//===- lib/Linker/IRMover.cpp ---------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/Linker/IRMover.h" #include "LinkDiagnosticInfo.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/Triple.h" #include "llvm/IR/AutoUpgrade.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DiagnosticPrinter.h" #include "llvm/IR/Function.h" #include "llvm/IR/GVMaterializer.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/IR/PseudoProbe.h" #include "llvm/IR/TypeFinder.h" #include "llvm/Object/ModuleSymbolTable.h" #include "llvm/Support/Error.h" #include "llvm/Support/Path.h" #include "llvm/Transforms/Utils/ValueMapper.h" #include #include using namespace llvm; //===----------------------------------------------------------------------===// // TypeMap implementation. //===----------------------------------------------------------------------===// namespace { class TypeMapTy : public ValueMapTypeRemapper { /// This is a mapping from a source type to a destination type to use. DenseMap MappedTypes; /// When checking to see if two subgraphs are isomorphic, we speculatively /// add types to MappedTypes, but keep track of them here in case we need to /// roll back. SmallVector SpeculativeTypes; SmallVector SpeculativeDstOpaqueTypes; /// This is a list of non-opaque structs in the source module that are mapped /// to an opaque struct in the destination module. SmallVector SrcDefinitionsToResolve; /// This is the set of opaque types in the destination modules who are /// getting a body from the source module. SmallPtrSet DstResolvedOpaqueTypes; public: TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet) : DstStructTypesSet(DstStructTypesSet) {} IRMover::IdentifiedStructTypeSet &DstStructTypesSet; /// Indicate that the specified type in the destination module is conceptually /// equivalent to the specified type in the source module. void addTypeMapping(Type *DstTy, Type *SrcTy); /// Produce a body for an opaque type in the dest module from a type /// definition in the source module. void linkDefinedTypeBodies(); /// Return the mapped type to use for the specified input type from the /// source module. Type *get(Type *SrcTy); Type *get(Type *SrcTy, SmallPtrSet &Visited); void finishType(StructType *DTy, StructType *STy, ArrayRef ETypes); FunctionType *get(FunctionType *T) { return cast(get((Type *)T)); } private: Type *remapType(Type *SrcTy) override { return get(SrcTy); } bool areTypesIsomorphic(Type *DstTy, Type *SrcTy); }; } void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) { assert(SpeculativeTypes.empty()); assert(SpeculativeDstOpaqueTypes.empty()); // Check to see if these types are recursively isomorphic and establish a // mapping between them if so. if (!areTypesIsomorphic(DstTy, SrcTy)) { // Oops, they aren't isomorphic. Just discard this request by rolling out // any speculative mappings we've established. for (Type *Ty : SpeculativeTypes) MappedTypes.erase(Ty); SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() - SpeculativeDstOpaqueTypes.size()); for (StructType *Ty : SpeculativeDstOpaqueTypes) DstResolvedOpaqueTypes.erase(Ty); } else { // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy // and all its descendants to lower amount of renaming in LLVM context // Renaming occurs because we load all source modules to the same context // and declaration with existing name gets renamed (i.e Foo -> Foo.42). // As a result we may get several different types in the destination // module, which are in fact the same. for (Type *Ty : SpeculativeTypes) if (auto *STy = dyn_cast(Ty)) if (STy->hasName()) STy->setName(""); } SpeculativeTypes.clear(); SpeculativeDstOpaqueTypes.clear(); } /// Recursively walk this pair of types, returning true if they are isomorphic, /// false if they are not. bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) { // Two types with differing kinds are clearly not isomorphic. if (DstTy->getTypeID() != SrcTy->getTypeID()) return false; // If we have an entry in the MappedTypes table, then we have our answer. Type *&Entry = MappedTypes[SrcTy]; if (Entry) return Entry == DstTy; // Two identical types are clearly isomorphic. Remember this // non-speculatively. if (DstTy == SrcTy) { Entry = DstTy; return true; } // Okay, we have two types with identical kinds that we haven't seen before. // If this is an opaque struct type, special case it. if (StructType *SSTy = dyn_cast(SrcTy)) { // Mapping an opaque type to any struct, just keep the dest struct. if (SSTy->isOpaque()) { Entry = DstTy; SpeculativeTypes.push_back(SrcTy); return true; } // Mapping a non-opaque source type to an opaque dest. If this is the first // type that we're mapping onto this destination type then we succeed. Keep // the dest, but fill it in later. If this is the second (different) type // that we're trying to map onto the same opaque type then we fail. if (cast(DstTy)->isOpaque()) { // We can only map one source type onto the opaque destination type. if (!DstResolvedOpaqueTypes.insert(cast(DstTy)).second) return false; SrcDefinitionsToResolve.push_back(SSTy); SpeculativeTypes.push_back(SrcTy); SpeculativeDstOpaqueTypes.push_back(cast(DstTy)); Entry = DstTy; return true; } } // If the number of subtypes disagree between the two types, then we fail. if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes()) return false; // Fail if any of the extra properties (e.g. array size) of the type disagree. if (isa(DstTy)) return false; // bitwidth disagrees. if (PointerType *PT = dyn_cast(DstTy)) { if (PT->getAddressSpace() != cast(SrcTy)->getAddressSpace()) return false; } else if (FunctionType *FT = dyn_cast(DstTy)) { if (FT->isVarArg() != cast(SrcTy)->isVarArg()) return false; } else if (StructType *DSTy = dyn_cast(DstTy)) { StructType *SSTy = cast(SrcTy); if (DSTy->isLiteral() != SSTy->isLiteral() || DSTy->isPacked() != SSTy->isPacked()) return false; } else if (auto *DArrTy = dyn_cast(DstTy)) { if (DArrTy->getNumElements() != cast(SrcTy)->getNumElements()) return false; } else if (auto *DVecTy = dyn_cast(DstTy)) { if (DVecTy->getElementCount() != cast(SrcTy)->getElementCount()) return false; } // Otherwise, we speculate that these two types will line up and recursively // check the subelements. Entry = DstTy; SpeculativeTypes.push_back(SrcTy); for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I) if (!areTypesIsomorphic(DstTy->getContainedType(I), SrcTy->getContainedType(I))) return false; // If everything seems to have lined up, then everything is great. return true; } void TypeMapTy::linkDefinedTypeBodies() { SmallVector Elements; for (StructType *SrcSTy : SrcDefinitionsToResolve) { StructType *DstSTy = cast(MappedTypes[SrcSTy]); assert(DstSTy->isOpaque()); // Map the body of the source type over to a new body for the dest type. Elements.resize(SrcSTy->getNumElements()); for (unsigned I = 0, E = Elements.size(); I != E; ++I) Elements[I] = get(SrcSTy->getElementType(I)); DstSTy->setBody(Elements, SrcSTy->isPacked()); DstStructTypesSet.switchToNonOpaque(DstSTy); } SrcDefinitionsToResolve.clear(); DstResolvedOpaqueTypes.clear(); } void TypeMapTy::finishType(StructType *DTy, StructType *STy, ArrayRef ETypes) { DTy->setBody(ETypes, STy->isPacked()); // Steal STy's name. if (STy->hasName()) { SmallString<16> TmpName = STy->getName(); STy->setName(""); DTy->setName(TmpName); } DstStructTypesSet.addNonOpaque(DTy); } Type *TypeMapTy::get(Type *Ty) { SmallPtrSet Visited; return get(Ty, Visited); } Type *TypeMapTy::get(Type *Ty, SmallPtrSet &Visited) { // If we already have an entry for this type, return it. Type **Entry = &MappedTypes[Ty]; if (*Entry) return *Entry; // These are types that LLVM itself will unique. bool IsUniqued = !isa(Ty) || cast(Ty)->isLiteral(); if (!IsUniqued) { #ifndef NDEBUG for (auto &Pair : MappedTypes) { assert(!