getType(); if (auto *BC = dyn_cast(Load.user_back())) { assert(!LoadTy->isX86_AMXTy() && "Load from x86_amx* should not happen!"); if (BC->getType()->isX86_AMXTy()) return nullptr; } if (auto *CastUser = dyn_cast(Load.user_back())) { Type *DestTy = CastUser->getDestTy(); if (CastUser->isNoopCast(IC.getDataLayout()) && LoadTy->isPtrOrPtrVectorTy() == DestTy->isPtrOrPtrVectorTy() && (!Load.isAtomic() || isSupportedAtomicType(DestTy))) { LoadInst *NewLoad = IC.combineLoadToNewType(Load, DestTy); CastUser->replaceAllUsesWith(NewLoad); IC.eraseInstFromFunction(*CastUser); return &Load; } } } // FIXME: We should also canonicalize loads of vectors when their elements are // cast to other types. return nullptr; } static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) { // FIXME: We could probably with some care handle both volatile and atomic // stores here but it isn't clear that this is important. if (!LI.isSimple()) return nullptr; Type *T = LI.getType(); if (!T->isAggregateType()) return nullptr; StringRef Name = LI.getName(); if (auto *ST = dyn_cast(T)) { // If the struct only have one element, we unpack. auto NumElements = ST->getNumElements(); if (NumElements == 1) { LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U), ".unpack"); NewLoad->setAAMetadata(LI.getAAMetadata()); return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( PoisonValue::get(T), NewLoad, 0, Name)); } // We don't want to break loads with padding here as we'd loose // the knowledge that padding exists for the rest of the pipeline. const DataLayout &DL = IC.getDataLayout(); auto *SL = DL.getStructLayout(ST); if (SL->hasPadding()) return nullptr; const auto Align = LI.getAlign(); auto *Addr = LI.getPointerOperand(); auto *IdxType = Type::getInt32Ty(T->getContext()); auto *Zero = ConstantInt::get(IdxType, 0); Value *V = PoisonValue::get(T); for (unsigned i = 0; i < NumElements; i++) { Value *Indices[2] = { Zero, ConstantInt::get(IdxType, i), }; auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, ArrayRef(Indices), Name + ".elt"); auto *L = IC.Builder.CreateAlignedLoad( ST->getElementType(i), Ptr, commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack"); // Propagate AA metadata. It'll still be valid on the narrowed load. L->setAAMetadata(LI.getAAMetadata()); V = IC.Builder.CreateInsertValue(V, L, i); } V->setName(Name); return IC.replaceInstUsesWith(LI, V); } if (auto *AT = dyn_cast(T)) { auto *ET = AT->getElementType(); auto NumElements = AT->getNumElements(); if (NumElements == 1) { LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack"); NewLoad->setAAMetadata(LI.getAAMetadata()); return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( PoisonValue::get(T), NewLoad, 0, Name)); } // Bail out if the array is too large. Ideally we would like to optimize // arrays of arbitrary size but this has a terrible impact on compile time. // The threshold here is chosen arbitrarily, maybe needs a little bit of // tuning. if (NumElements > IC.MaxArraySizeForCombine) return nullptr; const DataLayout &DL = IC.getDataLayout(); auto EltSize = DL.getTypeAllocSize(ET); const auto Align = LI.getAlign(); auto *Addr = LI.getPointerOperand(); auto *IdxType = Type::getInt64Ty(T->getContext()); auto *Zero = ConstantInt::get(IdxType, 0); Value *V = PoisonValue::get(T); uint64_t Offset = 0; for (uint64_t i = 0; i < NumElements; i++) { Value *Indices[2] = { Zero, ConstantInt::get(IdxType, i), }; auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, ArrayRef(Indices), Name + ".elt"); auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr, commonAlignment(Align, Offset), Name + ".unpack"); L->setAAMetadata(LI.getAAMetadata()); V = IC.Builder.CreateInsertValue(V, L, i); Offset += EltSize; } V->setName(Name); return IC.replaceInstUsesWith(LI, V); } return nullptr; } // If we can determine that all possible objects pointed to by the provided // pointer value are, not only dereferenceable, but also definitively less than // or equal to the provided maximum size, then return true. Otherwise, return // false (constant global values and allocas fall into this category). // // FIXME: This should probably live in ValueTracking (or similar). static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, const DataLayout &DL) { SmallPtrSet Visited; SmallVector Worklist(1, V); do { Value *P = Worklist.pop_back_val(); P = P->stripPointerCasts(); if (!Visited.insert(P).second) continue; if (SelectInst *SI = dyn_cast(P)) { Worklist.push_back(SI->getTrueValue()); Worklist.push_back(SI->getFalseValue()); continue; } if (PHINode *PN = dyn_cast(P)) { append_range(Worklist, PN->incoming_values()); continue; } if (GlobalAlias *GA = dyn_cast(P)) { if (GA->isInterposable()) return false; Worklist.push_back(GA->getAliasee()); continue; } // If we know how big this object is, and it is less than MaxSize, continue // searching. Otherwise, return false. if (AllocaInst *AI = dyn_cast(P)) { if (!AI->getAllocatedType()->isSized()) return false; ConstantInt *CS = dyn_cast(AI->getArraySize()); if (!CS) return false; TypeSize TS = DL.getTypeAllocSize(AI->getAllocatedType()); if (TS.isScalable()) return false; // Make sure that, even if the multiplication below would wrap as an // uint64_t, we still do the right thing. if ((CS->getValue().zext(128) * APInt(128, TS.getFixedValue())) .ugt(MaxSize)) return false; continue; } if (GlobalVariable *GV = dyn_cast(P)) { if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) return false; uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); if (InitSize > MaxSize) return false; continue; } return false; } while (!Worklist.empty()); return true; } // If we're indexing into an object of a known size, and the outer index is // not a constant, but having any value but zero would lead to undefined // behavior, replace it with zero. // // For example, if we have: // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 // ... // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x // ... = load i32* %arrayidx, align 4 // Then we know that we can replace %x in the GEP with i64 0. // // FIXME: We could fold any GEP index to zero that would cause UB if it were // not zero. Currently, we only handle the first such index. Also, we could // also search through non-zero constant indices if we kept track of the // offsets those indices implied. static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC, GetElementPtrInst *GEPI, Instruction *MemI, unsigned &Idx) { if (GEPI->getNumOperands() < 2) return false; // Find the first non-zero index of a GEP. If all indices are zero, return // one past the last index. auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { unsigned I = 1; for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { Value *V = GEPI->getOperand(I); if (const ConstantInt *CI = dyn_cast(V)) if (CI->isZero()) continue; break; } return I; }; // Skip through initial 'zero' indices, and find the corresponding pointer // type. See if the next index is not a constant. Idx = FirstNZIdx(GEPI); if (Idx == GEPI->getNumOperands()) return false; if (isa(GEPI->getOperand(Idx))) return false; SmallVector Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); Type *SourceElementType = GEPI->getSourceElementType(); // Size information about scalable vectors is not available, so we cannot // deduce whether indexing at n is undefined behaviour or not. Bail out. if (isa(SourceElementType)) return false; Type *AllocTy = GetElementPtrInst::getIndexedType(SourceElementType, Ops); if (!AllocTy || !AllocTy->isSized()) return false; const DataLayout &DL = IC.getDataLayout(); uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy).getFixedValue(); // If there are more indices after the one we might replace with a zero, make // sure they're all non-negative. If any of them are negative, the overall // address being computed might be before the base address determined by the // first non-zero index. auto IsAllNonNegative = [&]() { for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); if (Known.isNonNegative()) continue; return false; } return true; }; // FIXME: If the GEP is not inbounds, and there are extra indices after the // one we'll replace, those could cause the address computation to wrap // (rendering the IsAllNonNegative() check below insufficient). We can do // better, ignoring zero indices (and other indices we can prove small // enough not to wrap). if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) return false; // Note that isObjectSizeLessThanOrEq will return true only if the pointer is // also known to be dereferenceable. return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && IsAllNonNegative(); } // If we're indexing into an object with a variable index