(Pair.first != Ty && Pair.second == Ty) && "mapping to a source type"); } #endif if (!Visited.insert(cast(Ty)).second) { StructType *DTy = StructType::create(Ty->getContext()); return *Entry = DTy; } } // If this is not a recursive type, then just map all of the elements and // then rebuild the type from inside out. SmallVector ElementTypes; // If there are no element types to map, then the type is itself. This is // true for the anonymous {} struct, things like 'float', integers, etc. if (Ty->getNumContainedTypes() == 0 && IsUniqued) return *Entry = Ty; // Remap all of the elements, keeping track of whether any of them change. bool AnyChange = false; ElementTypes.resize(Ty->getNumContainedTypes()); for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) { ElementTypes[I] = get(Ty->getContainedType(I), Visited); AnyChange |= ElementTypes[I] != Ty->getContainedType(I); } // If we found our type while recursively processing stuff, just use it. Entry = &MappedTypes[Ty]; if (*Entry) { if (auto *DTy = dyn_cast(*Entry)) { if (DTy->isOpaque()) { auto *STy = cast(Ty); finishType(DTy, STy, ElementTypes); } } return *Entry; } // If all of the element types mapped directly over and the type is not // a named struct, then the type is usable as-is. if (!AnyChange && IsUniqued) return *Entry = Ty; // Otherwise, rebuild a modified type. switch (Ty->getTypeID()) { default: llvm_unreachable("unknown derived type to remap"); case Type::ArrayTyID: return *Entry = ArrayType::get(ElementTypes[0], cast(Ty)->getNumElements()); case Type::ScalableVectorTyID: case Type::FixedVectorTyID: return *Entry = VectorType::get(ElementTypes[0], cast(Ty)->getElementCount()); case Type::PointerTyID: return *Entry = PointerType::get(ElementTypes[0], cast(Ty)->getAddressSpace()); case Type::FunctionTyID: return *Entry = FunctionType::get(ElementTypes[0], ArrayRef(ElementTypes).slice(1), cast(Ty)->isVarArg()); case Type::StructTyID: { auto *STy = cast(Ty); bool IsPacked = STy->isPacked(); if (IsUniqued) return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked); // If the type is opaque, we can just use it directly. if (STy->isOpaque()) { DstStructTypesSet.addOpaque(STy); return *Entry = Ty; } if (StructType *OldT = DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) { STy->setName(""); return *Entry = OldT; } if (!AnyChange) { DstStructTypesSet.addNonOpaque(STy); return *Entry = Ty; } StructType *DTy = StructType::create(Ty->getContext()); finishType(DTy, STy, ElementTypes); return *Entry = DTy; } } } LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity, const Twine &Msg) : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {} void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } //===----------------------------------------------------------------------===// // IRLinker implementation. //===----------------------------------------------------------------------===// namespace { class IRLinker; /// Creates prototypes for functions that are lazily linked on the fly. This /// speeds up linking for modules with many/ lazily linked functions of which /// few get used. class GlobalValueMaterializer final : public ValueMaterializer { IRLinker &TheIRLinker; public: GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} Value *materialize(Value *V) override; }; class LocalValueMaterializer final : public ValueMaterializer { IRLinker &TheIRLinker; public: LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} Value *materialize(Value *V) override; }; /// Type of the Metadata map in \a ValueToValueMapTy. typedef DenseMap MDMapT; /// This is responsible for keeping track of the state used for moving data /// from SrcM to DstM. class IRLinker { Module &DstM; std::unique_ptr SrcM; /// See IRMover::move(). IRMover::LazyCallback AddLazyFor; TypeMapTy TypeMap; GlobalValueMaterializer GValMaterializer; LocalValueMaterializer LValMaterializer; /// A metadata map that's shared between IRLinker instances. MDMapT &SharedMDs; /// Mapping of values from what they used to be in Src, to what they are now /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead /// due to the use of Value handles which the Linker doesn't actually need, /// but this allows us to reuse the ValueMapper code. ValueToValueMapTy ValueMap; ValueToValueMapTy IndirectSymbolValueMap; DenseSet ValuesToLink; std::vector Worklist; std::vector> RAUWWorklist; void maybeAdd(GlobalValue *GV) { if (ValuesToLink.insert(GV).second) Worklist.push_back(GV); } /// Whether we are importing globals for ThinLTO, as opposed to linking the /// source module. If this flag is set, it means that we can rely on some /// other object file to define any non-GlobalValue entities defined by the /// source module. This currently causes us to not link retained types in /// debug info metadata and module inline asm. bool IsPerformingImport; /// Set to true when all global value body linking is complete (including /// lazy linking). Used to prevent metadata linking from creating new /// references. bool DoneLinkingBodies = false; /// The Error encountered during materialization. We use an Optional here to /// avoid needing to manage an unconsumed success value. std::optional FoundError; void setError(Error E) { if (E) FoundError = std::move(E); } /// Most of the errors produced by this module are inconvertible StringErrors. /// This convenience function lets us return one of those more easily. Error stringErr(const Twine &T) { return make_error(T, inconvertibleErrorCode()); } /// Entry point for mapping values and alternate context for mapping aliases. ValueMapper Mapper; unsigned IndirectSymbolMCID; /// Handles cloning of a global values from the source module into /// the destination module, including setting the attributes and visibility. GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition); void emitWarning(const Twine &Message) { SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message)); } /// Given a global in the source module, return the global in the /// destination module that is being linked to, if any. GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) { // If the source has no name it can't link. If it has local linkage, // there is no name match-up going on. if (!SrcGV->hasName() || SrcGV->hasLocalLinkage()) return nullptr; // Otherwise see if we have a match in the destination module's symtab. GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName()); if (!DGV) return nullptr; // If we found a global with the same name in the dest module, but it has // internal linkage, we are really not doing any linkage here. if (DGV->hasLocalLinkage()) return nullptr; // If we found an intrinsic declaration with mismatching prototypes, we // probably had a nameclash. Don't use that version. if (auto *FDGV = dyn_cast(DGV)) if (FDGV->isIntrinsic()) if (const auto *FSrcGV = dyn_cast(SrcGV)) if (FDGV->getFunctionType() != TypeMap.get(FSrcGV->getFunctionType())) return nullptr; // Otherwise, we do in fact link to the destination global. return DGV; } void computeTypeMapping(); Expected linkAppendingVarProto(GlobalVariable *DstGV, const GlobalVariable *SrcGV); /// Given the GlobaValue \p SGV in the source module, and the matching /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV /// into the destination module. /// /// Note this code may call the client-provided \p AddLazyFor. bool shouldLink(GlobalValue *DGV, GlobalValue &SGV); Expected linkGlobalValueProto(GlobalValue *GV, bool ForIndirectSymbol); Error linkModuleFlagsMetadata(); void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src); Error linkFunctionBody(Function &Dst, Function &Src); void linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src); void linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src); Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src); /// Replace all types in the source AttributeList with the /// corresponding destination type. AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs); /// Functions that take care of cloning a specific global value type /// into the destination module. GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar); Function *copyFunctionProto(const Function *SF); GlobalValue *copyIndirectSymbolProto(const GlobalValue *SGV); /// Perform "replace all uses with" operations. These work items need to be /// performed as part of materialization, but we postpone them to happen after /// materialization is done. The materializer called by ValueMapper is not /// expected to delete constants, as ValueMapper is holding pointers to some /// of them, but constant destruction may be indirectly triggered by RAUW. /// Hence, the need to move this out of the materialization call chain. void flushRAUWWorklist(); /// When importing for ThinLTO, prevent importing of types listed on /// the DICompileUnit that we don't need a copy of in the importing /// module. void prepareCompileUnitsForImport(); void linkNamedMDNodes(); /// Update attributes while linking. void updateAttributes(GlobalValue &GV); public: IRLinker(Module &DstM, MDMapT &SharedMDs, IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr SrcM, ArrayRef ValuesToLink, IRMover::LazyCallback AddLazyFor, bool IsPerformingImport) : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)), TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this), SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport), Mapper(ValueMap, RF_ReuseAndMutateDistinctMDs | RF_IgnoreMissingLocals, &TypeMap, &GValMaterializer), IndirectSymbolMCID(Mapper.registerAlternateMappingContext( IndirectSymbolValueMap, &LValMaterializer)) { ValueMap.getMDMap() = std::move(SharedMDs); for (GlobalValue *GV : ValuesToLink) maybeAdd(GV); if (IsPerformingImport) prepareCompileUnitsForImport(); } ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); } Error run(); Value *materialize(Value *V, bool ForIndirectSymbol); }; } /// The LLVM SymbolTable class autorenames globals that conflict in the symbol /// table. This is good for all clients except for us. Go through the trouble /// to force this back. static void forceRenaming(GlobalValue *GV, StringRef Name) { // If the global doesn't force its name or if it already has the right name, // there is nothing for us to do. if (GV->hasLocalLinkage() || GV->getName() == Name) return; Module *M = GV->getParent(); // If there is a conflict, rename the conflict. if (GlobalValue *ConflictGV = M->getNamedValue(Name)) { GV->takeName(ConflictGV); ConflictGV->setName(Name); // This will cause ConflictGV to get renamed assert(ConflictGV->getName() != Name && "forceRenaming didn't work"); } else { GV->setName(Name); // Force the name back } } Value *GlobalValueMaterializer::materialize(Value *SGV) { return TheIRLinker.materialize(SGV, false); } Value *LocalValueMaterializer::materialize(Value *SGV) { return TheIRLinker.materialize(SGV, true); } Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) { auto *SGV = dyn_cast(V); if (!SGV) return nullptr; // When linking a global from other modules than source & dest, skip // materializing it because it would be mapped later when its containing // module is linked. Linking it now would potentially pull in many types that // may not be mapped properly. if (SGV->getParent() != &DstM && SGV->getParent() != SrcM.get()) return nullptr; Expected NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol); if (!NewProto) { setError(NewProto.takeError()); return nullptr; } if (!*NewProto) return nullptr; GlobalValue *New = dyn_cast(*NewProto); if (!New) return *NewProto; // If we already created the body, just return. if (auto *F = dyn_cast(New)) { if (!F->isDeclaration()) return New; } else if (auto *V = dyn_cast(New)) { if (V->hasInitializer() || V->hasAppendingLinkage()) return New; } else if (auto *GA = dyn_cast(New)) { if (GA->getAliasee()) return New; } else if (auto *GI = dyn_cast(New)) { if (GI->getResolver()) return New; } else { llvm_unreachable("Invalid GlobalValue type"); } // If the global is being linked for an indirect symbol, it may have already // been scheduled to satisfy a regular symbol. Similarly, a global being linked // for a regular symbol may have already been scheduled for an indirect // symbol. Check for these cases by looking in the other value map and // confirming the same value has been scheduled. If there is an entry in the // ValueMap but the value is different, it means that the value already had a // definition in the destination module (linkonce for instance), but we need a // new definition for the indirect symbol ("New" will be different). if ((ForIndirectSymbol && ValueMap.lookup(SGV) == New) || (!ForIndirectSymbol && IndirectSymbolValueMap.lookup(SGV) == New)) return New; if (ForIndirectSymbol || shouldLink(New, *SGV)) setError(linkGlobalValueBody(*New, *SGV)); updateAttributes(*New); return New; } /// Loop through the global variables in the src module and merge them into the /// dest module. GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) { // No linking to be performed or linking from the source: simply create an // identical version of the symbol over in the dest module... the // initializer will be filled in later by LinkGlobalInits. GlobalVariable *NewDGV = new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()), SGVar->isConstant(), GlobalValue::ExternalLinkage, /*init*/ nullptr, SGVar->getName(), /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(), SGVar->getAddressSpace()); NewDGV->setAlignment(SGVar->getAlign()); NewDGV->copyAttributesFrom(SGVar); return NewDGV; } AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) { for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { for (int AttrIdx = Attribute::FirstTypeAttr; AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) { Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx; if (Attrs.hasAttributeAtIndex(i, TypedAttr)) { if (Type *Ty = Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) { Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr, TypeMap.get(Ty)); break; } } } } return Attrs; } /// Link the function in the source module into the destination module if /// needed, setting up mapping information. Function *IRLinker::copyFunctionProto(const Function *SF) { // If there is no linkage to be performed