for the memory // access, but the object has only one element, we can assume that the index // will always be zero. If we replace the GEP, return it. template static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr, T &MemI) { if (GetElementPtrInst *GEPI = dyn_cast(Ptr)) { unsigned Idx; if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { Instruction *NewGEPI = GEPI->clone(); NewGEPI->setOperand(Idx, ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); NewGEPI->insertBefore(GEPI); MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); return NewGEPI; } } return nullptr; } static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())) return false; auto *Ptr = SI.getPointerOperand(); if (GetElementPtrInst *GEPI = dyn_cast(Ptr)) Ptr = GEPI->getOperand(0); return (isa(Ptr) && !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())); } static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { if (GetElementPtrInst *GEPI = dyn_cast(Op)) { const Value *GEPI0 = GEPI->getOperand(0); if (isa(GEPI0) && !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace())) return true; } if (isa(Op) || (isa(Op) && !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace()))) return true; return false; } Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) { Value *Op = LI.getOperand(0); // Try to canonicalize the loaded type. if (Instruction *Res = combineLoadToOperationType(*this, LI)) return Res; // Attempt to improve the alignment. Align KnownAlign = getOrEnforceKnownAlignment( Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT); if (KnownAlign > LI.getAlign()) LI.setAlignment(KnownAlign); // Replace GEP indices if possible. if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { Worklist.push(NewGEPI); return &LI; } if (Instruction *Res = unpackLoadToAggregate(*this, LI)) return Res; // Do really simple store-to-load forwarding and load CSE, to catch cases // where there are several consecutive memory accesses to the same location, // separated by a few arithmetic operations. bool IsLoadCSE = false; if (Value *AvailableVal = FindAvailableLoadedValue(&LI, *AA, &IsLoadCSE)) { if (IsLoadCSE) combineMetadataForCSE(cast(AvailableVal), &LI, false); return replaceInstUsesWith( LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), LI.getName() + ".cast")); } // None of the following transforms are legal for volatile/ordered atomic // loads. Most of them do apply for unordered atomics. if (!LI.isUnordered()) return nullptr; // load(gep null, ...) -> unreachable // load null/undef -> unreachable // TODO: Consider a target hook for valid address spaces for this xforms. if (canSimplifyNullLoadOrGEP(LI, Op)) { // Insert a new store to null instruction before the load to indicate // that this code is not reachable. We do this instead of inserting // an unreachable instruction directly because we cannot modify the // CFG. StoreInst *SI = new StoreInst(PoisonValue::get(LI.getType()), Constant::getNullValue(Op->getType()), &LI); SI->setDebugLoc(LI.getDebugLoc()); return replaceInstUsesWith(LI, PoisonValue::get(LI.getType())); } if (Op->hasOneUse()) { // Change select and PHI nodes to select values instead of addresses: this // helps alias analysis out a lot, allows many others simplifications, and // exposes redundancy in the code. // // Note that we cannot do the transformation unless we know that the // introduced loads cannot trap! Something like this is valid as long as // the condition is always false: load (select bool %C, int* null, int* %G), // but it would not be valid if we transformed it to load from null // unconditionally. // if (SelectInst *SI = dyn_cast(Op)) { // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). Align Alignment = LI.getAlign(); if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(), Alignment, DL, SI) && isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(), Alignment, DL, SI)) { LoadInst *V1 = Builder.CreateLoad(LI.getType(), SI->getOperand(1), SI->getOperand(1)->getName() + ".val"); LoadInst *V2 = Builder.CreateLoad(LI.getType(), SI->getOperand(2), SI->getOperand(2)->getName() + ".val"); assert(LI.isUnordered() && "implied by above"); V1->setAlignment(Alignment); V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); V2->setAlignment(Alignment); V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); return