or we are linking from the source, // bring SF over. auto *F = Function::Create(TypeMap.get(SF->getFunctionType()), GlobalValue::ExternalLinkage, SF->getAddressSpace(), SF->getName(), &DstM); F->copyAttributesFrom(SF); F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes())); return F; } /// Set up prototypes for any indirect symbols that come over from the source /// module. GlobalValue *IRLinker::copyIndirectSymbolProto(const GlobalValue *SGV) { // If there is no linkage to be performed or we're linking from the source, // bring over SGA. auto *Ty = TypeMap.get(SGV->getValueType()); if (auto *GA = dyn_cast(SGV)) { auto *DGA = GlobalAlias::create(Ty, SGV->getAddressSpace(), GlobalValue::ExternalLinkage, SGV->getName(), &DstM); DGA->copyAttributesFrom(GA); return DGA; } if (auto *GI = dyn_cast(SGV)) { auto *DGI = GlobalIFunc::create(Ty, SGV->getAddressSpace(), GlobalValue::ExternalLinkage, SGV->getName(), nullptr, &DstM); DGI->copyAttributesFrom(GI); return DGI; } llvm_unreachable("Invalid source global value type"); } GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition) { GlobalValue *NewGV; if (auto *SGVar = dyn_cast(SGV)) { NewGV = copyGlobalVariableProto(SGVar); } else if (auto *SF = dyn_cast(SGV)) { NewGV = copyFunctionProto(SF); } else { if (ForDefinition) NewGV = copyIndirectSymbolProto(SGV); else if (SGV->getValueType()->isFunctionTy()) NewGV = Function::Create(cast(TypeMap.get(SGV->getValueType())), GlobalValue::ExternalLinkage, SGV->getAddressSpace(), SGV->getName(), &DstM); else NewGV = new GlobalVariable(DstM, TypeMap.get(SGV->getValueType()), /*isConstant*/ false, GlobalValue::ExternalLinkage, /*init*/ nullptr, SGV->getName(), /*insertbefore*/ nullptr, SGV->getThreadLocalMode(), SGV->getAddressSpace()); } if (ForDefinition) NewGV->setLinkage(SGV->getLinkage()); else if (SGV->hasExternalWeakLinkage()) NewGV->setLinkage(GlobalValue::ExternalWeakLinkage); if (auto *NewGO = dyn_cast(NewGV)) { // Metadata for global variables and function declarations is copied eagerly. if (isa(SGV) || SGV->isDeclaration()) NewGO->copyMetadata(cast(SGV), 0); } // Remove these copied constants in case this stays a declaration, since // they point to the source module. If the def is linked the values will // be mapped in during linkFunctionBody. if (auto *NewF = dyn_cast(NewGV)) { NewF->setPersonalityFn(nullptr); NewF->setPrefixData(nullptr); NewF->setPrologueData(nullptr); } return NewGV; } static StringRef getTypeNamePrefix(StringRef Name) { size_t DotPos = Name.rfind('.'); return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' || !isdigit(static_cast(Name[DotPos + 1]))) ? Name : Name.substr(0, DotPos); } /// Loop over all of the linked values to compute type mappings. For example, /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct /// types 'Foo' but one got renamed when the module was loaded into the same /// LLVMContext. void IRLinker::computeTypeMapping() { for (GlobalValue &SGV : SrcM->globals()) { GlobalValue *DGV = getLinkedToGlobal(&SGV); if (!DGV) continue; if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) { TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); continue; } // Unify the element type of appending arrays. ArrayType *DAT = cast(DGV->getValueType()); ArrayType *SAT = cast(SGV.getValueType()); TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType()); } for (GlobalValue &SGV : *SrcM) if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) { if (DGV->getType() == SGV.getType()) { // If the types of DGV and SGV are the same, it means that DGV is from // the source module and got added to DstM from a shared metadata. We // shouldn't map this type to itself in case the type's components get // remapped to a new type from DstM (for instance, during the loop over // SrcM->getIdentifiedStructTypes() below). continue; } TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); } for (GlobalValue &SGV : SrcM->aliases()) if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); // Incorporate types by name, scanning all the types in the source module. // At this point, the destination module may have a type "%foo = { i32 }" for // example. When the source module got loaded into the same LLVMContext, if // it had the same type, it would have been renamed to "%foo.42 = { i32 }". std::vector Types = SrcM->getIdentifiedStructTypes(); for (StructType *ST : Types) { if (!ST->hasName()) continue; if (TypeMap.DstStructTypesSet.hasType(ST)) { // This is actually a type from the destination module. // getIdentifiedStructTypes() can have found it by walking debug info // metadata nodes, some of which get linked by name when ODR Type Uniquing // is enabled on the Context, from the source to the destination module. continue; } auto STTypePrefix = getTypeNamePrefix(ST->getName()); if (STTypePrefix.size() == ST->getName().size()) continue; // Check to see if the destination module has a struct with the prefix name. StructType *DST = StructType::getTypeByName(ST->getContext(), STTypePrefix); if (!DST) continue; // Don't use it if this actually came from the source module. They're in // the same LLVMContext after all. Also don't use it unless the type is // actually used in the destination module. This can happen in situations // like this: // // Module A Module B // -------- -------- // %Z = type { %A } %B = type { %C.1 } // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* } // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] } // %C = type { i8* } %B.3 = type { %C.1 } // // When we link Module B with Module A, the '%B' in Module B is // used. However, that would then use '%C.1'. But when we process '%C.1', // we prefer to take the '%C' version. So we are then left with both // '%C.1' and '%C' being used for the same types. This leads to some // variables using one type and some using the other. if (TypeMap.DstStructTypesSet.hasType(DST)) TypeMap.addTypeMapping(DST, ST); } // Now that we have discovered all of the type equivalences, get a body for // any 'opaque' types in the dest module that are now resolved. TypeMap.linkDefinedTypeBodies(); } static void getArrayElements(const Constant *C, SmallVectorImpl &Dest) { unsigned NumElements = cast(C->getType())->getNumElements(); for (unsigned i = 0; i != NumElements; ++i) Dest.push_back(C->getAggregateElement(i)); } /// If there were any appending global variables, link them together now. Expected IRLinker::linkAppendingVarProto(GlobalVariable *DstGV, const GlobalVariable *SrcGV) { // Check that both variables have compatible properties. if (DstGV && !DstGV->isDeclaration() && !SrcGV->isDeclaration()) { if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage()) return stringErr( "Linking globals named '" + SrcGV->getName() + "': can only link appending global with another appending " "global!"); if (DstGV->isConstant() != SrcGV->isConstant()) return stringErr("Appending variables linked with different const'ness!"); if (DstGV->getAlign() != SrcGV->getAlign()) return stringErr( "Appending variables with different alignment need to be linked!"); if (DstGV->getVisibility() != SrcGV->getVisibility()) return stringErr( "Appending variables with different visibility need to be linked!"); if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr()) return stringErr( "Appending variables with different unnamed_addr need to be linked!"); if (DstGV->getSection() != SrcGV->getSection()) return stringErr( "Appending variables with different section name need to be linked!"); if (DstGV->getAddressSpace() != SrcGV->getAddressSpace()) return stringErr("Appending variables with different address spaces need " "to be linked!"); } // Do not need to do anything if source is a declaration. if (SrcGV->isDeclaration()) return DstGV; Type *EltTy = cast(TypeMap.get(SrcGV->getValueType())) ->getElementType(); // FIXME: This upgrade is done during linking to support the C API. Once the // old form is deprecated, we should move this upgrade to // llvm::UpgradeGlobalVariable() and simplify the logic here and in // Mapper::mapAppendingVariable() in ValueMapper.cpp. StringRef Name = SrcGV->getName(); bool IsNewStructor = false; bool IsOldStructor = false; if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") { if (cast(EltTy)->getNumElements() == 3) IsNewStructor = true; else IsOldStructor = true; } PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo(); if (IsOldStructor) { auto &ST = *cast(EltTy); Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; EltTy = StructType::get(SrcGV->getContext(), Tys, false); } uint64_t DstNumElements = 0; if (DstGV && !DstGV->isDeclaration()) { ArrayType *DstTy = cast(DstGV->getValueType()); DstNumElements = DstTy->getNumElements(); // Check to see that they two arrays agree on type. if (EltTy != DstTy->getElementType()) return stringErr("Appending variables with different element types!"); } SmallVector SrcElements; getArrayElements(SrcGV->getInitializer(), SrcElements); if (IsNewStructor) { erase_if(SrcElements, [this](Constant *E) { auto *Key = dyn_cast(E->getAggregateElement(2)->stripPointerCasts()); if (!Key) return false; GlobalValue *DGV = getLinkedToGlobal(Key); return !shouldLink(DGV, *Key); }); } uint64_t NewSize = DstNumElements + SrcElements.size(); ArrayType *NewType = ArrayType::get(EltTy, NewSize); // Create the new global variable. GlobalVariable *NG = new GlobalVariable( DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(), /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(), SrcGV->getAddressSpace()); NG->copyAttributesFrom(SrcGV); forceRenaming(NG, SrcGV->getName()); Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType())); Mapper.scheduleMapAppendingVariable( *NG, (DstGV && !DstGV->isDeclaration()) ? DstGV->getInitializer() : nullptr, IsOldStructor, SrcElements); // Replace any uses of the two global variables with uses of the new // global. if (DstGV) { RAUWWorklist.push_back( std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType()))); } return Ret; } bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) { if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage()) return true; if (DGV && !DGV->isDeclarationForLinker()) return false; if (SGV.isDeclaration() || DoneLinkingBodies) return false; // Callback to the client to give a chance to lazily add the Global to the // list of value to link. bool LazilyAdded = false; if (AddLazyFor) AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) { maybeAdd(&GV); LazilyAdded = true; }); return LazilyAdded; } Expected IRLinker::linkGlobalValueProto(GlobalValue *SGV, bool ForIndirectSymbol) { GlobalValue *DGV = getLinkedToGlobal(SGV); bool ShouldLink = shouldLink(DGV, *SGV); // just missing from map if (ShouldLink) { auto I = ValueMap.find(SGV); if (I != ValueMap.end()) return cast(I->second); I = IndirectSymbolValueMap.find(SGV); if (I != IndirectSymbolValueMap.end()) return cast(I->second); } if (!ShouldLink && ForIndirectSymbol) DGV = nullptr; // Handle the ultra special appending linkage case first. if (SGV->hasAppendingLinkage() || (DGV && DGV->hasAppendingLinkage())) return linkAppendingVarProto(cast_or_null(DGV), cast(SGV)); bool NeedsRenaming = false; GlobalValue *NewGV; if (DGV && !ShouldLink) { NewGV = DGV; } else { // If we are done linking global value bodies (i.e. we are performing // metadata linking), don't link in the global value due to this // reference, simply map it to null. if (DoneLinkingBodies) return nullptr; NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol); if (ShouldLink || !ForIndirectSymbol) NeedsRenaming = true; } // Overloaded intrinsics have overloaded types names as part of their // names. If we renamed overloaded types we should rename the intrinsic // as well. if (Function *F = dyn_cast(NewGV)) if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { NewGV->eraseFromParent(); NewGV = *Remangled; NeedsRenaming = false; } if (NeedsRenaming) forceRenaming(NewGV, SGV->getName()); if (ShouldLink || ForIndirectSymbol) { if (const Comdat *SC = SGV->getComdat()) { if (auto *GO = dyn_cast(NewGV)) { Comdat *DC = DstM.getOrInsertComdat(SC->getName()); DC->setSelectionKind(SC->getSelectionKind()); GO->setComdat(DC); } } } if (!ShouldLink && ForIndirectSymbol) NewGV->setLinkage(GlobalValue::InternalLinkage); Constant *C = NewGV; // Only create a bitcast if necessary. In particular, with // DebugTypeODRUniquing we may reach metadata in the destination module // containing a GV from the source module, in which case SGV will be // the same as DGV and NewGV, and TypeMap.get() will assert since it // assumes it is being invoked on a type in the source module. if (DGV && NewGV != SGV) { C = ConstantExpr::getPointerBitCastOrAddrSpaceCast( NewGV, TypeMap.get(SGV->getType())); } if (DGV && NewGV != DGV) { // Schedule "replace all uses with" to happen after materializing is // done. It is not safe to do it now, since ValueMapper may be holding // pointers to constants that will get deleted if RAUW runs. RAUWWorklist.push_back(std::make_pair( DGV, ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType()))); } return C; } /// Update the initializers in the Dest module now that all globals that may be /// referenced are in Dest. void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) { // Figure out what the initializer looks like in the dest module. Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer()); } /// Copy the source function over into the dest function and fix up references /// to values. At this point we know that Dest is an external function, and /// that Src is not. Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) { assert(Dst.isDeclaration() && !Src.isDeclaration()); // Materialize if needed. if (Error Err = Src.materialize()) return Err; // Link in the operands without remapping. if (Src.hasPrefixData()) Dst.setPrefixData(Src.getPrefixData()); if (Src.hasPrologueData()) Dst.setPrologueData(Src.getPrologueData()); if (Src.hasPersonalityFn()) Dst.setPersonalityFn(Src.getPersonalityFn()); // Copy over the metadata attachments without remapping. Dst.copyMetadata(&Src, 0); // Steal arguments and splice the body of Src into Dst. Dst.stealArgumentListFrom(Src); Dst.splice(Dst.end(), &Src); // Everything has been moved over. Remap it. Mapper.scheduleRemapFunction(Dst); return Error::success(); } void IRLinker::linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src) { Mapper.scheduleMapGlobalAlias(Dst, *Src.getAliasee(), IndirectSymbolMCID); } void IRLinker::linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src) { Mapper.scheduleMapGlobalIFunc(Dst, *Src.getResolver(), IndirectSymbolMCID); } Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) { if (auto *F = dyn_cast(&Src)) return