SelectInst::Create(SI->getCondition(), V1, V2); } // load (select (cond, null, P)) -> load P if (isa(SI->getOperand(1)) && !NullPointerIsDefined(SI->getFunction(), LI.getPointerAddressSpace())) return replaceOperand(LI, 0, SI->getOperand(2)); // load (select (cond, P, null)) -> load P if (isa(SI->getOperand(2)) && !NullPointerIsDefined(SI->getFunction(), LI.getPointerAddressSpace())) return replaceOperand(LI, 0, SI->getOperand(1)); } } return nullptr; } /// Look for extractelement/insertvalue sequence that acts like a bitcast. /// /// \returns underlying value that was "cast", or nullptr otherwise. /// /// For example, if we have: /// /// %E0 = extractelement <2 x double> %U, i32 0 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 /// %E1 = extractelement <2 x double> %U, i32 1 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 /// /// and the layout of a <2 x double> is isomorphic to a [2 x double], /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. /// Note that %U may contain non-undef values where %V1 has undef. static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) { Value *U = nullptr; while (auto *IV = dyn_cast(V)) { auto *E = dyn_cast(IV->getInsertedValueOperand()); if (!E) return nullptr; auto *W = E->getVectorOperand(); if (!U) U = W; else if (U != W) return nullptr; auto *CI = dyn_cast(E->getIndexOperand()); if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) return nullptr; V = IV->getAggregateOperand(); } if (!match(V, m_Undef()) || !U) return nullptr; auto *UT = cast(U->getType()); auto *VT = V->getType(); // Check that types UT and VT are bitwise isomorphic. const auto &DL = IC.getDataLayout(); if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { return nullptr; } if (auto *AT = dyn_cast(VT)) { if (AT->getNumElements() != cast(UT)->getNumElements()) return nullptr; } else { auto *ST = cast(VT); if (ST->getNumElements() != cast(UT)->getNumElements()) return nullptr; for (const auto *EltT : ST->elements()) { if (EltT != UT->getElementType()) return nullptr; } } return U; } /// Combine stores to match the type of value being stored. /// /// The core idea here is that the memory does not have any intrinsic type and /// where we can we should match the type of a store to the type of value being /// stored. /// /// However, this routine must never change the width of a store or the number of /// stores as that would introduce a semantic change. This combine is expected to /// be a semantic no-op which just allows stores to more closely model the types /// of their incoming values. /// /// Currently, we also refuse to change the precise type used for an atomic or /// volatile store. This is debatable, and might be reasonable to change later. /// However, it is risky in case some backend or other part of LLVM is relying /// on the exact type stored to select appropriate atomic operations. /// /// \returns true if the store was successfully combined away. This indicates /// the caller must erase the store instruction. We have to let the caller erase /// the store instruction as otherwise there is no way to signal whether it was /// combined or not: IC.EraseInstFromFunction returns a null pointer. static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) { // FIXME: We could probably with some care handle both volatile and ordered // atomic stores here but it isn't clear that this is important. if (!SI.isUnordered()) return false; // swifterror values can't be bitcasted. if (SI.getPointerOperand()->isSwiftError()) return false; Value *V = SI.getValueOperand(); // Fold away bit casts of the stored value by storing the original type. if (auto *BC = dyn_cast(V)) { assert(!BC->getType()->isX86_AMXTy() && "store to x86_amx* should not happen!"); V = BC->getOperand(0); // Don't transform when the type is x86_amx, it makes the pass that lower // x86_amx type happy. if (V->getType()->isX86_AMXTy()) return false; if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { combineStoreToNewValue(IC, SI, V); return true; } } if (Value *U = likeBitCastFromVector(IC, V)) if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { combineStoreToNewValue(IC, SI, U); return true; } // FIXME: We should also canonicalize stores of vectors when their elements // are cast to other types. return false; } static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) { // FIXME: We could probably with