linkFunctionBody(cast(Dst), *F); if (auto *GVar = dyn_cast(&Src)) { linkGlobalVariable(cast(Dst), *GVar); return Error::success(); } if (auto *GA = dyn_cast(&Src)) { linkAliasAliasee(cast(Dst), *GA); return Error::success(); } linkIFuncResolver(cast(Dst), cast(Src)); return Error::success(); } void IRLinker::flushRAUWWorklist() { for (const auto &Elem : RAUWWorklist) { GlobalValue *Old; Value *New; std::tie(Old, New) = Elem; Old->replaceAllUsesWith(New); Old->eraseFromParent(); } RAUWWorklist.clear(); } void IRLinker::prepareCompileUnitsForImport() { NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu"); if (!SrcCompileUnits) return; // When importing for ThinLTO, prevent importing of types listed on // the DICompileUnit that we don't need a copy of in the importing // module. They will be emitted by the originating module. for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) { auto *CU = cast(SrcCompileUnits->getOperand(I)); assert(CU && "Expected valid compile unit"); // Enums, macros, and retained types don't need to be listed on the // imported DICompileUnit. This means they will only be imported // if reached from the mapped IR. CU->replaceEnumTypes(nullptr); CU->replaceMacros(nullptr); CU->replaceRetainedTypes(nullptr); // The original definition (or at least its debug info - if the variable is // internalized and optimized away) will remain in the source module, so // there's no need to import them. // If LLVM ever does more advanced optimizations on global variables // (removing/localizing write operations, for instance) that can track // through debug info, this decision may need to be revisited - but do so // with care when it comes to debug info size. Emitting small CUs containing // only a few imported entities into every destination module may be very // size inefficient. CU->replaceGlobalVariables(nullptr); // Imported entities only need to be mapped in if they have local // scope, as those might correspond to an imported entity inside a // function being imported (any locally scoped imported entities that // don't end up referenced by an imported function will not be emitted // into the object). Imported entities not in a local scope // (e.g. on the namespace) only need to be emitted by the originating // module. Create a list of the locally scoped imported entities, and // replace the source CUs imported entity list with the new list, so // only those are mapped in. // FIXME: Locally-scoped imported entities could be moved to the // functions they are local to instead of listing them on the CU, and // we would naturally only link in those needed by function importing. SmallVector AllImportedModules; bool ReplaceImportedEntities = false; for (auto *IE : CU->getImportedEntities()) { DIScope *Scope = IE->getScope(); assert(Scope && "Invalid Scope encoding!"); if (isa(Scope)) AllImportedModules.emplace_back(IE); else ReplaceImportedEntities = true; } if (ReplaceImportedEntities) { if (!AllImportedModules.empty()) CU->replaceImportedEntities(MDTuple::get( CU->getContext(), SmallVector(AllImportedModules.begin(), AllImportedModules.end()))); else // If there were no local scope imported entities, we can map // the whole list to nullptr. CU->replaceImportedEntities(nullptr); } } } /// Insert all of the named MDNodes in Src into the Dest module. void IRLinker::linkNamedMDNodes() { const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); for (const NamedMDNode &NMD : SrcM->named_metadata()) { // Don't link module flags here. Do them separately. if (&NMD == SrcModFlags) continue; // Don't import pseudo probe descriptors here for thinLTO. They will be // emitted by the originating module. if (IsPerformingImport && NMD.getName() == PseudoProbeDescMetadataName) { if (!DstM.getNamedMetadata(NMD.getName())) emitWarning("Pseudo-probe ignored: source module '" + SrcM->getModuleIdentifier() + "' is compiled with -fpseudo-probe-for-profiling while " "destination module '" + DstM.getModuleIdentifier() + "' is not\n"); continue; } // The stats are computed per module and will all be merged in the binary. // Importing the metadata will cause duplication of the stats. if (IsPerformingImport && NMD.getName() == "llvm.stats") continue; NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName()); // Add Src elements into Dest node. for (const MDNode *Op : NMD.operands()) DestNMD->addOperand(Mapper.mapMDNode(*Op)); } } /// Merge the linker flags in Src into the Dest module. Error IRLinker::linkModuleFlagsMetadata() { // If the source module has no module flags, we are done. const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); if (!SrcModFlags) return Error::success(); // Check for module flag for updates before do anything. UpgradeModuleFlags(*SrcM); // If the destination module doesn't have module flags yet, then just copy // over the source module's flags. NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata(); if (DstModFlags->getNumOperands() == 0) { for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) DstModFlags->addOperand(SrcModFlags->getOperand(I)); return Error::success(); } // First build a map of the existing module flags and requirements. DenseMap> Flags; SmallSetVector Requirements; SmallVector Mins; DenseSet SeenMin; for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) { MDNode *Op = DstModFlags->getOperand(I); uint64_t Behavior = mdconst::extract(Op->getOperand(0))->getZExtValue(); MDString *ID = cast(Op->getOperand(1)); if (Behavior == Module::Require) { Requirements.insert(cast(Op->getOperand(2))); } else { if (Behavior == Module::Min) Mins.push_back(I); Flags[ID] = std::make_pair(Op, I); } } // Merge in the flags from the source module, and also collect its set of // requirements. for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) { MDNode *SrcOp = SrcModFlags->getOperand(I); ConstantInt *SrcBehavior = mdconst::extract(SrcOp->getOperand(0)); MDString *ID = cast(SrcOp->getOperand(1)); MDNode *DstOp; unsigned DstIndex; std::tie(DstOp, DstIndex) = Flags.lookup(ID); unsigned SrcBehaviorValue = SrcBehavior->getZExtValue(); SeenMin.insert(ID); // If this is a requirement, add it and continue. if (SrcBehaviorValue == Module::Require) { // If the destination module does not already have this requirement, add // it. if (Requirements.insert(cast(SrcOp->getOperand(2)))) { DstModFlags->addOperand(SrcOp); } continue; } // If there is no existing flag with this ID, just add it. if (!DstOp) { if (SrcBehaviorValue == Module::Min) { Mins.push_back(DstModFlags->getNumOperands()); SeenMin.erase(ID); } Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands()); DstModFlags->addOperand(SrcOp); continue; } // Otherwise, perform a merge. ConstantInt *DstBehavior = mdconst::extract(DstOp->getOperand(0)); unsigned DstBehaviorValue = DstBehavior->getZExtValue(); auto overrideDstValue = [&]() { DstModFlags->setOperand(DstIndex, SrcOp); Flags[ID].first = SrcOp; }; // If either flag has override behavior, handle it first. if (DstBehaviorValue == Module::Override) { // Diagnose inconsistent flags which both have override behavior. if (SrcBehaviorValue == Module::Override && SrcOp->getOperand(2) != DstOp->getOperand(2)) return stringErr("linking module flags '" + ID->getString() + "': IDs have conflicting override values in '" + SrcM->getModuleIdentifier() + "' and '" + DstM.getModuleIdentifier() + "'"); continue; } else if (SrcBehaviorValue == Module::Override) { // Update the destination flag to that of the source. overrideDstValue(); continue; } // Diagnose inconsistent merge behavior types. if (SrcBehaviorValue != DstBehaviorValue) { bool MinAndWarn = (SrcBehaviorValue == Module::Min && DstBehaviorValue == Module::Warning) || (DstBehaviorValue == Module::Min && SrcBehaviorValue == Module::Warning); bool MaxAndWarn = (SrcBehaviorValue == Module::Max && DstBehaviorValue == Module::Warning) || (DstBehaviorValue == Module::Max && SrcBehaviorValue == Module::Warning); if (!(MaxAndWarn || MinAndWarn)) return stringErr("linking module flags '" + ID->getString() + "': IDs have conflicting behaviors in '" + SrcM->getModuleIdentifier() + "' and '" + DstM.getModuleIdentifier() + "'"); } auto ensureDistinctOp = [&](MDNode *DstValue) { assert(isa(DstValue) && "Expected MDTuple when appending module flags"); if (DstValue->isDistinct()) return dyn_cast(DstValue); ArrayRef DstOperands = DstValue->operands(); MDTuple *New = MDTuple::getDistinct( DstM.getContext(), SmallVector(DstOperands.begin(), DstOperands.end())); Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New}; MDNode *Flag = MDTuple::getDistinct(DstM.getContext(), FlagOps); DstModFlags->setOperand(DstIndex, Flag); Flags[ID].first = Flag; return New; }; // Emit a warning if the values differ and either source or destination // request Warning behavior. if ((DstBehaviorValue == Module::Warning || SrcBehaviorValue == Module::Warning) && SrcOp->getOperand(2) != DstOp->getOperand(2)) { std::string Str; raw_string_ostream(Str) << "linking module flags '" << ID->getString() << "': IDs have conflicting values ('" << *SrcOp->getOperand(2) << "' from " << SrcM->getModuleIdentifier() << " with '" << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier() << ')'; emitWarning(Str); } // Choose the minimum if either source or destination request Min behavior. if (DstBehaviorValue == Module::Min || SrcBehaviorValue == Module::Min) { ConstantInt *DstValue = mdconst::extract(DstOp->getOperand(2)); ConstantInt *SrcValue = mdconst::extract(SrcOp->getOperand(2)); // The resulting flag should have a Min behavior, and contain the minimum // value from between the source and destination values. Metadata *FlagOps[] = { (DstBehaviorValue != Module::Min ? SrcOp : DstOp)->getOperand(0), ID, (SrcValue->getZExtValue() < DstValue->getZExtValue() ? SrcOp : DstOp) ->getOperand(2)}; MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); DstModFlags->setOperand(DstIndex, Flag); Flags[ID].first = Flag; continue; } // Choose the maximum if either source or destination request Max behavior. if (DstBehaviorValue == Module::Max || SrcBehaviorValue == Module::Max) { ConstantInt *DstValue = mdconst::extract(DstOp->getOperand(2)); ConstantInt *SrcValue = mdconst::extract(SrcOp->getOperand(2)); // The resulting flag should have a Max behavior, and contain the maximum // value from between the source and destination values. Metadata *FlagOps[] = { (DstBehaviorValue != Module::Max ? SrcOp : DstOp)->getOperand(0), ID, (SrcValue->getZExtValue() > DstValue->getZExtValue() ? SrcOp : DstOp) ->getOperand(2)}; MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); DstModFlags->setOperand(DstIndex, Flag); Flags[ID].first = Flag; continue; } // Perform the merge for standard behavior types. switch (SrcBehaviorValue) { case Module::Require: case Module::Override: llvm_unreachable("not possible"); case Module::Error: { // Emit an error if the values differ. if (SrcOp->getOperand(2) != DstOp->getOperand(2)) return stringErr("linking module flags '" + ID->getString() + "': IDs have conflicting values in '" + SrcM->getModuleIdentifier() + "' and '" + DstM.getModuleIdentifier() + "'"); continue; } case Module::Warning: { break; } case Module::Max: { break; } case Module::Append: { MDTuple *DstValue = ensureDistinctOp(cast(DstOp->getOperand(2))); MDNode *SrcValue = cast(SrcOp->getOperand(2)); for (const auto &O : SrcValue->operands()) DstValue->push_back(O); break; } case Module::AppendUnique: { SmallSetVector Elts; MDTuple *DstValue = ensureDistinctOp(cast(DstOp->getOperand(2))); MDNode *SrcValue = cast(SrcOp->getOperand(2)); Elts.insert(DstValue->op_begin(), DstValue->op_end()); Elts.insert(SrcValue->op_begin(), SrcValue->op_end()); for (auto I = DstValue->getNumOperands(); I < Elts.size(); I++) DstValue->push_back(Elts[I]); break; } } } // For the Min behavior, set the value to 0 if either module does not have the // flag. for (auto Idx : Mins) { MDNode *Op = DstModFlags->getOperand(Idx); MDString *ID = cast(Op->getOperand(1)); if (!SeenMin.count(ID)) { ConstantInt *V = mdconst::extract(Op->getOperand(2)); Metadata *FlagOps[] = { Op->getOperand(0), ID, ConstantAsMetadata::get(ConstantInt::get(V->getType(), 0))}; DstModFlags->setOperand(Idx, MDNode::get(DstM.getContext(), FlagOps)); } } // Check all of the requirements. for (unsigned I = 0, E = Requirements.size(); I != E; ++I) { MDNode *Requirement = Requirements[I]; MDString *Flag = cast(Requirement->getOperand(0)); Metadata *ReqValue = Requirement->getOperand(1); MDNode *Op = Flags[Flag].first; if (!Op || Op->getOperand(2) != ReqValue) return stringErr("linking module flags '" + Flag->getString() + "': does not have the required value"); } return Error::success(); } /// Return InlineAsm adjusted with target-specific directives if required. /// For ARM and Thumb, we have to add directives to select the appropriate ISA /// to support mixing module-level inline assembly from ARM and Thumb modules. static std::string adjustInlineAsm(const std::string &InlineAsm, const Triple &Triple) { if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb) return ".text\n.balign 2\n.thumb\n" + InlineAsm; if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb) return ".text\n.balign 4\n.arm\n" + InlineAsm; return InlineAsm; } void IRLinker::updateAttributes(GlobalValue &GV) { /// Remove nocallback attribute while linking, because nocallback attribute /// indicates that the function is only allowed to jump back into caller's /// module only by a return or an exception. When modules are linked, this /// property cannot be guaranteed anymore. For example, the nocallback /// function may contain a call to another module. But if we merge its caller /// and callee module here, and not the module containing the nocallback /// function definition itself, the nocallback property will be violated /// (since the nocallback function will call back into the newly merged module /// containing both its caller and callee). This could happen if the module /// containing the nocallback function definition is native code, so it does /// not participate in the LTO link. Note if the nocallback function does /// participate in the LTO link, and thus ends up in the merged module /// containing its caller and callee, removing the attribute doesn't hurt as /// it has no effect on definitions in the same module. if (auto *F = dyn_cast(&GV)) { if (!F->isIntrinsic()) F->removeFnAttr(llvm::Attribute::NoCallback); // Remove nocallback attribute when it is on a call-site. for (BasicBlock &BB : *F) for (Instruction &I : BB) if (CallBase *CI = dyn_cast(&I)) CI->removeFnAttr(Attribute::NoCallback); } } Error IRLinker::run() { // Ensure metadata materialized before