some care handle both volatile and atomic // stores here but it isn't clear that this is important. if (!SI.isSimple()) return false; Value *V = SI.getValueOperand(); Type *T = V->getType(); if (!T->isAggregateType()) return false; if (auto *ST = dyn_cast(T)) { // If the struct only have one element, we unpack. unsigned Count = ST->getNumElements(); if (Count == 1) { V = IC.Builder.CreateExtractValue(V, 0); combineStoreToNewValue(IC, SI, V); return true; } // We don't want to break loads with padding here as we'd loose // the knowledge that padding exists for the rest of the pipeline. const DataLayout &DL = IC.getDataLayout(); auto *SL = DL.getStructLayout(ST); if (SL->hasPadding()) return false; const auto Align = SI.getAlign(); SmallString<16> EltName = V->getName(); EltName += ".elt"; auto *Addr = SI.getPointerOperand(); SmallString<16> AddrName = Addr->getName(); AddrName += ".repack"; auto *IdxType = Type::getInt32Ty(ST->getContext()); auto *Zero = ConstantInt::get(IdxType, 0); for (unsigned i = 0; i < Count; i++) { Value *Indices[2] = { Zero, ConstantInt::get(IdxType, i), }; auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, ArrayRef(Indices), AddrName); auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); auto EltAlign = commonAlignment(Align, SL->getElementOffset(i)); llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); NS->setAAMetadata(SI.getAAMetadata()); } return true; } if (auto *AT = dyn_cast(T)) { // If the array only have one element, we unpack. auto NumElements = AT->getNumElements(); if (NumElements == 1) { V = IC.Builder.CreateExtractValue(V, 0); combineStoreToNewValue(IC, SI, V); return true; } // Bail out if the array is too large. Ideally we would like to optimize // arrays of arbitrary size but this has a terrible impact on compile time. // The threshold here is chosen arbitrarily, maybe needs a little bit of // tuning. if (NumElements > IC.MaxArraySizeForCombine) return false; const DataLayout &DL = IC.getDataLayout(); auto EltSize = DL.getTypeAllocSize(AT->getElementType()); const auto Align = SI.getAlign(); SmallString<16> EltName = V->getName(); EltName += ".elt"; auto *Addr = SI.getPointerOperand(); SmallString<16> AddrName = Addr->getName(); AddrName += ".repack"; auto *IdxType = Type::getInt64Ty(T->getContext()); auto *Zero = ConstantInt::get(IdxType, 0); uint64_t Offset = 0; for (uint64_t i = 0; i < NumElements; i++) { Value *Indices[2] = { Zero, ConstantInt::get(IdxType, i), }; auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, ArrayRef(Indices), AddrName); auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); auto EltAlign = commonAlignment(Align, Offset); Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); NS->setAAMetadata(SI.getAAMetadata()); Offset += EltSize; } return true; } return false; } /// equivalentAddressValues - Test if A and B will obviously have the same /// value. This includes recognizing that %t0 and %t1 will have the same /// value in code like this: /// %t0 = getelementptr \@a, 0, 3 /// store i32 0, i32* %t0 /// %t1 = getelementptr \@a, 0, 3 /// %t2 = load i32* %t1 /// static bool equivalentAddressValues(Value *A, Value *B) { // Test if the values are trivially equivalent. if (A == B) return true; // Test if the values come form identical arithmetic instructions. // This uses isIdenticalToWhenDefined instead of isIdenticalTo because // its only used to compare two uses within the same basic block, which // means that they'll always either have the same value or one of them // will have an undefined value. if (isa(A) || isa(A) || isa(A) || isa(A)) if (Instruction *BI = dyn_cast(B)) if (cast(A)->isIdenticalToWhenDefined(BI)) return true; // Otherwise they may not be equivalent. return false; } /// Converts store (bitcast (load (bitcast (select ...)))) to /// store (load (select ...)), where select is minmax: /// select ((cmp load V1, load V2), V1, V2). static bool removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl &IC, StoreInst &SI) { // bitcast? if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) return false; // load? integer? Value *LoadAddr; if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) return false; auto *LI = cast(SI.getValueOperand()); if (!LI->getType()->isIntegerTy()) return false; Type *CmpLoadTy; if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy)) return