value mapping. if (SrcM->getMaterializer()) if (Error Err = SrcM->getMaterializer()->materializeMetadata()) return Err; // Inherit the target data from the source module if the destination module // doesn't have one already. if (DstM.getDataLayout().isDefault()) DstM.setDataLayout(SrcM->getDataLayout()); // Copy the target triple from the source to dest if the dest's is empty. if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty()) DstM.setTargetTriple(SrcM->getTargetTriple()); Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple()); // During CUDA compilation we have to link with the bitcode supplied with // CUDA. libdevice bitcode either has no data layout set (pre-CUDA-11), or has // the layout that is different from the one used by LLVM/clang (it does not // include i128). Issuing a warning is not very helpful as there's not much // the user can do about it. bool EnableDLWarning = true; bool EnableTripleWarning = true; if (SrcTriple.isNVPTX() && DstTriple.isNVPTX()) { std::string ModuleId = SrcM->getModuleIdentifier(); StringRef FileName = llvm::sys::path::filename(ModuleId); bool SrcIsLibDevice = FileName.startswith("libdevice") && FileName.endswith(".10.bc"); bool SrcHasLibDeviceDL = (SrcM->getDataLayoutStr().empty() || SrcM->getDataLayoutStr() == "e-i64:64-v16:16-v32:32-n16:32:64"); // libdevice bitcode uses nvptx64-nvidia-gpulibs or just // 'nvptx-unknown-unknown' triple (before CUDA-10.x) and is compatible with // all NVPTX variants. bool SrcHasLibDeviceTriple = (SrcTriple.getVendor() == Triple::NVIDIA && SrcTriple.getOSName() == "gpulibs") || (SrcTriple.getVendorName() == "unknown" && SrcTriple.getOSName() == "unknown"); EnableTripleWarning = !(SrcIsLibDevice && SrcHasLibDeviceTriple); EnableDLWarning = !(SrcIsLibDevice && SrcHasLibDeviceDL); } if (EnableDLWarning && (SrcM->getDataLayout() != DstM.getDataLayout())) { emitWarning("Linking two modules of different data layouts: '" + SrcM->getModuleIdentifier() + "' is '" + SrcM->getDataLayoutStr() + "' whereas '" + DstM.getModuleIdentifier() + "' is '" + DstM.getDataLayoutStr() + "'\n"); } if (EnableTripleWarning && !SrcM->getTargetTriple().empty() && !SrcTriple.isCompatibleWith(DstTriple)) emitWarning("Linking two modules of different target triples: '" + SrcM->getModuleIdentifier() + "' is '" + SrcM->getTargetTriple() + "' whereas '" + DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() + "'\n"); DstM.setTargetTriple(SrcTriple.merge(DstTriple)); // Loop over all of the linked values to compute type mappings. computeTypeMapping(); std::reverse(Worklist.begin(), Worklist.end()); while (!Worklist.empty()) { GlobalValue *GV = Worklist.back(); Worklist.pop_back(); // Already mapped. if (ValueMap.find(GV) != ValueMap.end() || IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end()) continue; assert(!GV->isDeclaration()); Mapper.mapValue(*GV); if (FoundError) return std::move(*FoundError); flushRAUWWorklist(); } // Note that we are done linking global value bodies. This prevents // metadata linking from creating new references. DoneLinkingBodies = true; Mapper.addFlags(RF_NullMapMissingGlobalValues); // Remap all of the named MDNodes in Src into the DstM module. We do this // after linking GlobalValues so that MDNodes that reference GlobalValues // are properly remapped. linkNamedMDNodes(); if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) { // Append the module inline asm string. DstM.appendModuleInlineAsm(adjustInlineAsm(SrcM->getModuleInlineAsm(), SrcTriple)); } else if (IsPerformingImport) { // Import any symver directives for symbols in DstM. ModuleSymbolTable::CollectAsmSymvers(*SrcM, [&](StringRef Name, StringRef Alias) { if (DstM.getNamedValue(Name)) { SmallString<256> S(".symver "); S += Name; S += ", "; S += Alias; DstM.appendModuleInlineAsm(S); } }); } // Reorder the globals just added to the destination module to match their // original order in the source module. Module::GlobalListType &Globals = DstM.getGlobalList(); for (GlobalVariable &GV : SrcM->globals()) { if (GV.hasAppendingLinkage()) continue; Value *NewValue = Mapper.mapValue(GV); if (NewValue) { auto *NewGV = dyn_cast(NewValue->stripPointerCasts()); if (NewGV) Globals.splice(Globals.end(), Globals, NewGV->getIterator()); } } // Merge the module flags into the DstM module. return linkModuleFlagsMetadata(); } IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef E, bool P) : ETypes(E), IsPacked(P) {} IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST) : ETypes(ST->elements()), IsPacked(ST->isPacked()) {} bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const { return IsPacked == That.IsPacked && ETypes == That.ETypes; } bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const { return !this->operator==(That); } StructType *IRMover::StructTypeKeyInfo::getEmptyKey() { return DenseMapInfo::getEmptyKey(); } StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() { return DenseMapInfo::getTombstoneKey(); } unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) { return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()), Key.IsPacked); } unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) { return getHashValue(KeyTy(ST)); } bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS, const StructType *RHS) { if (RHS == getEmptyKey() || RHS == getTombstoneKey()) return false; return LHS == KeyTy(RHS); } bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS, const StructType *RHS) { if (RHS == getEmptyKey() || RHS == getTombstoneKey()) return LHS == RHS; return KeyTy(LHS) == KeyTy(RHS); } void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) { assert(!Ty->isOpaque()); NonOpaqueStructTypes.insert(Ty); } void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) { assert(!Ty->isOpaque()); NonOpaqueStructTypes.insert(Ty); bool Removed = OpaqueStructTypes.erase(Ty); (void)Removed; assert(Removed); } void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) { assert(Ty->isOpaque()); OpaqueStructTypes.insert(Ty); } StructType * IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef ETypes, bool IsPacked) { IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked); auto I = NonOpaqueStructTypes.find_as(Key); return I == NonOpaqueStructTypes.end() ? nullptr : *I; } bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) { if (Ty->isOpaque()) return OpaqueStructTypes.count(Ty); auto I = NonOpaqueStructTypes.find(Ty); return I == NonOpaqueStructTypes.end() ? false : *I == Ty; } IRMover::IRMover(Module &M) : Composite(M) { TypeFinder StructTypes; StructTypes.run(M, /* OnlyNamed */ false); for (StructType *Ty : StructTypes) { if (Ty->isOpaque()) IdentifiedStructTypes.addOpaque(Ty); else IdentifiedStructTypes.addNonOpaque(Ty); } // Self-map metadatas in the destination module. This is needed when // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the // destination module may be reached from the source module. for (const auto *MD : StructTypes.getVisitedMetadata()) { SharedMDs[MD].reset(const_cast(MD)); } } Error IRMover::move(std::unique_ptr Src, ArrayRef ValuesToLink, LazyCallback AddLazyFor, bool IsPerformingImport) { IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes, std::move(Src), ValuesToLink, std::move(AddLazyFor), IsPerformingImport); Error E = TheIRLinker.run(); Composite.dropTriviallyDeadConstantArrays(); return E; }