false; // Make sure the type would actually change. // This condition can be hit with chains of bitcasts. if (LI->getType() == CmpLoadTy) return false; // Make sure we're not changing the size of the load/store. const auto &DL = IC.getDataLayout(); if (DL.getTypeStoreSizeInBits(LI->getType()) != DL.getTypeStoreSizeInBits(CmpLoadTy)) return false; if (!all_of(LI->users(), [LI, LoadAddr](User *U) { auto *SI = dyn_cast(U); return SI && SI->getPointerOperand() != LI && InstCombiner::peekThroughBitcast(SI->getPointerOperand()) != LoadAddr && !SI->getPointerOperand()->isSwiftError(); })) return false; IC.Builder.SetInsertPoint(LI); LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy); // Replace all the stores with stores of the newly loaded value. for (auto *UI : LI->users()) { auto *USI = cast(UI); IC.Builder.SetInsertPoint(USI); combineStoreToNewValue(IC, *USI, NewLI); } IC.replaceInstUsesWith(*LI, PoisonValue::get(LI->getType())); IC.eraseInstFromFunction(*LI); return true; } Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) { Value *Val = SI.getOperand(0); Value *Ptr = SI.getOperand(1); // Try to canonicalize the stored type. if (combineStoreToValueType(*this, SI)) return eraseInstFromFunction(SI); // Attempt to improve the alignment. const Align KnownAlign = getOrEnforceKnownAlignment( Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT); if (KnownAlign > SI.getAlign()) SI.setAlignment(KnownAlign); // Try to canonicalize the stored type. if (unpackStoreToAggregate(*this, SI)) return eraseInstFromFunction(SI); if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) return eraseInstFromFunction(SI); // Replace GEP indices if possible. if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { Worklist.push(NewGEPI); return &SI; } // Don't hack volatile/ordered stores. // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. if (!SI.isUnordered()) return nullptr; // If the RHS is an alloca with a single use, zapify the store, making the // alloca dead. if (Ptr->hasOneUse()) { if (isa(Ptr)) return eraseInstFromFunction(SI); if (GetElementPtrInst *GEP = dyn_cast(Ptr)) { if (isa(GEP->getOperand(0))) { if (GEP->getOperand(0)->hasOneUse()) return eraseInstFromFunction(SI); } } } // If we have a store to a location which is known constant, we can conclude // that the store must be storing the constant value (else the memory // wouldn't be constant), and this must be a noop. if (!isModSet(AA->getModRefInfoMask(Ptr))) return eraseInstFromFunction(SI); // Do really simple DSE, to catch cases where there are several consecutive // stores to the same location, separated by a few arithmetic operations. This // situation often occurs with bitfield accesses. BasicBlock::iterator BBI(SI); for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; --ScanInsts) { --BBI; // Don't count debug info directives, lest they affect codegen, // and we skip pointer-to-pointer bitcasts, which are NOPs. if (BBI->isDebugOrPseudoInst() || (isa(BBI) && BBI->getType()->isPointerTy())) { ScanInsts++; continue; } if (StoreInst *PrevSI = dyn_cast(BBI)) { // Prev store isn't volatile, and stores to the same location? if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), SI.getOperand(1)) && PrevSI->getValueOperand()->getType() == SI.getValueOperand()->getType()) { ++NumDeadStore; // Manually add back the original store to the worklist now, so it will // be processed after the operands of the removed store, as this may // expose additional DSE opportunities. Worklist.push(&SI); eraseInstFromFunction(*PrevSI); return nullptr; } break; } // If this is a load, we have to stop. However, if the loaded value is from // the pointer we're loading and is producing the pointer we're storing, // then *this* store is dead (X = load P; store X -> P). if (LoadInst *LI = dyn_cast(BBI)) { if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { assert(SI.isUnordered() && "can't eliminate ordering operation"); return eraseInstFromFunction(SI); } // Otherwise, this is a load from some other location. Stores before it // may not be dead. break; } // Don't skip over loads, throws or things that can modify memory. if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) break; } // store X, null -> turns into 'unreachable' in SimplifyCFG // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG if (canSimplifyNullStoreOrGEP(SI)) { if (!isa(Val)) return replaceOperand(SI, 0, PoisonValue::get(Val->getType())); return nullptr; // Do not modify these! } // store undef, Ptr -> noop // FIXME: This is technically incorrect because it might overwrite a poison // value. Change to PoisonValue once #52930 is resolved. if (isa(Val)) return eraseInstFromFunction(SI); return nullptr; } /// Try to transform: /// if () { *P = v1; } else { *P = v2 } /// or: /// *P = v1; if () { *P = v2; } /// into a phi node with a store in the successor. bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) { if (!SI.isUnordered()) return false; // This code has not been audited for volatile/ordered case. // Check if the successor block has exactly 2 incoming edges. BasicBlock *StoreBB = SI.getParent(); BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); if (!DestBB->hasNPredecessors(2)) return false; // Capture the other block (the block that doesn't contain our store). pred_iterator PredIter = pred_begin(DestBB); if (*PredIter == StoreBB) ++PredIter; BasicBlock *OtherBB = *PredIter; // Bail out if all of the relevant blocks aren't distinct. This can happen, // for example, if SI is in an infinite loop. if (StoreBB == DestBB || OtherBB == DestBB) return false; // Verify that the other block ends in a branch and is not otherwise empty. BasicBlock::iterator BBI(OtherBB->getTerminator()); BranchInst *OtherBr = dyn_cast(BBI); if (!OtherBr || BBI == OtherBB->begin()) return false; // If the other block ends in an unconditional branch, check for the 'if then // else' case. There is an instruction before the branch. StoreInst *OtherStore = nullptr; if (OtherBr->isUnconditional()) { --BBI; // Skip over debugging info and pseudo probes. while (BBI->isDebugOrPseudoInst() || (isa(BBI) && BBI->getType()->isPointerTy())) { if (BBI==OtherBB->begin()) return false; --BBI; } // If this isn't a store, isn't a store to the same location, or is not the // right kind of store, bail out. OtherStore = dyn_cast(BBI); if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || !SI.isSameOperationAs(OtherStore)) return false; } else { // Otherwise, the other block ended with a conditional branch. If one of the // destinations is StoreBB, then we have the if/then case. if (OtherBr->getSuccessor(0) != StoreBB && OtherBr->getSuccessor(1) != StoreBB) return false; // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an // if/then triangle. See if there is a store to the same ptr as SI that // lives in OtherBB. for (;; --BBI) { // Check to see if we find the matching store. if ((OtherStore = dyn_cast(BBI))) { if (OtherStore->getOperand(1) != SI.getOperand(1) || !SI.isSameOperationAs(OtherStore)) return false; break; } // If we find something that may be using or overwriting the stored // value, or if we run out of instructions, we can't do the transform. if (BBI->mayReadFromMemory() || BBI->mayThrow() || BBI->mayWriteToMemory() || BBI == OtherBB->begin()) return false; } // In order to eliminate the store in OtherBr, we have to make sure nothing // reads or overwrites the stored value in StoreBB. for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { // FIXME: This should really be AA driven. if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) return false; } } // Insert a PHI node now if we need it. Value *MergedVal = OtherStore->getOperand(0); // The debug locations of the original instructions might differ. Merge them. DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(), OtherStore->getDebugLoc()); if (MergedVal != SI.getOperand(0)) { PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); PN->addIncoming(SI.getOperand(0), SI.getParent()); PN->addIncoming(OtherStore->getOperand(0), OtherBB); MergedVal = InsertNewInstBefore(PN, DestBB->front()); PN->setDebugLoc(MergedLoc); } // Advance to a place where it is safe to insert the new store and insert it. BBI = DestBB->getFirstInsertionPt(); StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(), SI.getOrdering(), SI.getSyncScopeID()); InsertNewInstBefore(NewSI, *BBI); NewSI->setDebugLoc(MergedLoc); NewSI->mergeDIAssignID({&SI, OtherStore}); // If the two stores had AA tags, merge them. AAMDNodes AATags = SI.getAAMetadata(); if (AATags) NewSI->setAAMetadata(AATags.merge(OtherStore->getAAMetadata())); // Nuke the old stores. eraseInstFromFunction(SI); eraseInstFromFunction(*OtherStore); return true; }